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Abstract: Networks and graphs offer a suitable and powerful framework for studying the spread of
infection in human and animal populations. In the case of a heterogeneous population, the social
contact network has a pivotal role in the analysis of directly transmitted infectious diseases. The
literature presents several works where network-based models encompass realistic features (such as
contacts networks or host–pathogen biological data), but analytical results are nonetheless scarce. As
a significant example, in this paper, we develop a multi-group version of the epidemiological SEIR
population-based model. Each group can represent a social subpopulation with the same habits or a
group of geographically localized people. We consider also heterogeneity in the weighting of contacts
between two groups. As a simple application, we propose a simple control algorithm in which we
optimize the connection weights in order to minimize the combination between an economic cost
and a social cost. Some numerical simulations are also provided.

Keywords: epidemic spread; multi-group models; network based model; control of spread dynamics

1. Introduction

The epidemiological modeling of infectious disease transmission has a long history in
mathematical biology, for humans [1–7], animals [3,8] and plants [9–11]. In recent years
it has had an increasing influence on the theory and practice of disease management and
control, e.g., [12–18]. Indeed the forecast of the spread of an infectious disease is critical to
public health decision making.

The proper modeling and analysis of the dynamics of infectious diseases has been a
long-standing area of research among many different fields, including economics, social
sciences, mathematical biology, physics, computer science and engineering [5]. In the
classical population approach, the underlying common factor is the partitioning of the
population into “compartments”; we assume that the populations in the various compartments
are homogenous in the sense that all individuals behave similarly. The two most common
compartments that exist in almost all epidemic models are susceptible (S) and infected
(I) [2,3]. The subpopulation S represents individuals who are healthy but susceptible
to becoming infected, while I represents individuals who became infected but are able
to recover. If the model contains only these two compartments, a given population is
initially divided into them. From this basic compartmentalization, there are numerous
ways for introducing different interactions within the population. Most of these models
for the disease evolution make two basic assumptions. The first assumption states that the
population is well-mixed. In such a population, each individual has the same probability
of encountering other infected individuals, and thus the resulting force of infection is equal
for all. The second assumption states that there are a priori constraints upon the biological
process, whilst gradual but random mutation of disease traits (such as transmission rate
and infectious period) could occur. More refined epidemic models are required; the entire
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population cannot just be divided into two or more compartments/groups which are
defined by a single quantity. In this paper, we consider the effect of the heterogeneity in the
weighting of contacts between two individuals. Moreover, we focus on a meta-population
model where the population is previously subdivided into subpopulations that can consist
in spatially distinct groups of individuals (neighborhoods, towns, cities, etc.) or groups of
individuals with different features. The resulting model is described by a dynamic system
defined on a network (graph). We have also added the possibility of varying the weight
of the connections between groups in order to formalize the problem of controlling the
spread of the epidemic on the network. This generality could also allow the changing of
disease features.

The paper is organized as follows: Section 2 introduces the model and the analysis of
the corresponding dynamical system. Moreover, as an application of this approach, we
will also discuss a new definition of control problem about the spread of epidemics on the
network. Section 3 is devoted to numerical experiments using a reduced network with
different features. Following the findings of the case study and of previous analysis, the
conclusions are presented in Section 4.

2. A Meta-Population Model on a Network

The transmission of infectious diseases raises many important questions. In some
instances, the average behavior of a large population with respect to the time is sufficient
to provide useful insight from the available data. However, the spatial component of
many transmission systems has been recognized to be of pivotal importance in the recent
years. Due to this, spatially heterogeneous interventions must be included in the model,
and hence it is essential to properly represent the transmission pattern. A reasonable
hypothesis may consider that the spatial aspects of transmission heavily influence the
aggregation characteristic of epidemic influence. Hence, we need to investigate data by
using models that include such spatial connections. For example, the understanding of
human mobility and the developing of qualitative and quantitative theories is of key
importance for the modeling and for the comprehension of human infectious disease
dynamics on geographical scales of different size.

2.1. Spatial Heterogeneity in Epidemiological Models

Ideally, the model should be able to account for the states of all N individuals in
the population in an independent manner and, at the same time, it should allow for
arbitrary interactions among them. The analysis of these models is a difficult task, and
the computational cost of numerical simulations is very onerous and the extraction of the
collective behaviors very complex. Although studies on the temporal dynamics of diseases
proved insightful, incorporating space explicitly into epidemiological models revealed
various emergent properties [19]. The phenomenon of the spatial spread of infection
involves several components and scale [20]. Indeed, small region/group models can
incorporate spatial heterogeneity, and more general models allowing for larger households
with continuous or discrete time can be developed. Other typical approaches encompassing
spatial variation in epidemic models involve partial differential equations (PDE). There
exist, nonetheless, cases and scenarios where the latter type of spatial approach may not
reliably model the phenomenon. Consider, for example, a human specific disease which is
spread only by person-to-person contact and consider a geographical context consisting in
a large country with a small number of large cities and a very sparse (or even non-existent)
rural population [21]. The travel of individuals between discrete geographical regions
and/or cities plays a pivotal role in the disease spreading. The depicted situation is
easily described by a directed graph, where the vertices represent the cities (or discrete
geographical regions/patches) and the arcs represent the links between such cities [22].

The main approaches for spatial models concern a different scale: an individual-based
simulation, a meta-population model or a network model (see, e.g., [14]). Individual-based
models explicitly represent every individual i with a state Xi(t) at time t, e.g., Xi(t) = 1
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indicates that i is infected while Xi(t) = 0 indicates that i is healthy at time t. Infected nodes
can transmit the disease to neighboring nodes and an individual becomes infected with a
certain probability based on the status of neighboring individuals. The meta-population
framework consists of dividing the whole population into distinct subpopulations, each
having independent internal dynamics. In addition, at the same time, there is a limited
interaction between the subpopulations. This approach has been used to great effect within
ecological systems [23,24]. The individuals in such subpopulations belong to a particular
state (e.g., susceptible or infectious) which can change during the time. For large networks,
a general approach consists of merging some network information in a relatively small set
of statistics and then studying the impact of such statistics on the infection spread [25].

In the following section, we describe our meta-population model, which considers
communities as the aggregate unit that may represent either subpopulations in different
areas or distinct groups with similar characteristics (e.g., students on a campus and citizens
of a neighborhood or high school students or office workers). Then, each subpopulation is
partitioned according to a particular state of individuals with respect to disease. Finally,
connections and mobility between different communities are introduced. We point out
that various proposed models encompass the geography of spread of the disease, but they
do not present a mathematical analysis of their main properties, while presenting realistic
simulations and an appropriate identification of the parameters involved, e.g., [26].

2.2. A Prototype: SEIR Model on a Direct Graph

We introduce a prototype model that can be generalized considering several states
related to a given disease. Our analysis can, therefore, easily be extended to these more
complex models. We partition a population of N individuals into subpopulations (groups,
patches, communities, etc.) without taking into account any biological interpretation
they have but considering spatially segregated large subpopulations. In this way, we
can encompass a more realistic contact structure into epidemic models, since it usually
preserves analytic tractability (in stochastic and in deterministic models), but at the same
time it also captures the most important structural inhomogeneity in contact patterns in
several applied contexts. The subpopulations and the interactions/connections between
them are modeled through a weighted direct graph G = (V , E) with n vertices (nodes,
regions, patches, subpopulations) and m edges (connections). Each edge is described by an
ordered pairs of nodes (u, v), where u, v ∈ V . We label the nodes with an integer index;
two vertices i and j of the directed graph are joined or adjacent if and only if there exists an
edge from i to j or from j to i. If such an edge exists, then i and j are called its endpoints.
If there is an edge from i to j then i and j are often called tail and head, respectively. The
(n× n) adjacency matrix Ad associated to the graph is constructed as follows: if there exists
an edge from node i to node j, then the entry at row i and column j is set to 1 in the matrix
Ad: ad

ij = 1.
In node i, the corresponding subpopulation possesses Ni individuals, and ∑n

i=1 Ni = N.
We hypothesize that individuals can move to a different node, interact with people in that
node and then return to the original one. If ad

ij = 1, there is an interaction between node
i and node j, but not all the subpopulation Ni from node i interacts with the population
in node j: we denote by aij the total amount of the subpopulation i that “goes” to node j
and interacts with the people in that node. We call A the routing matrix with entries aij, so
that ∑n

j=1 aij = Ni, i = 1, . . . , n. Associated to A, let Po the probability outgoing matrix with
entries po

ij, where we denote by po
ij the percentage (probability) of the subpopulation i that

“goes” to node j. In addition, we denote by Pi the probability incoming matrix with entries
pi

ij, where pi
ij is now the percentage (probability) of the subpopulation in j that “arrived”

from i. Finally, let Mi = ∑n
j=1 aji be the total amount of people arrived in node i = 1, . . . , n,

so that ∑n
i=1 Mi = N again. Then, for any i = 1, . . . , n, ∑n

j=1 po
ij = ∑n

j=1 pi
ji = 1. Moreover

we have

A = Diag(N1, N2, . . . , Nn)Po = Pi Diag(M1, M2, . . . , Mn)
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where Diag(x1, x2, . . . , xn) is the diagonal matrix with the vector (x1, x2, . . . , xn)T ∈ Rn

on the main diagonal.
Four different discrete classes are considered for statuses of individuals in each:

susceptible, exposed, infectious and recovered (SEIR model) [2]. All individuals are born as
susceptible: a susceptible individual in contact with an infectious one may become exposed;
the probability depends on the particular strain of the disease. Exposed individuals are
infected but not yet infectious: individuals experience a long incubation duration. With a
suitable incubation rate, latent individuals become infectious. Finally, a reliable assumption
is that the immune system of infectious individuals combats the infection and then they
move directly into the recovered class, which refers to individuals that are no longer
infectious and have gained full immunity from further infection. Let S(t), E(t), I(t), R(t)
the number of individuals in a node at time t, S(t) + E(t) + I(t) + R(t) = N: we consider
a time interval in which we can neglect demographics. Without any interaction with other
nodes, within a deterministic approach of the compartmental models, with continuous
time t, the epidemic dynamics can be described by the system of differential equations
in (1):

Ṡ(t) = −λ S(t)
Ė(t) = λ S(t)− µE(t)
İ(t) = µE(t)− γI(t)
Ṙ(t) = γI(t)

(1)

where the parameter λ is the force of infection, γ is the recovery rate and 1/µ is an average
latent period.

With respect to the behavior of an epidemic, λ is the rate at which susceptible
individuals become infected or exposed and it is a function depending on the number of
infectious individuals; it contains information about the interactions between individuals
that concur to the infection transmission. If we suppose that the population of N individuals
mixes at random, meaning that all pairs of individuals have the same probability of
interacting, the force of infection may be computed as:

λ = transmission rate
× effective number of contacts per unit time
× proportion of contacts infectious
∼ τ × nc × I

N = β I
N

Then the dynamics state,

Ṡ(t) = −β I
N S(t)

Ė(t) = β I
N S(t)− µE(t)

(2)

where β is the infectious rate. Rescaling the quantities S, E, I, R dividing by N we obtain,

ṡ(t) = −β ı(t)s(t)
ė(t) = β ı(t)s(t)− µe(t)
ı̇(t) = µe(t)− γ ı(t)
ṙ(t) = γ ı(t)

(3)

Pay attention to the fact that ı̇ stands for the derivative of the function ı. Now, we
take a node j that is connected to the other nodes as encoded in matrix A. Then, Sj(t)
can change due to the contribution of susceptible people from j that reached an adjacent
node k and met infectious people in that node, wheresoever they came from. Then the
contribution to Ṡj due to the interactions in node k is given by the po

jkSj = ajksj susceptible
people that met a population in node k with a proportion of infectious people given by
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#{infectious people in node k}
#{total people in node k} =

∑n
l=1 po

lk Il

∑n
l=1 alk

=
∑n

l=1 po
lk Il

Mk

=
∑n

l=1 alkıl

∑n
l=1 alk

=
n

∑
l=1

pi
lkıl .

Let the vectors X(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn, with X = S, E, I, R, the SEIR
model on the graph G is the following

Ṡ(t) = −β Diag(S(t))B̂I(t) ṡ(t) = −β Diag(s(t))Bı(t)

Ė(t) = β Diag(S(t))B̂I(t)− µE(t) ė(t) = β Diag(s(t))Bı(t)− µe(t)

İ(t) = µE(t)− γI(t) ı̇(t) = µe(t)− γı(t)

Ṙ(t) = γI(t) ṙ(t) = γı(t)

(4)

where B̂ = Po Diag(M1, . . . , Mn)−1Po>, B = PoPi>, and the equations on the right side
have been obtained by a premultiplication with Diag(N1, N2, . . . , Nn)−1.

Remark 1. We have assumed that the parameter β is the same in all nodes. It is possible to easily
introduce a different parameter for each node considering more heterogeneity in the model.

In the following, we adopt the notations 1 = [1, 1, . . . , 1]>, 0 = [0, 0, . . . , 0]>, for any
vectors x, y ∈ Rn, x � y ⇔ xi < yi, i = 1, 2, . . . , n; x ≤ y ⇔ xi ≤ yi, i = 1, 2, . . . , n (and
x < y if x ≤ y but x 6= y).

We suppose that the directed graph G is strongly connected, i.e., there exists a path in
each direction between each pair of vertices of the graph, then the matrices A and P are
irreducible. This means that we cannot divide the nodes of the graph into two subsets such
that there are no connections between the nodes of the two subsets but only within each
subset. It also follows that the matrix B is a non-negative irreducible n× n matrix; by the
Perron–Frobenius theorem [27] we deduce:

• B has a positive real eigenvalue equal to its spectral radius ρ(B);
• There exists an eigenvector v� 0 corresponding to ρ(B);
• ρ(B) increases when any entry of B increases;
• ρ(B) is a simple eigenvalue of B;

• Collatz–Wielandt formula: ρ(B) = minx>0 maxi:xi>0
[x>B]i

xi
= maxx>0 mini:xi>0

[x>B]i
xi

that are reached identically on every component of the eigenvector: ρ(B) = [v>B]i
vi

, for
any i = 1, . . . , n;

• There is no other, unless rescaled, non-negative eigenvector of B, different from v.

Let Bs(t) = Diag(s(t)) B, λs(t) = ρ(Bs(t)) the dominant eigenvalue of Bs(t) and
vs(t)� 0 the corresponding positive left eigenvector.

It is easy to prove that this system of differential equations has a local solution by
standard argument by the Cauchy–Lipschitz–Picard–Lindelöf theorem. Furthermore, if
ı(0) > 0 and s(0)� 0 then

• ı(t) > 0, and s(t)� 0 for all t > 0;
• ∀t1 > t2 > 0, s(t2)� s(t1);
• λs(t) is monotone decreasing.

Then, the solution is non-negative. Moreover, it is easy to check that if sj(0) + ej(0) +
ij(0) + rj(0) = 1 then sj(t) + ej(t) + ij(t) + rj(t) = 1 and the solution is bounded, so there
is a global solution for any time t > 0.

About the behavior of the epidemic dynamics, we will analyze the most important
epidemiological properties:
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• The threshold phenomenon that states that, under some condition, an epidemic propagates,
in the sense that the introduction of a percentage of infected in the population triggers
the contamination of many other individuals, otherwise the epidemic fades off.

• The asymptotic profiles of the steady states in order to understand if an endemic level
can be reach.

Theorem 1 (Asymptotic behavior). Denote by xs(t) the normalized version of vs(t): xs(t)>

Bs(t) = λs(t)xs(t)> and xs(t)>xs(t) = 1. For any initial condition, λs(t) is a continuous
function, and there exist the limits of the above quantities: s∞ = limt→∞ s(t), limt→∞ Bs(t) =
Bs∞ = Diag(s∞)B, limt→∞ λs(t) = λs∞ , where ρ(Bs∞) = λs∞ .

If s∞ > 0, then ρ(Bs∞) = λ∞ > 0 and any converging subsequence of xs(t) converges to a
λ∞-eigenvector.

If, in addition, s∞ � 0, λ∞ is simple, and then limt→∞ xs(t) = xs∞ � 0, where
x>s∞ Bs∞ = λs∞ x>s∞ .

Proof. The existence of the limit of s(t) is obvious, since s(t) is a continuous monotone
function. Accordingly, Bs(t) = Diag(s∞)B converges to Diag(s∞)B. From now on, to
simplify the notations in the proof, we will use Bt = Bs(t), λt = λs(t) and xt = xs(t)
for any t ∈ R+. Now, let t fixed and δ > 0 sufficiently small so that (1− ε)Diag(1) ≤
Diag(sv)Diag(st)−1 ≤ (1 + ε)Diag(1) for v ∈ (t− δ, t + δ). Then, for t ≤ v < t + δ,

0 ≤ λt − λv ≤ λt −min
i

[x>t Bv]i
[xt]i

= λt −min
i

[x>t Diag(sv)B]i
[xt]i

= λt −min
i

[x>t Diag(sv)Diag(st)−1 Diag(st)B]i
[xt]i

≤ λt1 −min
i
(1− ε)

[x>t (Bt)]i
[xt]i

≤ ελt,

while, for t− δ < v ≤ t,

0 ≤ λv − λt ≤ max
i

[x>t Bv]i
[xt]i

− λt

= max
i

[x>t Diag(sv)Diag(st)−1Bt]i
[xt]i

− λt

= max
i

(1 + ε)
[x>t (Bt)]i

[xt]i
− λt

≤ ελt,

which implies that λs(t) is a continuous monotone function that must have a limit; denote
it by λ∞. If s∞ = 0, then 1>Bt → 0>, which implies that λt → 0. From now on, we then
assume 1>s∞ = |s∞|1 > 0, so that λ∞ > 0. Let xtn any converging subsequence, call x̃ its
limit. Then, is a λ∞ non-negative eigenvector of B∞, since

x̃>B∞ = •(x̃> − xtn)B∞ + x>tn(B∞ − Btn) + x>tn Btn

= ε(n)1> + λtn x>tn Btn

→ λ∞ x̃>.

Now, if we add the hypothesis that s∞ � 0, then B∞ is still a Perron matrix, and hence
there exists a unique positive eigenvector of B∞, whence xt → x∞ � 0.
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Theorem 2 (Threshold). Consider the SEIR model (4) on a strongly connected graph G, let λs(t)
be the dominant eigenvalue of Bs(t) and let vs(t)� 0 be the corresponding positive left eigenvector.

(1) If for a time τ ≥ 0, βλs(τ) < γ then q(ε)τ (t) = vs(τ)>(e(t)(1 + ε) + ı(t)) decreases

exponentially to zero for t ≥ τ and any ε ∈
(

0, γ
βλs(τ)

− 1
)

.

(2) If βλs(0) > γ, ı(0) > 0 and s(0)� 0, then ∃t∗ > 0 such that q0(t) = vs(0)> (e(t)+ ı(t))
increases for t ∈ (0, t∗). Moreover, e(t)→ 0 and ı(t)→ 0.

Proof. Take ε ∈
(

0, γ−βλs(τ)
βλs(τ)

)
, so that

βλs(τ)(1 + ε)− γ < 0,

and define
cε = min

(
γ− βλs(τ)(1 + ε),

εµ

1 + ε

)
> 0. (5)

Multiplying the weighted sum of the second equation of exposed and the third
equation of the infected by vs(τ),

vs(τ)
>(ė(t)(1 + ε) + ı̇(t)) = vs(τ)

>(β Diag(s(t))Bı(t)(1 + ε)− εµe(t)− γı(t))

= vs(τ)
>(βBs(t)ı(t)(1 + ε)− εµe(t)− γı(t)),

then, for t ≥ τ,

d vs(τ)>(e(t)(1 + ε) + ı(t))
dt

≤ vs(τ)
>(βBs(t)(1 + ε)ı(t)− εµe(t)− γı(t)).

Now, βvs(τ)>Bs(τ) = vs(τ)>βλs(τ), then

d vs(τ)>(e(t)(1 + ε) + ı(t))
dt

≤ vs(τ)
>((βλs(τ)(1 + ε)− γ)ı(t)− εµe(t))

≤ −vs(τ)
>cε(ı(t) + (1 + ε)e(t)),

where cε is defined in (5). Using the previous differential inequality, Gronwall lemma
implies that

vs(τ)
>(e(t)(1 + ε) + ı(t)) ≤ vs(τ)

>(e(τ)(1 + ε) + ı(τ))e−cε(t−τ).

To prove (2), we start by noticing that

d
dt

(
vs(0)>(e(t) + ı(t))

)
t=0

= (βλs(0)− γ)vs(0)>ı(0).

Since (βλs(0)− γ) > 0, ı(0) > 0, and vs(0)� 0, then

d
dt

(
vs(0)>(e(t) + ı(t))

)
t=0

> 0.

We have that the solution is a continuous differentiable function, then exists t∗ > 0
such that for s ∈ (0, t∗)

d
dt

(
vs(0)>(e(t) + ı(t))

)
t=s

> 0,

which implies that q0(t) = vs(0)> (e(t) + ı(t)) increases for t ∈ (0, t∗).
Moreover, it is ṡ� 0 and s(t)� 0, then exist limt→+∞ s(t) = s∞. Define b>j the j–th

row of B, so that ṡj = βsjb>j ı. Since

s̈j = β2sj(b>j ı)2 + βsjb>j (µe− γı)
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then ‖s̈‖ ≤ K, and hence the boundedness and monotonicity of s(t) implies limt→+∞ ṡ(t) =
0, which implies 1> ṡ(t)→ 0. Then, for any ε > 0 we have for t sufficiently large that

d
dt

1>e(t) ≤ d
dt

(
1>(e(t) + s(t))

)
+ ε

≤ ε− µ1>e(t).

Then e(t)→ 0, that also implies 1> ė(t)→ 0. As a consequence, for t sufficiently large,

d
dt

1>ı(t) ≤ d
dt

(
1>(e(t) + s(t) + ı(t))

)
+ ε

≤ ε− γ1>ı(t)

so that ı(t)→ 0.

2.3. A Control Problem

We have adopted a network framework that explicitly accounts for the interactions
structure among individuals and group of individuals, in order to provide insights regarding
the spread of a disease. If the proposed model describes the epidemiological phenomenon
sufficiently well, some problems relating to the behavior and the forecast of the epidemic
itself can be addressed.

First, we would like to prevent an epidemic. This is achieved when condition (1) in
Theorem 2 holds at t = 0. Before the epidemic starts, the fractions of infected/exposed
individuals are negligible, for viral infections the recovery rate γ is usually out of control.
Then, the only way to satisfy the no-epidemic requirement is either: control the transmission
(which means to reduce β and/or interactions) or immunization (meaning to increase r(0)).
Second, we aim to limit the economic and social impact as the epidemic occurs. The supply
of healthcare services is inelastic in the short run. Thus, it is important to maintain the
maximum infection rate below the capacity of the existing healthcare system. This may be
achieved by lowering the transmission rate, by controlling the inflow and the outflow of
individuals from and into a node.

We point out that only recent works, e.g., [28–30], started investing the trade-off
between epidemic and economic costs with some analysis. The aim of our applications
would like to be a new step in this direction inside a well based framework. We introduce
the following diagonal matrix

U = Diag(uloc(i))
n
i=1, V = Diag(vloc(i))

n
i=1, (6)

where uloc(i) ∈ (0, 1], i = 1, . . . , n are the control variables for the incoming individuals
into the node i, while vloc(i) ∈ [0, 1], i = 1, . . . , n are the control variables of the outgoing
individuals from the node i to other nodes. Then, the routing matrix A, and its associated
matrices (see their definitions in Section 2.2), changes as follows

Ãuv = U A V = Diag(Ñ1, . . . , Ñn)P̃o = P̃i Diag(M̃1, . . . , M̃n),˜̂B = P̃o Diag(M̃1, . . . , M̃n)
−1P̃o>, B̃ = P̃o P̃i

>
,

so that the SEIR model on the “controlled” graph G becomes

Ṡ(t) = −β Diag(S(t))˜̂BI(t) ṡ(t) = −β Ĩ Diag(s(t))Bı(t)

Ė(t) = β Diag(S(t))˜̂BI(t)− µE(t) ė(t) = β Ĩ Diag(s(t))Bı(t)− µe(t)

İ(t) = µE(t)− γI(t) ı̇(t) = µe(t)− γı(t)

Ṙ(t) = γI(t) ṙ(t) = γı(t)

where Ĩ = Diag(Ñ1/N1, . . . , Ñn/Nn).
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In order to study the “lockdown policies” applied to the various groups (nodes), we
combine a measure of social cost (i.e., hospitalization cost) and, above all, loss of life and the
economic loss. The first objective consists of minimizing both total (excess) deaths during
the epidemic and the public health cost. We suppose that it is possible estimating the
severity of the epidemic in a time interval [0, T], by weighing the total number of infected

social cost =CT
∫ T

0
I(t)dt

where C is a vector of positive weights, and the integral is to be understood component
by component. The lockdown of individuals affects the economic activities; we model
the economic loss through the evaluation of the reduction in flow of individuals between
nodes with a linear cost function

economic loss =W T
∫ T

0

[
A− Ãuv

]
· 1dt.

The goal is finding an optimal trade-off between the total economic loss and the
total social cost. Then, the optimal strategy is obtained by minimizing the following cost
function

min
U, V

(
CT

∫ T

0
I(t)dt−W T

∫ T

0

[
A− Ãuv

]
· 1dt

)
, (7)

where T is the time for which a certain strategy is applied.

Remark 2. If the meta-population model represents a non-geographical subdivision, but instead it
is dependent on certain individuals’ characteristics (such as age, profession, habits, etc.), the weights
C and W can include information linked to these characteristics (e.g., propensity for mobility,
disease mortality). In this case, the lockdown strategy can change based on the vulnerability of each
group.

3. Numerical Tests

This section is devoted to numerical experiments. These experiments were carried
out on a laptop equipped with Linux 19.04, with an Intel(R) Core(TM) i5–8250U CPU (1.60
GHz), 16 GiB RAM memory (Intel, Santa Clara, CA, USA) and under MATLAB R2020b
environment (MathWorks, Natick, MA, USA).

In order to use our framework, two types of parameters are needed:

(BP) biological parameters related to the different epidemiological features of the disease
(parameters γ, β, µ in (4));

(MP)mobility data for the probability outgoing matrix Po and the probability incoming
matrix Pi.

For the first set of parameters, we have referred to a recent work [31] in which the
authors applied a SEIR epidemiological model to the recent SARS-CoV-2 outbreak in the
world. Moreover, they focused on the application of a stochastic approach in fitting the
biological model parameters analyzing the official data and the predicted evolution of
the epidemic in the Italian regions, Spain and South Korea. We considered two different
scenarios,

(A) The parameters of the disease are γ = 0.14, β = 0.74, µ = 0.5.
(B) The parameters of the disease are γ = 0.22, β = 1.0, µ = 0.03.

For the topology of the directed graph G(V, E), we did not refer to any particular
geographic area but we reproduced a realistic situation. The network consists of three large
agglomerates, each one representing a city. The nodes of the graph are the neighborhoods
of the cities and the edges represent the connections between such neighborhoods: these
edges encompass the social and working movements between the nodes; hence, they are
not simply geographical connections (see Section 2.2). The number of the nodes is 20,
10 and 5, respectively, meaning that the largest city has 20 neighborhoods, the second



Mathematics 2021, 9, 2987 10 of 13

one 10 and the last one just 5 neighborhoods. This toy model considers a social cost C
which is ten times higher than the economic cost W : normalizing such costs leads to set
C = 1, W = 10 · 1. The matrix A is set starting from the adjacency matrix E and from the
population of the nodes: the number of individuals, the subpopulations and the matrices
Po and Pi were randomly selected using suitable probability distributions.

All scenarios started with the initial distribution for susceptible, infected and exposed
individuals: the epidemic starts from 1/5 of randomly selected neighborhoods of the
largest city. Once a lockdown strategy is decided by optimizing Equation (7), it is applied
for 14 days: after such period the new distributions for S, I and E are checked and a new
optimization is carried on. The last time interval has a longer duration for observing the
effects of the overall strategy on the long period. This scheme is applied three times in the
numerical simulations.

Figure 1a presents the optimized strategy for Scenario A, while Figure 1b shows
the strategy for Scenario B. We have not represented the whole network but a part of it
considering nodes that represent agglomerations with a different number of individuals.
Furthermore, the strategy that optimizes our objective function is reproduced by showing
the values of the vector V , see (6), for some cities/agglomerations present in the network.
Values close to 1 mean that there are no particular restrictions on mobility, values close
to 0 mean strong restrictions on movement. We point out that the value 0 is not allowed
because it is not realistic to consider a total block of each movement in this context.

In the case of Scenario A, the parameter of the disease induced a light lockdown (85%)
on the large city (blue line), whilst the other two are almost completely open. On the second
case, the disease is more infectious: the large city is forced to adopt a severe lockdown,
while the strategy on the other two suggests a mild lockdown. As soon as the epidemic
spreads, due to the characteristics of the disease, even the smallest cities are forced to adopt
a more severe strategy until the number of infected individuals decreases. We can observe
in Scenario B that, after a period of severe lockdown, when the last chosen strategy is
applied for a longer period, then a further severe approach must be adopted in order to
contain the epidemic.

In both scenarios, we can observe that there is a converging behavior of the strategies
to be applied on the three different cities. Check, for example, the period 50–100 days in
Scenario A: the lockdown strategy for the largest city (blue line) is increasing, while the
strategies for the other cities (orange and yellow lines) are decreasing. Eventually, due to
the disease parameters, they converge to 1, meaning that the epidemic threat is no more.
This behavior is more evident in Scenario B.
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Figure 1. (a,b): Lockdown strategies for Scenario A and B, respectively. We show the optimal strategy
V that minimizes (7) the closer is to 0, the more severe the restrictions are. On the other hand, values
close to 1 denote very mild restrictions on mobility.

Figure 2 presents a visual representation of the evolution of the strategies for Scenario
B at t = 0, 20, 40 and 179 days. The color of the nodes represents the number of infected
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people in that node, while the color of the edges represents the percentage of people
blocked. At the beginning, the optimal strategy suggests to mainly block the outgoing
from the large city (the agglomerate on the top left corner), while the connection between
and inside the other two are open. Letting the epidemic spread in a controlled way, in
order to maintain economy, induces an increase in the number of infected people, then the
connections between cities must be reduced (the more red the edges are, the less people are
allowed to move).
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Figure 2. (a–d): Evolution of the strategy and infected people in Scenario B for timestamps
t = 0, 20, 40, 179, respectively. The color of the nodes represents the number of infected people
in that node, while the color of the edges represents the percentage of people blocked.

4. Conclusions

The network perspective allows to relax the assumption of uniform random mixing
and then we are able to model the population interaction patterns during epidemics.
Moreover, a network-based model provides useful and important insights about the spread
of a disease; such insights cannot be inferred using the classical model. We have focused
on a SEIR meta-population model on a network in order to characterize the epidemic
dynamics and to predict possible contagion scenarios.
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A network model can encompass differences in the number of interactions between
individuals in a population. For example, there exist some realities where people may live
in small environments and they have relatively few contacts (work and/or social life), while
others may live in dense and more populated centers, where the usage of public and maybe
crowded public transportation is very common, they work in high-contact environments
and they have a large number of interactions with many others outside of work. The
classical SEIR model does not allow to include such heterogeneity, while a network model
can easily encompass it. Furthermore, it is possible to adapt our model and, instead of
a geographical distinction of the subgroups of individuals, different stratifications of the
population can be considered.

We justified the model by introducing and analyzing some of its properties, in
particular, we proved a threshold theorem involving both biological parameters and
the topology of the network. In a future paper, we will consider both time-dependent
parameters and a detailed analysis of the asymptotic behavior of the solution of the
proposed model. We point out that our analysis can be applied to recent models, e.g., [26],
where numerical and statistical but not analytical results are provided.

Only recent works, e.g., [28–30], started investigating the trade-off between epidemic
and economic costs with some analysis. In order to take a new step in this direction, we
have also identified an optimal control problem that considers the advantages and benefits
that arise from the application of optimal targeted policies, which lock down the various
groups in an inhomogeneous way. The focus is on the balance between economic loss and
loss of life. The main economic damages consist of lost productivity due to illness and also
in the forgone productivity contributions of the blocked subpopulations. The lives lost are
estimated via the number of the infected individuals, assuming that these losses represent
a constant percentage of the latter.

Some preliminary numerical tests are provided; more effective results could be
obtained by considering a suitable fitting of the parameters and based on some particular
topology of the network. These issues will be analyzed in a future paper involving a
different source of data [32] and recent optimization tools [33,34].
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