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Abstract: Phase congruency is a technique that has been used for edge, corner and symmetry
detection. Its implementation through the use of monogenic filters has improved its computational
cost. For this purpose, different methods of implementation have been published, but they do not use
a common notation, which makes it difficult to understand. Therefore, this paper presents a unified
mathematical formulation that allows a general understanding of the Monogenic phase congruency
concepts and establishes criteria for its use. A new protocol for parameter tuning is also described,
allowing better practical results to be obtained with this technique. Some examples are presented
allowing one to observe the changes produced in the parameter tuning, evidencing the validity of
the proposed criteria.

Keywords: phase congruency; monogenic filters; edge detection; local energy; log-Gabor filter;
Fourier transform

1. Introduction

Phase congruency (PC) is a technique used for edge detection, performed in the
frequency domain, presenting as advantages that it is equally sensitive to high- and
low-intensity changes in the signal, also allowing the detection of edges, in the sense
of Canny’s definition [1], ridges and valleys, as shown by Kovesi [2] and illustrated in
Figure 1, having as disadvantages its higher computational cost and the complexity for
its parameter tuning. PC is a technique, introduced by [3], that appears as consequence
of the work developed around the study of Mach bands, which consist of bands adjacent
to different light intensities that generate an illusion that exaggerates the edges of the
bands. After different works around the Mach bands, it became evident that it is possible to
identify structures perceived by the human eye from the phase coincidences of the Fourier
components [4], in which it is postulated that its most significiant features, i.e., its edges,
are found where the phase coincidence of their frequency components is maximal, using
the local energy of the image for its evaluation. Later, Kovesi introduced a new imaging
tool based on this model [5]. This method, unlike other segmentation techniques, employs
the phase of the frequency components and not the amplitude or frequency of the signal,
which at first was unattractive because of its high computational cost and noise sensitivity.

Given the drawbacks of his initial proposal, Kovesi introduced several modifica-
tions [6,7], which made it a benchmark. Parallel to Kovesi’s studies, important advances
were made in image filter theory. Here, the concept of monogenic filters appears as an
alternative to implement more efficiently phase congruency [8]. Later, the mathematical
basis of the concept of monogenic signal was established. However, it had as a disadvan-
tage the complexity of the mathematical theory; therefore, it was not given much interest.
However, Kovesi implemented phase congruency using these concepts and extracted the
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direct current (DC) component of the image, as suggested by Moisan et al. [9]. Unfortu-
nately, Kovesi did not publish this work, but this modification appears in the free code that
Kovesi published on his website [10]. Thus, although the use of monogenic filters in phase
congruency was proposed as an implementation alternative in 2000 [8], it was only until
2014 that a paper appeared, where phase congruency was quantified using this concept.

(a) (b) (c)

(d) (e) (f)

Figure 1. Results obtained using phase congruency and the Canny edge detector on a synthetic
image. It can be seen how the phase congruency allows one to obtain precise edges in ridges and
less abrupt changes of the grey level. (a) Original image. (b) Image obtained with Canny’s method.
(c) Image obtained with PC. (d) Synthetic image with Gaussian noise of σ = 10. (e) Image obtained
with Canny’s method. (f) Image obtained with PC.

Phase congruency has been used for edge detection segmentation, corner detection
and as a descriptor, among other uses, acquiring particular importance in recent years for
the registration of multimodality images since it is not affected by the amplitude of the
signals in the different modalities.

Different advances appeared from Kovesi’s seminal work in 1996 [5], but they did
not employ a common notation, making the use and understanding of phase congruency
difficult, and later works mostly used Kovesi’s original results, without obtaining greater
benefit from PC and later advances developed by other researchers. To overcome this
difficulty, this work presents a unified mathematical formulation of phase congruency
applied in digital image processing. To this end, basic principles for its implementation are
taken into account to have a global vision of the unified concepts. In this way, it is sought
to show clearly potentially exploitable aspects of the PC, to obtain greater benefit from its
capabilities and to adapt it more easily to particular cases of use.

In Section 2, a comprehensive overview is given of the phase congruency described
in Kovesi’s seminal paper and its implementation using monogenic filters to show that it
can be presented as the product of three factors, a concept previously introduced by the
authors. In Section 3, an analysis of new formulations for obtaining phase congruency
is made, showing that all of them can be represented in a general way by the consistent
mathematical expression of the product of three factors, previously mentioned. Section 4
describes the method to be followed for the adjustment of the technique parameters, taking
advantage of the proposed formulation, in which the global parameters are separated from
those of each factor. Section 5 presents some results, and Section 6 presents the conclusions.
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2. Phase Congruency

The phase congruency principle allows identifying regions where considerable changes
occur in a signal, as shown in Figure 2, where it is evident how the phases coincide when
the square signal has a high variation. Morrone and Owens [11] mathematically defined
the phase congruency function by expanding the Fourier series for a location x as :

PC(x) = max φ(x)∈[0,2π]
∑N

n=1 An cos
(
φn(x)− φ(x)

)

∑N
n=1 An

, (1)

where φ(x) expresses the local phase at x and An the amplitude of the n-th Fourier compo-
nent. Each component An(x) is associated with a different η scale. η = 1 corresponds to the
smallest scale, determined by the largest frequency component, n = N, i.e., η = N − n + 1.
Therefore, a scale η is numerically represented by a value different from its n-th component
in frequency. The value of φ(x) that maximizes this equation is the average phase weighted
by the amplitude at the analyzed point x. Since the variation of φ(x) affects the result of
the cosine, a rough way to maximize (1) is to minimize

∣∣φn(x)− φ(x)
∣∣, because:

lim
(φn(x)−φ(x))→0

cos(φn(x)− φ(x)) = 1, (2)

where the maximum value of the cosine function implies the minimum value of
∣∣φn(x)− φ(x)

∣∣,
and, in addition, it is consistent with the fact that, as the cosine function approaches the
maximum, its argument in absolute value is close to the minimum [2].

0 1 2 3 4 5 6

Aprox

Comp 1

Comp 2

Comp 3

Comp 41

0

-1

Phase 
Congruency

Figure 2. Fourier components An of a square signal approximation.

2.1. Local Energy and Phase Congruency

Phase congruency, as presented in (1), is difficult to calculate. An alternative was
proposed in 1989 by Venkatesh and Owens [12], who found that looking for the points
of maximum phase congruency is equivalent to searching for peaks in the local energy
function. The local energy function of the luminance profile I(x) in a dimension is given by:

E(x) =
√

F(x)2 + H(x)2, (3)

where F(x) is the signal without the direct current (DC) coefficient and H(x) is the Hilbert
transform of F(x) (90◦ phase shift). Typically, it is possible to have approximations of
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F(x) and H(x) using quadrature filter pairs. The relationship between energy and phase
congruency is shown in [12], which allows the following equation:

E(x) = PC(x)
N

∑
n=1

An(x). (4)

Thus, the phase congruency is directly proportional to the local energy function.
Therefore, the local energy peaks correspond to the phase congruency ones. The relation-
ship between phase congruency, energy and the sum of the amplitudes of the Fourier
components can be seen geometrically in Figure 3a; in which, if the phases of each Fourier
component were the same, the magnitude of the resulting vector would coincide with
the sum of the different magnitudes of each component—in other words, ∑ An = E(x).
Otherwise, if the phases differ, it is always the case that ∑ An > E(x), which implies that
PC(x) is at most one and decreases according to the phase differences of the components
toward a minimum of zero. Figure 3b introduces the concept of mean phase deviation
φ(x) which is defined by the angle of the rectangle triangle originated by representing the
triangular inequality, where ∑n An(x) is always greater than or equal to E(x).

H(x)

F(x)

E(x)

Real
axis

Imaginary
axis

Noise
circle

An

Ancos(φn(x) − φ(x))

φn(x)

φ(x)

(a)

δ(x)

E(x)

∑N

n=1
An(x)

(b)

Figure 3. Graphical representation of the phase congruency of a signal, its local energy and the
amplitude sum of the Fourier components. (a) Polar diagram. (b) Triangular phase congruency
inequality, where ∑n An(x) is always greater than or equal to the energy E(x) where the concept of
average phase deviation φ(x) is introduced [13].
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2.2. Approximation of Fourier Components

According to Equation (4), it is necessary to calculate the energy and the sum of the
components An(x). For this purpose, approximations were made using bandpass filters
at different scales. Therefore, the scales of the filters define the approximation of the
components An(x).

Since it is important to preserve phase information, linear filters in phase must be
used. To this end, quadrature filter pairs should be employed, i.e., operators that allow
extracting the symmetric and antisymmetric components (difference of 90◦ in phase) of the
original signal. For this purpose, logarithmic Gabor filters [5] were used, whose transfer
function is given by:

G(ω) = exp
(−(log(ω/ω0))

2

2(log(k/ω0))2

)
, (5)

where ω0 is the center frequency and k is a parameter that modifies the filter bandwidth.
Thus, the bandwidth of each filter is determined by the ratio σo = k/ω0, which, for practical
purposes, is made constant on all components n.

Let I be a one-dimensional signal, and Me
n and Mo

n, the filters of the n-th components
of the even (cosine) and odd (sine) symmetries the output of each pair of quadrature filters,
can be written in vector form:

[en(x), on(x)] = [I(x) ∗Me
n, I(x) ∗Mo

n], (6)

obtaining the even en(x) and odd on(x) parts of the n-th component when convolving I
with the n even filter Me

n and Mo
n.

From en and on, the energy E(x), presented in the (3), can be expressed mathemati-
cally as:

E(x) =

√√√√
(

N

∑
n=1

en(x)

)2

+

(
N

∑
n=1

on(x)

)2

. (7)

The amplitude of the transform obtained for An is found in the following way [2]:

An(x) =
√

en(x)2 + on(x)2, (8)

and the phase:
φn(x) = a tan2(en(x), on(x)) , (9)

being the function a tan2 the arctangent, whose range is defined in the interval [−π, π].
In each point x of the signal I, there is a complex vector in each scale, which can be used
to obtain the magnitude and phase of the Fourier components in the point and thus to
evaluate the phase congruency in x.

The filter bank is designed in such a way that its transfer function is a uniform
spectrum, which is achieved by appropriately overlapping the transfer functions of the
filters. It is important to note that a wide range of frequencies must be retained from the
signal, since phase congruency must be present over a wide range of frequencies to be
meaningful; otherwise, the PC in some bands is considered not relevant, as it does not
correspond to the presence of a real edge (see Figure 4).
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Figure 4. Frequency spectra of the filters used to obtain the components An(x) [5].

Given the representation in Figure 3a, it is possible to consider

F(x) =
N

∑
n=1

en(x), (10)

H(x) =
N

∑
n=1

on(x), and (11)

N

∑
n=1

An(x) =
N

∑
n=1

√
en(x)2 + on(x)2. (12)

If phase congruency is obtained according to (4), a problem arises when all amplitudes
are very small. To solve it, Kovesi adds a small positive constant ε << 1 to the denominator
of the phase congruency expression, as follows [2]:

PC(x) =
E(x)

∑N
n=1 An(x) + ε

, (13)

The appropriate value of ε depends on the accuracy of the calculations.

2.3. Calculation of Phase Congruency

Obtaining the even and odd symmetry components en(x) and on(x) requires the use of
the Fourier transform to perform the filtering, which makes this operation computationally
the most expensive for the calculation of the PC. Kovesi, in his original approach, used
wavelet filters to obtain the frequency components [2]. However, this method is inefficient
because at each scale, it is necessary to use several directional filters. This is illustrated in
Figure 5a, where six filters are used per scale, for a total of 24 operations. Felsberg proposed
the generalization of an analytical signal to two dimensions, which he called a monogenic
signal, and suggested using it to calculate the phase of such a signal [8]. This form of
representation can be used to package the two even and odd symmetry components en(x)
and on(x) into a single complex signal, allowing the calculation of phase congruency to
be accelerated by requiring only one filter for each scale, as illustrated in Figure 5b. This
solution was implemented by Kovesi in a software version of the PC calculation, available
on the internet and compatible with Matlab and Octave. Subsequently, the PC calculation
employing monogenic filters was formalised by [14]. It should be noted that, although the
computation of the PC is much more efficient using monogenic filters instead of wavelet
filters, there are still new publications that implement the PC using wavelets [15–21],
which may be due to the lack of knowledge of these advances, the absence of a simpler
synthesized representation that facilitates the understanding of phase congruency and
the lack of a method for tuning its parameters, which means that Kovesi’s original initial
strategy is used without any kind of improvement; therefore, these last two aspects are
dealt with in this work.
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(a) (b)

Figure 5. Graphical representation of the use of wavelet and monogenic filter banks to obtain the
frequency components for the calculation of phase congruency. (a) Wavelet filters, in which six filters
are used to calculate each of the four scales. The spectrum of one of the directional filters is shown in
dark color. (b) Monogenic filters, where only one filter is used for each of the four scales.

2.4. Phase Noise Compensation

A disadvantage of the PC is its high sensitivity to phase noise. Therefore, Kovesi
makes the value of the PC equal to zero when the local energy does not exceed a threshold
T [5], i.e.,:

PC(x) =
bE(x)− Tc

∑N
n=1 An(x) + ε

, (14)

where b·c represents the positive part function of “·”, i.e.,:

bE(x)− Tc =
{

E(x)− T if E(x)− T > 0
0 if E(x)− T ≤ 0

.

T is calculated from a noise estimation. Assuming that F(x) and H(x) follow a
normal distribution, the energy E(x) given by E(x) =

√
F(x)2 + H(x)2 follows a Rayleigh

distribution [22], given by the expression:

R(x) =
x

σ2 e
−x2

2σ2
, (15)

where σ2 is the normal distribution variance of the functions E(x) and H(x). Using the
mean µR and the variance σ2

R of the Rayleigh distribution yields:

T = µR + kσR , (16)

k is an empirical value that varies between 2 and 3; see [2]. The mean µR and the variance
σ2

R are calculated as follows:

µR = σG

√
π

2
, and σ2

R =
4− π

2
σ2

G, (17)

where σG is the Rayleigh distribution mode, used as an approach to the energy function.
Kovesi calculates σG using the mode of the component AN(x), called τ. Thus, σG is
expressed by a geometric sum [5]:

σG =
N−1

∑
n=0

τ

(
1
m

)n
= τ

1− (1/m)N

1− (1/m)
. (18)
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Kovesi proposed two alternatives for calculating the noise level, τ, at the highest
frequency [10]. The first is based on the use of the mode of AN(x), as mentioned previously,
while the second assumes that AN(x) has a Rayleigh probability distribution, so that the
noise level is given by:

τ =
median(AN(x))√

ln(4)
. (19)

The latter form is more robust, since it depends on the behavior of a larger histogram
data set of AN(x), unlike the first one, where only the mode is employed. Therefore,
the scaling factor m between successive filters, the factor k and the mode τ allow one to
calculate the noise threshold T according to Equations (16)–(18).

As can be seen in Equations (17) and (18), proposed by Kovesi for the noise threshold
estimation T, the parameter σo, on which the bandwidth of the filters depends is not
taken into account. Since this parameter change affects the calculation of T [23], a new
strategy was proposed for the estimation of noise from the histogram of the total energy by
approximating it to a Weibull distribution [13].

2.5. Importance of the Frequency Component Distribution

To avoid the problem that occurs with extremely soft signals, phase congruency is
weighted using a measure of the distribution of all its components in the frequency spec-
trum [2]. The dispersion of the frequency components s(x) is calculated for each position
x, which is given by the sum of the component amplitudes divided by the maximum one.
To normalize s(x), it is further divided by the number of components used N. Thus, s(x) is
expressed mathematically by Equation (20), where ε, defined above, is used again to avoid
division by zero and also to reduce the effect produced by small values of An.

s(x) =
1
N

(
∑N

n=1 An(x)
ε + Amax(x)

)
. (20)

The phase congruency weighting W(x), given in Equation (21), is obtained as the
composition between a sigmoid function and the measure of the dispersion corresponding
to the frequency spectrum of different components s(x). Other weighting functions can be
employed, but the sigmoid is preferred for its simplicity.

W(x) =
1

1 + eγ(c−s(x))
, (21)

where c represents the response cutoff value of the dispersion filter. Thus, below this value,
the phase congruency values are penalized. The penalty is zero if c = 0 and maximum if
c = 1. The gain factor γ controls the sharpness of the cutoff. Thus, if γ is increased, the
contrast increases [5]. Therefore,

PC(x) = W(x)
bE(x)− Tc

∑N
n=1 An(x) + ε

. (22)

The weighting function allows one to reduce false PC responses when having a
reduced number of frequencies. In addition, better edge, ridge and valley location are
achieved, especially for those that have been smoothed out [2].

2.6. Phase Congruency Sensitivity

Adequate edge detection using the phase congruency technique depends on its sensi-
tivity. By analyzing the expression (4) which calculates the ideal phase congruency, PC(x)
is obtained as follows:

PC(x) =
E(x)

∑N
n=1 An(x)

= cos(δ(x)). (23)
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In straightforward terms, the phase congruency depends on the angle δ(x) that, when
presenting linear variations, makes it so that the sensitivity is given by the response of the
cosine function. However, this is undesirable when detecting edges, since the cosine crest
is smoothed as illustrated in blue in Figure 6.
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0.6

0.8
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Phase deviation (δ)

P
h
as
e
C
on

g
ru
en
cy

bcos(δ)c
b1− α|δ|c

Figure 6. Phase congruency quantification functions. In blue appears the quantization function
defined by Equation (23) and in black the one used in practice by Kovesi in his code [10], defined by
Equation (25).

Finally, to have a greater sensitivity, it is possible to directly use the angle δ(x) instead
of its cosine, which is obtained from the expression:

δ(x) = arccos

(
E(x)

∑N
n=1 An(x)

)
, (24)

To obtain the phase congruency quantification function as b1− α|δ|c, where α defines
the linear sensitivity to phase changes, allowing one to discriminate more adequately the
edges in an image. Its graphic representation can be seen in Figure 6. In the ideal case,
a phase congruency quantization function as shown in Equation (23) would be sufficient to
detect edges. However, in practice, the images are contaminated with noise and, in addition,
the frequency spectrum distribution of the filter bank is not flat, which leads to the detection
of false edges. Therefore, it is necessary to include in the phase congruency formulation
two terms to penalize the noise effect and compensate the frequency spectrum distribution.
Thus, phase congruency can be expressed in the following way:

PC(x) = W(x)b1− α|δ(x)|c bE(x)− Tc
E(x) + ε

. (25)

In practice, the absolute value of δ(x) is not required in the implementation of
Equation (25), since the angle is always positive. Furthermore, an additional ε is inserted in
the calculation of δ(x) to avoid zero division if all the An components are zero, as expressed
in Equation (13).

The terms of Equation (25) can be separated into three parts that address different
concepts of the phase congruency implementation:

(i) W(x) is a weighting function, according to the frequency distribution, as it appears in
Equation (21).

(ii) Phase congruency quantification function ( b1− α|δ(x)|c):
This term corresponds to the simple quantization of the PC, i.e., it measures the
phase congruency with values between zero and one without making any adjustment.
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According to this expression, only small values of average phase deviation, δ(x), are
taken into account, while α limits its range, serving as an adjustment parameter of the
PC sensitivity.

(iii) Noise compensation ( bE(x)− Tc/(E(x) + ε)): This factor is used to attenuate the
phase congruency by acting as a threshold below which the term becomes zero when
E(x) ≤ T. This prevents false edges from being detected in high-noise regions. Thus,
the threshold T is estimated according to the image noise level. To avoid division by
zero in Equation (25), a tiny constant ε is added, as in Equation (13).

Thus, phase congruency can be expressed in a general way as the product of three
functions:

PC(x) = W(x)PCQ(x)NC(x), (26)

where W(x) is a weighting function according to the frequency distribution, PCQ(x) is the
basic phase congruency quantification and NC(x) is a noise compensation function.

2.7. Expansion of Phase Congruency to Two Dimensions Using Monogenic Filters

Although Kovesi initially used wavelets to find the An frequency components of a I
signal, in 2000, thanks to the advances in monogenic filters, Felsberg and Sommer proposed
to use this theory to obtain 2D phase congruency by simplifying the calculations and,
thus, the computational cost [8]. In 2001, to replicate the effect of the Hilbert transform in
two dimensions, Felsberg and Sommer proposed the generalization to two dimensions of
the analytical signal using the Riezs transform [24]. In this way, a two-dimensional function
f (~x) ⊂ R2 has as its analytical function fR , given by

fR(~x) = −
~x

2π|~x|3 × f (~x)

fR(~x) = h2(~x)× f (~x) , (27)

where

h2(~x) = −
~x

2π|~x|3

with ~x = (x1, x2). Therefore, in the two-dimensional frequency space ~u = (u1, u2), the
convolution corresponds to

FR(~u) = i
~u
|~u| F(~u)

FR(~u) = H2(~u)F(~u). (28)

When working with monogenic filters, it has to be taken into account that the
function f (~x), which in this work corresponds to an image, must not contain a zero-
frequencycomponent (DC component) [24]. Hence, an image must be filtered using the
technique proposed by [9] to remove the DC component, before applying the monogenic
filters. By expanding each component An(x) which depends on a scaling x in 1D space to
2D space, the above term becomes An(~x) which now depends on a two-dimensional vector
~x, so that

An(~x) =
√

fn(~x)2 + | fRn(~x)|2 , (29)

where fn(~x) is the result of filtering the image without DC component on the scale n with
the logarithmic-Gabor (log-Gabor) function. fn(~x) is the extension of en from one to two
dimensions and is therefore denoted as en(~x). Similarly, the function fRn(~x) is the extension
of on to two dimensions and is a complex signal obtained by applying the Riezs transform



Mathematics 2021, 9, 3080 11 of 17

to fn(~x). Therefore, when using on(~x) in Equations (7) and (8), only its magnitude must be
used, i.e., An and E are redefined as:

An(~x) =
√

en(~x)2 + |on(~x)|2 , (30)

E(~x) =

√√√√
(

N

∑
n=1

en(~x)

)2

+

(
N

∑
n=1
|on(~x)|

)2

. (31)

As for the log-Gabor filter, its two-dimensional shape corresponds to the rotation of
the 1D filter around the origin in the frequency plane. In other words, it behaves the same
way in any radial direction, and a variable change is performed, ω = |~u|; therefore, it can
be written as:

G(~u) = exp
(−(log(|~u|/ω0))

2

2(log(σo))2

)
, (32)

where |~u| corresponds to the radius or distance of the filter from the origin in the fre-
quency plane and σo is the parameter that guarantees the constant shape of the filter in the
different scales.

Henceforth, for the sake of simplicity, when the term x appears, it refers to the space
coordinates. Depending on the context, x can represent one or two dimensions indistinctly,
which is possible, because as shown in this section, the functions An(~x) and G(~u) have
their codomain in R, with their introduction being valid within the equations that allow
for calculating the PC for a single dimension.

As can be seen in Equations (30) and (31), An(~x) and E(~x) only produce real values.
Thus, all equations using the one-dimensional signals An and E remain valid when ex-
tended to two dimensions. Thus, the phase congruency calculated by the monogenic filters
MPC(x) can be expressed again, by the product of three functions, i.e., by the equation:

MPC(x) = W(x)PCQ(x)NC(x). (33)

3. General Mathematical Formulation of Phase Congruency

Equation (33) allows one to decompose the phase congruency calculation into three parts.
In this way, it is easier to understand the different variations that were proposed to obtain
the PC. Thus, the implementation of phase congruency using monogenic filters, proposed
by [14], shown in Equation (34) can be seen as the introduction of a function PCQ(x),
within the general Equation (33), where a Heaviside step function is used as NC(x) and
the factor W(x) remains unchanged, as shown in Equation (35). It is important to mention
that although the authors do not explicitly mention the purpose of a in their paper, it is
evident that this term is a sensitivity adjustment parameter. It is also worth noting that the
PC obtained through monogenic filters, as presented in Equation (34), does not allow one
to obtain a maximum value equal to 1 when there is full congruency, because, as defined,
the noise threshold is always subtracted from the PC value.

MPC(~x) = W
⌊

1− a cos
(

E
∑ An + ε

)
− T

∑ An + ε

⌋
, (34)

MPC(~x) = W(~x)PCQ(~x)u(PCQ(~x)), (35)

where PCQ is given by:

PCQ(~x) = 1− a cos
(

E
∑ An + ε

)
− T

∑ An + ε
(36)

Likewise, Equation (37), used to calculate the phase congruency in the HSV color
space [25], can be expressed by the general formulation shown in Equation (33), thus obtain-
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ing the three factors in Equation (38), where PCQ(~x) is given, in this case, by Equation (39)
and NC(x) is again a Heaviside step function.

CMPCM(~x) = W(~x)
⌊

exp(Q(~x))− T
A∑ + ε

⌋
, (37)

CMPCM(~x) = W(~x)PCQ(~x)u(PCQ(~x)), (38)

PCQ(~x) = exp(Q(~x))− T
A∑ + ε

. (39)

Q is given by:

Q(~x) =
−1
b2

∣∣∣∣
ECMS

A∑ + ε
− 1
∣∣∣∣ . (40)

4. Practical Considerations for the Use of the PC

The phase congruency calculation requires the adjustment of several parameters.
Although Kovesi suggested some default values, these parameters can be tuned to obtain
the maximum benefit from this technique according to the characteristics of the images
to be processed. Thus, even though there are parameters that globally affect the phase
congruency result, an advantage of representing it by the product of three independent
factors, as proposed in this work, is that it is possible to identify the global parameters,
which affect the whole phase congruency calculation, from the particular ones related to
each factor. In this way, the tuning is facilitated, adjusting first the global parameters and
then the particular ones related to each factor. In this way, it is possible to define a single
strategy for tuning global parameters independently of the type of factors used.

Thus, to adjust the global parameters for detecting PC in a given type of images,
the first step is to choose the minimum scale length, in pixels, λmin , which corresponds
to the pixel dimension of the smallest details to be detected. Knowing λmin , the center
frequency ω0 of each filter is determined, using Equation (41).

ω0 =
1

λmin mN−n =
1

λmin mη−1 , (41)

where N represents the total number of scales and m is the scale factor between consecutive
filters, which must be adjusted by the user considering that the maximum scale size is
given by the maximum length of features to be taken into account, which in turn is limited
by the specific size of the images under study.

λmax = λmin mN−1. (42)

The steps for phase congruency tuning can be summarized as follows:

1. Define the size of the smallest features to be detected to find the value of λmin given in
pixels.

2. Define the scale factor m.
3. Define the largest desired scale size to determine how many are necessary to achieve

the maximum scale. To this end, the limitation given by the image dimensions must
be considered, according to Equation (43).

N ≤
ln(λmax /λ

min)

ln(m)
+ 1. (43)

The other variables to be adjusted depend on the type of MPC used, given in
Equations (34) and (37).

4. Adjust σo depending on the closeness between the edges to be detected, making it
smaller as the edges are closer.
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5. Results

This section presents the results attained by varying the phase congruency parameters,
as suggested in the previous one. The original Kovesi code can be used to evaluate
phase congruency in images [10], as well as an open source application, written by the
authors in Java, as an Imagej plug-in [26], which includes further enhancements for noise
estimation [13], different PC quantization functions [27] and the use of tile mirror in
conjunction with Radix-2 FFT to obtain more accurate edges at the edges of images when
at least one side of the image is not a power of two [28,29].

Figures 7–9 show the results obtained by applying phase congruency on the sample
images, shown in Figures 7a, 8a and 9a changing the quantization functions to highlight that
the modification of the global parameters can be tuned for the same purpose, independent
of the quantization function shape. For these examples, two quantification functions were
used, the absolute value, since it was the one used in the seminal work proposed by
Kovesi [10] and the exponential function, since it gave better results according to two
previous works [25,27]. As can be seen, the results are similar, although, the edges in the
images in the top row of Figure 7 are thicker, due to the linear approximation used when
employing the absolute value function. By contrast, images in the lower row are better
defined, allowing for a better edge localization.

Figure 7b,e shows the results obtained using the default global parameters suggested
by Kovesi. As can be seen, fewercontrasted images are obtained in this case, since Kovesi
adjusted the parameters in a general way to obtain adequate results on a wide variety of
images. Thus, by changing the parameter values appropriately, it is possible to obtain
better results in specific cases, for example, in near edge detection, as shown in Figure 7c,f
where the scale factor was set to 1.5. Conversely, if the global parameters are not well
tuned, not all edges are detected, regardless of the quantization function used, as seen in
Figure 7d,g.

Figure 8 shows a detail of the results obtained with the PC, using two different quantifi-
cation functions. The top row shows the results obtained with the absolute value function,
and the bottom one shows those obtained with the exponential function. The parame-
ters used were the same as those employed in Figure 7, where the effect of tuning the
parameters can now be seen in detail. Edge detection is acceptable in the case of Figure 8b,
although it is improved in Figure 8c by setting the scaling factor to 1.5 so that contiguous
edge detection is better. Otherwise, Figure 8d illustrates an inappropriate setting that
results in incorrect edge detection.

Setting the global parameters noticeably affects the edge detection and changing the
quantization function has a small effect on the results. Although the change of function
seems irrelevant, in order to better show its effect, different profiles for edge detection
along the yellow line in Figure 9a are shown in Figure 9b. The solid and dashed lines are
used to indicate whether the function is exponential or absolute value, respectively, while
the color indicates the parameter setting, where red represents the values recommended by
Kovesi m = 2.1 and λmin = 3, green takes a scale factor of m = 1.5 and blue takes λmin = 8.
As can be seen, for each color, the dashed lines have in all cases the highest response
when an edge is present, indicating that the quantization function tuning is important and
its study can lead to improved edge detection techniques. Similarly, it can be seen that
using the values recommended by Kovesi, in red, allows edges to be adequately detected.
The highest values of PC, in green, are obtained by fitting the scale factor, while the poorest
response, in blue, is obtained by the inappropriate tuning of the parameters, in this case by
increasing λmin.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 7. Phase congruency obtained with two quantization functions on the baboon image. (a) Ba-
boon image. The first, shown in (b–d), is the absolute value, proposed by Kovesi. The second, shown
in (e–g), is the exponential function. The results of the global parameters suggested by default by
Kovesi are shown in (b,e). The results achieved by setting the scale factor to 1.5 in (c,f) and by making
λmin = 8 in (d,g).



Mathematics 2021, 9, 3080 15 of 17

Figure 8. Detail of the edge detection in the yellow box of the ship image. (a) Ship image with yellow
box. Columns (b–d) show the PC results. The absolute value proposed by Kovesi is used as the
quantization function in the first row and the exponential function in the second one. In Column
(b), the default parameters are used. Column (c) shows the results obtained using the scaling factor
m = 1.5. Column (d) presents the results obtained by making λmin = 8.

(a)

0 7 14 21 28 35 42 49 56
0.005

0.405

distance (pixels)
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e
C
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u
en

cy

(b)

(c) (d) (e)

(f) (g) (h)

Figure 9. Edge detection profile in the cameraman’s image. (a) Cameraman’s image with yellow line
indicating the profile plotted in (b). (b) Horizontal profile of the different results obtained with the
phase congruency of the images in the second and third rows. The solid and dashed lines indicate
the quantization function used, exponential or absolute value respectively. Red shows the response
when the default parameters are used, shown in (c,f); green when the scale factor is set to m = 1.5,
depicted in (d,g); and blue when λmin = 8, illustrated in (e,h). The second row shows the results
using the absolute value function, and the third row shows the results obtained with the exponential.
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6. Conclusions

Phase congruency is a very powerful technique but still relatively little used due to
the different variants and notations employed, which makes it difficult to understand.
To overcome this limitation, a unified description of phase congruency in digital images
was presented in this work. For this purpose, the basic concepts of the technique and a
general mathematical formulation were presented, allowing one to obtain a global vision of
the technique and some of its variants. In addition, the technique requires the tuning of a set
of parameters, which are rarely modified, using those suggested in the seminal article, due
to the difficulty to set them and the lack of understanding about them. The mathematical
formulation allows for a better comprehension of the technique and the function of its
parameters, facilitating their tuning. Thus, some practical considerations were presented
for the adjustment of the calculation parameters to obtain better results according to the
type of images processed.
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