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Abstract: Motivated by the fact that uniform quantization is not suitable for signals having non-
uniform probability density functions (pdfs), as the Laplacian pdf is, in this paper we have divided
the support region of the quantizer into two disjunctive regions and utilized the simplest uniform
quantization with equal bit-rates within both regions. In particular, we assumed a narrow central
granular region (CGR) covering the peak of the Laplacian pdf and a wider peripheral granular region
(PGR) where the pdf is predominantly tailed. We performed optimization of the widths of CGR
and PGR via distortion optimization per border–clipping threshold scaling ratio which resulted
in an iterative formula enabling the parametrization of our piecewise uniform quantizer (PWUQ).
For medium and high bit-rates, we demonstrated the convenience of our PWUQ over the uniform
quantizer, paying special attention to the case where 99.99% of the signal amplitudes belong to the
support region or clipping region. We believe that the resulting formulas for PWUQ design and
performance assessment are greatly beneficial in neural networks where weights and activations are
typically modelled by the Laplacian distribution, and where uniform quantization is commonly used
to decrease memory footprint.

Keywords: uniform quantization; piecewise uniform quantizer; border threshold; clipping threshold

1. Introduction

One of the growing interests in neural networks (NNs) is directed towards the efficient
representation of weights and activations by means of quantization [1–14]. Quantization,
as a bit-width compression method, is a desirable mechanism that can dictate the entire NN
performance [10,12]. In other words, the overall network complexity reduction, provided
by the quantization process, can lead to commensurately reduced overall accuracy if the
pathway toward this reduction is not chosen prudently. Quantization is significantly bene-
ficial for NN implementation on resource-limited devices since it is capable of fitting the
whole NN model into the on-chip memory of edge devices such that the high overhead that
occurs by off-chip memory access can be mitigated [9]. Namely, standard implementation
of NNs supposes 32-bits full-precision (FP32) representation of NN parameters, requir-
ing complex and expensive hardware. By quantizing FP32 weights and activations with
low-bits, that is, by thoughtfully choosing a quantizer model for NN parameters, one can
significantly reduce the required bit-width for the digital representation of NN parameters,
greatly reducing the overall complexity of the NN while degrading the network accuracy to
some extent [2,3,5,6,8,9]. For that reason, a few of new quantizer models and quantization
methodologies have been proposed, for instance in [4,5,11,13], with a main objective—to
enable quantized NNs to have the slightly degraded or almost the same accuracy level as
their full-precision counterparts.

In general, to optimize a quantizer model, one has to know the statistical distribution
of the input signal, allowing for the quantizer to be adapted as best as possible to the
statistical characteristics of the signal itself. The symmetric Laplacian probability density
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functions (pdf) with the pronounced peak and heavy tails has been successfully used
for modelling signals in many practical applications [8,10,13,15–17]. Furthermore, it is
arguably the most suitable pdf form for speech and audio signals because it fits many
distinctive attributes of these signals [15–19]. In addition, transformed signals and other
quantities that are derived from original signals often follow the Laplacian pdf [16]. As it is
commonly encountered in many applications, in this paper we favor signal modelling by
the Laplacian pdf.

It is well known that a nonuniform quantizer model, well accommodated to the
signal’s amplitude dynamic and a nonuniform pdf, has lower quantization error compared
to the uniform quantizer (UQ) model with an equal number of quantization levels or equal
bit-rates [2,11,13,18,20–27]. However, due to the fact that UQ is the simplest quantizer
model, it has been intensively studied, for instance in [23,24,28–32]. Moreover, the high
complexity of nonuniform quantizers can outweigh the potential performance advantages
over uniform quantizers [21]. Substantial progress in this direction might go towards
the usage of one well-designed PWUQ, composed of the optimized pair of UQs with
equal bit-rates, capable of accommodating the statistical characteristics of the assumed
Laplacian pdf in the predefined amplitude regions. For that reason, in this paper we
address the parameterization of a PWUQ with the goal to provide beneficial performance
improvements over the existing UQ solutions.

By following [24,25], we accept quantizer’s support region definition as a region sepa-
rating the signal amplitudes into a granular region and an overload region, or alternatively,
into an inner and an outer region. For the symmetric quantizer, such as the one we propose
in this paper, these regions are separated by the support region thresholds or clipping
thresholds, as denoted by±xclip (see Figure 1). These thresholds have particular real values
that define a quantizer’s support region [−xclip, xclip], where distortion due to quantization
and clipping is bounded. The problem of determining the value of xclip of the binary
scalar quantizer for the assumed Laplacian pdf has been recently addressed in [33]. Since
the Laplacian pdf is a long-tailed pdf, a fair percentage of the samples are concentrated
around the mean value, whereas a small percentage of the samples are in the granular
region, near to the support region threshold, or out of the granular region. Observe that
the shrinkage of the support region for a fixed number of quantization levels results in a
reduction of the granular distortion, while at the same time causing an unwanted increase
of the overload distortion [22]. On the other hand, for the given number of quantization
levels, with the increase of the support region width, the overload region, and hence the
overload distortion, is reduced at the expense of the granular distortion increase. In that
regard, the main trade-off in quantizer design is making the support region width large
enough to accommodate the signal’s amplitude dynamic while keeping this support region
width small enough to minimize quantizer distortion.

By inspecting the specific features of the Laplacian pdf, we propose a novel PWUQ
whose granular region is wide enough so that the overload distortion can be nullified,
whereas the granular region is divided properly into two non-overlapping regions (the
central granular region (CGR) and the peripheral granular region (PGR)) and to utilize
the simplest uniform quantization within each of the regions. In particular, we assume a
narrow region around the mean for the CGR covering the peak of the Laplacian pdf, while
for the PGR we specify a wider region, that is the rest of the granular region where the pdf is
tailed. These two regions are separated by the granular region border thresholds, denoted
by ±xb, that are symmetrically placed around the mean. Since our goal is to minimize the
overall distortion, especially the granular distortion, the parameterization of our PWUQ so
that most of the samples (99.99%) from the assumed Laplacian pdf belong to the granular
region, can indeed be considered as a ubiquitous optimization task. Nevertheless, the
authors of this paper have found an iterative manner to solve this task in a convenient way,
explained in detail below.
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In brief, the novelty of this paper in the field of quantization is reflected in the following:

- by a studious inspection of the shape of the Laplacian pdf, a novel idea with the
partition of the amplitude range of the quantizer into two regions, CGR and PGR,
is proposed;

- for given xclip values, the widths of these two regions are optimized using our iterative
algorithm so that the distortion of PWUQ is minimal;

- the simplest model of a uniform quantizer is exploited, for equal bit-rates it is applied
in each of the two regions, which makes the design of our model much simpler
compared to many non-uniform quantizer models that are available in the literature
(for instance, see [21,22,27]);

- a significant gain is achieved in SQNR in relation to the uniform quantizer, which
justifies the meaningfulness of our idea.

The paper is organized as follows: Section 2 describes the iterative algorithm for
the parameterization of our novel PWUQ that is optimized for the given support region
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threshold and the assumed Laplacian pdf. Section 3 provides the discussion on the gain in
performance that is achieved with the proposed quantizer when compared to UQ. Section 4
summarizes and concludes our research results.

2. Iterative Parameterization of PWUQ

At the beginning of this section, we briefly recall the basic theory of quantization. An
Nlevel quantizer QN is defined by mapping QN: R→ Y [25], where R is a set of the real
numbers, Y = {y−−N/2, . . . , y−1, y1, . . . , yN/2} ⊂ R is the code book of size N containing
representation levels yi, where N = 2r and r is a bit-rate. With the N-level quantizer QN,
R is partitioned into N bounded in-width granular cells <i and two unbounded overload
cells. The i-th granular cell is given by <i = {x|x ∈ [−xclip, xclip], QN(x) = yi}, where it
holds <i∩<j = ∅, for i 6= j. In other words, yi specifies the i-th codeword and is the only
representative for all real values x from <i.

Let us define our novel symmetrical PWUQ that consisted of two UQs of the same
number of quantization levels N/2 = K. One quantizer is utilized for quantization of
amplitudes belonging to the CGR [−xb, xb] and the second one is used for PGR [−xclip, xb)
∪ (xb, xclip] (see Figure 1). Let us also assume that the amplitudes belonging to the two
overload cells, that is, to (−∞, −xclip) ∪ (xclip, +∞), are clipped. Further, define CGR and
PGR as:

<CGR =
−1
∪

i=−K/2
<i ∪

K/2
∪

i=1
<i = [x−K/2, xK/2],<PGR =

−K/2−1
∪

i=−K
<i ∪

K
∪

i=K/2+1
<i =[x−K, x−K/2) ∪ (xK/2, xK], (1)

which are separated by the border thresholds as denoted by ±xb, for which it holds
±xb = ±xK/2. Due to the symmetry of the Laplacian pdf of zero mean and variance σ2 = 1,
for which we design our PWUQ:

p(x) =
exp

{
−
√

2|x|/σ
}

√
2σ

∣∣∣∣∣∣
σ2=1

=
exp

{
−
√

2|x|
}

√
2

, (2)

decision thresholds and representation levels of our quantizer are symmetrically placed
about the mean value. Without loss of generality, we restrict our attention to the K positive
counterparts, whereas the negative counterparts trivially follow from the symmetry

x−i = −xi, i = 1, 2, . . . , K. (3)

In particular, non-negative decision thresholds of our PWUQ consisted of two UQs of the
same number of quantization levels N/2 = K, for a given K, xclip and xb calculates from:

xi =

 i · 2 xb
K , i = 0, 1 . . . , K

2

xb +
2(xclip−xb)

K

(
i− K

2

)
, i = K

2 + 1, K
2 + 2, . . . , K

. (4)

In other words, both regions, CGR covering [−xb, xb] and PGR covering [−xclip, −xb) ∪
(xb, xclip] are symmetrically partitioned into K uniform cells (see Figure 2 where transfer
characteristic of PWUQ is shown for N = 16). Due to symmetry, this equally means that
each of the regions [0, xb] and (xb, xclip] is partitioned into K/2 uniform cells. Since these
two UQs compose our PWUQ the notation of the decision thresholds in the CGR ends with
index K/2, whereas the index of the decision thresholds in the PGR increases up to K.
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In what follows, we describe other parameters of our PWUQ, provide derivation of
the distortion, and perform its optimization per ψ = xb/xclip, for a given xclip value by using
the iterative algorithm. In other words, for a given xclip value, we perform optimization
of the widths of CGR and PGR via distortion optimization per border–clipping threshold
scaling ratio ψ and we end up with an iterative formula enabling the concrete design of
our PWUQ.

Let us define the quantization step sizes ∆CGR and ∆PGR as a uniform width of cells
<i from <CGR and <PGR, respectively

∆CGR =
2xb
K

=
2ψxclip

K
, (5)

∆PGR =
2
(

xclip − xb

)
K

=
2(1− ψ)xclip

K
. (6)

We introduce parameter ψ, that is border–clipping threshold scaling ratio, specified as
ψ = xb/xclip, for which, in accordance with our PWUQ model definition (see Figure 1), it
holds ψ < 1, or more precisely ψ < 0.5. Observing the area under the Laplacian pdf, we opt
to increase quantization step size in <PGR since it is counterbalanced by a corresponding
diminution of the step size in <CGR. Our symmetrical PWUQ maps a real value x ∈ R to
one of the representation levels yi, where it holds:

y−i = −yi, i = 1, 2, . . . , K, (7)

and yi is determined as the midpoint of the corresponding quantization cells <i ∈ <CGR

for i = 1, . . . , K/2 and <i ∈ <PGR for i = K/2+1, . . . , K

yi =


(

i− 1
2

)
∆CGR, i = 1, . . . , K

2

xb +
(

i− K+1
2

)
∆PGR, i = K

2 + 1, K
2 + 2, . . . , K

. (8)

Determining the decision thresholds and representation levels of the quantizer speci-
fies its entire performance. If they are chosen more suitably, the overall distortion is smaller
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which translates to a reduction in the number of bits that are required from the quantizer
for achieving certain distortion. The main idea behind our PWUQ design is to improve
the overall quantization performance by the prudent application of the simplest uniform
quantization. To assess the performance of our PWUQ for a given bit-rate, r (r = log2N),
and a given support region threshold we have to specify its distortion. Specifically, in ac-
cordance with our PWUQ model, we have to determine the sum of the granular distortions
originating from quantization in <CGR and <PGR, that is to determine Dg

CGR and Dg
PGR

Dg
PWUQ = DCGR

g + DPGR
g , (9)

Dg
PWUQ =

1
12

((
∆CGR

)2
PCGR +

(
∆PGR

)2
PPGR

)
. (10)

PCGR and PPGR denote the probability of belonging the input sample x to <CGR and <PGR,
respectively

PCGR = 2

xb∫
0

p(x)dx, (11)

PPGR = 2

xclip∫
xb

p(x)dx. (12)

Let us recall that the mean is a measure of central tendency and that it specifies where
the values of x tend to cluster, whereas the standard deviation σ, indicates how the data
are spread out from the selected mean to form the measure of dispersion [25]. Also, let
us recall that on an unbounded amplitude domain, the cumulative distribution function
(CDF), denoted as FCDF, is given by

FCDF(b) =
b∫

−∞

p(x)dx, (13)

where CDF satisfies FCDF(∞) = 1. For a symmetric pdf, such as the pdf that is given in (2),
it holds:

Φ(−b, b) = FCDF(b)− FCDF(−b) = 2
b∫

0

p(x)dx, (14)

where Φ(−b, b) is the probability that the value of the input sample x having pdf p(x)
belongs to the given interval [−b, b]. By invoking (2), (13), and (14) for PCGR and PPGR,
we have:

PCGR = Φ(−xb, xb) = 2

xb∫
0

p(x)dx = 1− exp
{
−
√

2xb

}
, (15)

PPGR = Φ
(
−xclip, xclip

)
−Φ(−xb, xb) = 2

xclip∫
xb

p(x)dx = exp
{
−
√

2xb

}
− exp

{
−
√

2xclip

}
. (16)

Substituting (5), (6), (15) and (16) in (10) yields

Dg
PWUQ = C

[
ψ2
(

1− exp
{
−
√

2ψ xclip

})
+ (1− ψ)2

(
exp

{
−
√

2ψ xclip

}
− exp

{
−
√

2xclip

})]
, (17)

where C = 4 xclip
2/(3N2). By further setting the first derivate of Dg

PWUQ with respect to ψ
equal to zero

∂Dg
PWUQ

∂ψ
= 0, (18)
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we obtain:

xb = ψ xclip =
1√
2

ln

 1 +
xclip√

2
−
√

2ψ xclip

ψ + (1− ψ) exp
{
−
√

2xclip

}
. (19)

From (19) and discussions about xb or ψ determining, the application of an iterative
numerical method is required:

ψ(i) =
1√

2xclip
ln

 1 +
xclip√

2

(
1− 2ψ(i−1)

)
ψ(i−1) +

(
1− ψ(i−1)

)
exp

{
−
√

2xclip

}
. (20)

Taking the second derivative of (17) with respect to ψ yields:

∂2Dg
PWUQ

∂ψ2 = 1− exp
{
−
√

2xclip

}
+ xclip exp

{
−
√

2ψ xclip

} [
2
√

2 + xclip(1− 2ψ)
]
. (21)

As it holds xb ≤ xclip/2, 2
√

2 + xclip(1− 2ψ) > 2
√

2, we can conclude that Dg
PWUQ is a

convex function of ψ, and subsequently of the border threshold xb, where xb ∈ (0, xclip/2].
In other words, as it holds ∂2Dg

PWUQ/∂ψ2 > 0, Dg
PWUQ is also a convex function of the

border threshold xb so that for the given xclip, one unique optimal value of xb and one
unique optimal value of ψ exists that minimizes Dg

PWUQ.
Pseudo-code (see Algorithm 1) that is shown here summarizes our iterative algorithm

for the concreate designing and parameterization of PWUQ for a given bit-rate and a
clipping threshold. PWUQ parameterization implies specifying the clipping thresholds,
xclip, and iteratively determining: border thresholds xb*, and border–clipping threshold
scaling ratio ψ* = xb*/xclip, ∆CGR, ∆PGR—uniform step sizes in <CGR and <PGR; {y−i, yi},
i = 1, 2, . . . , K—symmetrical representation levels; {x−i, xi}, i = 1, 2, . . . , K—symmetrical
decision thresholds.

We initialize our PWUQ model with the UQ model, that is with xb(0) = xclip/2, to
follow performance improvement that is achieved by the iterative algorithm. In other
words, we assume that it holds ψ(0) = 0.5 as for this ψ value and the same number of levels
N, PWUQ and UQ model are matched. We define that the iterative algorithm stopping
criterion is satisfied when the absolute error

ε(i) =
∣∣∣ψ∗ − ψ(i−1)

∣∣∣ (22)

is less than εmin = 10−4.
Recalling (11)–(13) we can calculate λ, as the probability that an input sample x, with

unrestricted pdf p(x), belongs to the granular region:

λ =
PCGR + PPGR

FCDF(∞)
= PCGR + PPGR. (23)

We should also highlight here that xclip, xb, and N have a direct effect on the distortion. If the
clipping threshold xclip has a very small value, the quantization accuracy may be decreased
because too many samples will be clipped [24]. Note that the clipping effect nullifies the
overload distortion where it can indeed degrade the granular distortion if the clipping
threshold is not appropriately specified. Accordingly, setting a suitable clipping threshold
value is crucial for achieving the best possible performance of the given quantization task.
We can anticipate that for the given clipping threshold, the border threshold xb has a large
impact on the granular distortion because the CGR and PGR distortion, which compose
the total granular distortion, behave opposite in relation to the border threshold xb. In
particular, for the fixed and an equal number of quantization levels that are assumed in
<CGR and <PGR, with the decrease of the border threshold value, the CGR distortion is
reduced at the expense of the increase in PGR distortion. Namely, the shrinkage of <CGR
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can cause a significant distortion reduction in CGR, while at the same time, can result
in an unwanted but expected increase of the distortion in the pdf tailed PGR. Therefore,
we can conclude that tuning the values of the border thresholds ± xb and the clipping
thresholds ± xclip, is one of the key challenges when heavy-tailed Laplacian pdf are taken
into consideration. In what follows, we will show that, for the Laplacian pdf given in (2),
our PWUQ that is composed of only two UQs provides significantly better performance
than one UQ. That is, it provides a higher signal–quantization-noise-ratio (SQNR)

SQNRPWUQ [dB] = −10 · log10

(
Dg

PWUQ
)

, (24)

compared to UQ for the same bit-rate

SQNRUQ [dB] = −10 · log10

(
Dg

UQ
)

, (25)

Dg
UQ =

xUQ
2

3N2 . (26)

It is interesting to notice that if we assume equal values of the support region thresh-
olds, or clipping thresholds of PWUQ and UQ, xclip = xUQ, we can end up with the simple
closed-form formula providing a detailed insight in performance gain. That is, SQNR gain
achievable with our PWUQ over UQ can be calculated from:

δ = −10 log10

(
Dg

PWUQ

DgUQ

)
= −10 log10

(
4
[
ψ2
(

PCGR + PPGR
)
+ (1− 2ψ)PPGR

])
. (27)

Obviously, for ψ = 0.5 and the same number of levels N, the PWUQ and UQ models are
matched so that SQNRPWUQ is equal to SQNRUQ.

Algorithm 1. PWUQ Laplacian (N, xclip, εmin)—iterative parameterization of PWUQ for the
Laplacian pdf and the given xclip—determining ψ* and Φ (−xb*, xb*)

Input: Total number of quantization levels N, predefined clipping threshold xclip, εmin << 1
1st Output: ψ*, Φ(−xb*, xb*)
2nd Output: ∆CGR, ∆PGR, {y−i, yi}, {x−i, xi}, i = 1, 2, . . . , K

1: Initialize i← 0,
2: ψ*← 0.5,
3: ε(0)← 0.5
4: while ε (i) > εmin do
5: i← i + 1
6: ψ(i − 1)← ψ*
7: compute ψ(i) using (20)
8: ψ*← ψ(i)
9: compute ε(i) using (22)
10: end while
11: xb*← ψ* × xclip
12: compute Φ(−xb*, xb*) by using (15)
13: return ψ*, Φ(−xb*, xb*)
14: calculate ∆CGR, ∆PGR, {y−i, yi}, {x−i, xi}, i = 1, 2, . . . , K

Let us highlight that we have performed our analysis for the Laplacian source; similar
analyses can be derived for some other source. That is, for some other pdf that we can first
specify in (2) and then substitute in (11) and (12), which will further affect the derivation
of the formulas starting from (15). However, not every pdf will allow the derivation of
the expressions in closed form. Moreover, to provide a similar iterative algorithm, as in
this paper, the distortion should be a convex function of ψ, so this should be taken into
consideration as well. In brief, as the Laplacian source is one of the widely used sources, it
can be concluded that the analysis that is presented in this paper is indeed significant.
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Let us also highlight that our piecewise uniform quantizer, with the border threshold
between two segments as determined iteratively, can be considered a piecewise linear
quantizer if we consider its realization from the standpoint of a companding technique.
Taking this fact into account, our novel model can be related to adaptive rejection sam-
pling, as used in [34–39] for the generation of samples from a given pdf where piecewise
linearization is performed with linear segments as tangents on log pdf and with iteratively
calculated nodes specifying the linear segments. This approach with piecewise linear ap-
proximation is especially useful for pdfs such as Gaussian. As with the Gaussian pdf, one
cannot solve the integrals provided in our analysis in a closed form. Due to the widespread
utilization of both the Laplacian and Gaussian pdf, our future work will be focused on
designing a quantizer that is based on the piecewise linear approximation of the Gaussian
pdf by using a similar technique to the one proposed in [34–39].

3. Numerical Results

The most important step in designing our PWUQ is determining the value of its key
parameter ψ. For a given xclip, we can calculate ψ* using the above algorithm. Then we
can calculate xb* = ψ*·xclip and other parameters of PWUQ, as well as its performance
(SQNRPWUQ). Since the Laplacian pdf is long-tailed and accordingly persistently un-
bounded, we can assume that most of the pdf’s samples are in the granular region for
λGR = PCGR + PPGR = 0.9999. We can analyse the case where the values of the clip-
ping and border thresholds xclip

GR and xb
GR, as well as of ψGR, are determined from

λGR = 0.9999, where the GR notation indicates the granular region. By invoking (15) and
(16) for λGR = 0.9999, we have:

xclip
GR = − 1√

2
ln
(

1− λGR
)
= 2
√

2 ln(10). (28)

For medium and high bit-rates, where r amounts from 5 bit/sample to 8 bit/sample,
we have calculated ψ*, xb* = ψ*·xclip, Φ(−xb*, xb*), λ*, SQNRUQ, SQNRPWUQ, and δ for
different xclip values (see Table 1). In particular, along with xclip

GR, as determined from
(28), we assume xclip values as determined in [24,25], by Hui and Jayant, respectively. To
distinguish between these three different cases, we use notation [J], [H], and [GR] (or just
GR) in the line or in the superscript. As we can see from Figure 2, we can simply calculate
from (5) and (6) (∆CGR/∆PGR = ψ*/(1− ψ*)), it holds ∆PGR ≈ 2∆CGR, so that from K×(∆PGR

+ ∆CGR) = 2K × ∆UQ it implies ∆UQ ≈ 1.5 ∆CGR and ∆UQ ≈ 0.75 ∆PGR. Accordingly, we
show that in comparison to UQ, more precise quantization is enabled in <CGR to which
most of samples from the assumed Laplace pdf belong, while in <PGR, where pdf is
predominantly tailed, UQ provides slightly better performances since ∆UQ < ∆PGR. In
other words, keeping in mind the shape of the Laplacian pdf, we show that it makes
sense to favor the more meticulous quantization of the dominant number of samples that
are concentrated around the mean belonging to <CGR. Since we assume ψ* < 0.5, from
∆CGR/∆PGR = ψ*/(1 − ψ*) we can write ∆CGR < ∆PGR, proving that in the narrower <CGR

to which most of samples from the assumed Laplacian pdf belong, smaller quantization
errors indeed occur. In brief, by taking into account the shape of the assumed Laplacian
pdf and the manner in which we perform parameterization of our PWUQ, the overall gain
in SQNR that is achieved with PWUQ over UQ can be completely justified.
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Table 1. Competitive presentation of key design parameters and performances of UQ and PWUQ.

r [bit/Sample] xclip ψ* xb* Φ(−xb*, xb*) λ* SQNRUQ SQNRPWUQ δ

5
[J] 4.4800 0.3100 1.38880 0.8597 0.9982 21.8487 24.1089 2.2602
[H] 4.9013 0.2996 1.46843 0.8747 0.9990 21.0680 23.6010 2.5330
GR 6.5127 0.2674 1.74150 0.9148 0.9999 18.5990 22.1220 3.5230

6
[J] 5.3024 0.2903 1.53929 0.8866 0.9994 26.4054 29.1938 2.7884
[H] 5.8815 0.2789 1.64035 0.9017 0.9998 25.5050 28.6522 3.1472
GR 6.5127 0.2674 1.74150 0.9148 0.9999 24.6196 28.1426 3.5230

7
[J] 6.1504 0.2740 1.6852 0.9077 0.9998 31.1373 34.4466 3.3093
[H] 6.8618 0.2616 1.79505 0.9210 0.9999 30.1866 33.9106 3.7240
GR 6.5127 0.2674 1.74150 0.9148 0.9999 30.6402 34.1632 3.5230

8
[J] 7.0272 0.2589 1.81934 0.9237 0.9999 36.0004 39.8178 3.8174
[H] 7.8421 0.2467 1.83465 0.9552 0.9999 35.0474 39.3096 4.2622
GR 6.5127 0.2674 1.74150 0.9148 0.9999 36.6608 40.1838 3.5230

Let us observe that for xclip, as calculated from (28) so that λGR = 0.9999 and for
ε < 10−4, ψGR, amounts to 0.2674 and is not dependent on the bit-rate. Namely, we have
calculated the following fixed values: xclip = xclip

GR = 6.5127, ψGR = 0.2674, xb
GR = 1.74150,

and Φ(−xb
GR, xb

GR) = 0.9148, whereas SQNRPWUQ strictly depends on r. It is interesting
to notice that although SQNRPWUQ depends on r, the gain in SQNR that is achieved by
PWUQ over UQ in the so-called GR case, is also constant and it amounts to 3.523 dB
(see Figure 3 for GR case). To justify this constant gain in SQNR we can observe (27)
from which it trivially follows our conclusion for given fixed ψGR, xclip

GR and xb
GR values.

Eventually, we can notice that for r = 8 bit/sample, SQNRPWUQ[GR], determined for
xclip = xclip

GR = 6.5127, is higher than SQNRPWUQ[H] [24] and SQNRPWUQ[J] [25], which
can be justified by the suitable clipping effect that was performed in the GR case in
accordance with the assumption that it holds λGR = 0.9999 and also by the fact that
in [24,25], the optimization of the support region threshold, here considered as a clipping
threshold, have been performed without nullifying the overload distortion, i.e., by avoiding
a clipping effect.

It is worthy to notice from Table 1 that the Laplacian pdf is expected to be in the
defined granular regions with λ*[J] = 0.9982, λ*[H] = 0.9990 for r = 5 bit/sample, whereas
for r = 8 bit/sample λ*[J] and λ*[H] are equal to λGR = 0.9999. By calculating λ* and
Φ(−xb*, xb*) for our three different cases, we confirm that with a convenient choice of
clipping values, only a few quantized samples are in the granular region near to the support
or clipping threshold or out of the granular region. From Table 1, we can also conclude
that the probability of belonging samples x to <CGR grows with the bit-rate since values
of xclip[J] and xclip[H] increase with the bit-rate. Also, we can notice that Φ(−xb

GR, xb
GR)

shows dominance compared to Φ(−xb*[J], xb*[J]) and Φ(−xb*[H], xb*[H]) for r equal to
5 bit/sample and 6 bit/sample, whereas Φ(−xb

GR, xb
GR) takes close values to Φ(−xb*[J],

xb*[J]) and Φ(−xb*[H], xb*[H]) for r = 7 bit/sample and r = 8 bit/sample. Since the values of
Φ(−xb

GR, xb
GR) and xclip

GR are constant and for r = 7 bit/sample it holds xclip
GR < xclip[H],

as a result we have SQNRPWUQ[GR] > SQNRPWUQ[H]. Similarly, for r = 8 bit/sample,
from xclip

GR < xclip[J], it implies that SQNRPWUQ[GR] > SQNRPWUQ[J]. For the highest
observed bit-rate, r = 8 bit/sample, along with the values of the key design parameters and
performances of UQ and PWUQ given in the last row of Table 1 for the GR case, we present
additional descriptive information, given in Figure 4. From Figure 4, we can notice that
91.48% of the samples belonged to <CGR, whereas 99.99% of samples belonged to <CGR ∪
<PGR, meaning that we have determined the value of ψ = ψGR so that a huge percentage of
the samples do belong to <CGR. In the case with r = 8 bit/sample we have determined the
smallest values of ψ* in [J] and [H] cases. That is, we have determined the largest absolute
differences from the initial value ψ(0) = 0.5. In these two cases, the number of iterations
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for determining ψ* ranges up to 25, where the values of ψ* matches with the results of the
numerical distortion optimization per ψ, meaning that our algorithm converges fast.
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To illustrate the importance of determining not only the optimized value of ψ, but
also of the choice of xclip values, Figure 5 shows the dependences of SQNRPWUQ on ψ for
r = 6 bit/sample for the three cases that were considered, where xclip is equal to xclip

GR,
xclip[H], xclip[J]. Let us highlight that the values of the parameter ψ, which are the results of
our iterative algorithm for the considered three cases, marked with asterisks in Figure 5,
are indeed optimal and gives the corresponding maximum of SQNR of PWUQ for each of
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these three cases. To select one of the values for xclip for a given bit-rate, r, we can choose
the one giving the highest SQNR. Eventually, we can conclude that although the range
of values for ψ is relatively narrow, its selection is very significant since the unfavorable
choice of this parameter can significantly degrade the performance of our PWUQ. This
observation additionally justifies the importance of our proposal, described in the paper.
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4. Summary and Conclusions

To improve upon the uniform quantizer model in terms of SQNR and to utilize the
benefits that are provided by the simplest UQ, in this paper we have proposed one PWUQ
model. This model deliberately applies equal bit-rates uniform quantization in regions
called CGR and PGR whose widths are optimized in an iterative manner so that for the
assumed clipping thresholds and Laplacian pdf, the distortion is minimal. In other words,
we have opted to perform parameterization of our PWUQ to achieve an increase of the
quantization step size in PGR which is counterbalanced by a corresponding diminution of
the step size in CGR to which most of samples from the assumed Laplacian pdf belong. We
have proved that in comparison to UQ, smaller quantization errors have indeed occurred
in the CGR, resulting in a significant SQNR gain achieved by PWUQ over UQ. Moreover,
for the three different cases of specifying the clipping threshold values, we have shown
and justified that this SQNR gain originates from the optimization of the border–clipping
threshold scaling factor, performed in accordance with the proposed iterative algorithm.
We have shown that although the range of values for border–clipping threshold scaling
factor is relatively narrow, its choice is very significant since the unfavorable choice of this
parameter, or unfavorable parameterization, can significantly degrade the performance of
our PWUQ. Eventually, we found that with a convenient choice of clipping values, 99.99%
of samples from the assumed Laplacian pdf do belong to the granular region. Accordingly,
we can anticipate that our PWUQ model can be deployed as an outstanding replacement
for the widely-used UQ, not only in traditional, but also in contemporary quantized neural
network solutions where weights are typically modelled by the Laplacian distribution, as
we assumed in this paper.
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