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Abstract: Alzheimer’s disease (AD) is a leading health concern affecting the elderly population
worldwide. It is defined by amyloid plaques, neurofibrillary tangles, and neuronal loss. Neuroimag-
ing modalities such as positron emission tomography (PET) and magnetic resonance imaging are
routinely used in clinical settings to monitor the alterations in the brain during the course of progres-
sion of AD. Deep learning techniques such as convolutional neural networks (CNNs) have found
numerous applications in healthcare and other technologies. Together with neuroimaging modalities,
they can be deployed in clinical settings to learn effective representations of data for different tasks
such as classification, segmentation, detection, etc. Image filtering methods are instrumental in
making images viable for image processing operations and have found numerous applications in
image-processing-related tasks. In this work, we deployed 3D-CNNs to learn effective representa-
tions of PET modality data to quantify the impact of different image filtering approaches. We used
box filtering, median filtering, Gaussian filtering, and modified Gaussian filtering approaches to
preprocess the images and use them for classification using 3D-CNN architecture. Our findings
suggest that these approaches are nearly equivalent and have no distinct advantage over one an-
other. For the multiclass classification task between normal control (NC), mild cognitive impairment
(MCI), and AD classes, the 3D-CNN architecture trained using Gaussian-filtered data performed
the best. For binary classification between NC and MCI classes, the 3D-CNN architecture trained
using median-filtered data performed the best, while, for binary classification between AD and MCI
classes, the 3D-CNN architecture trained using modified Gaussian-filtered data performed the best.
Finally, for binary classification between AD and NC classes, the 3D-CNN architecture trained using
box-filtered data performed the best.

Keywords: neuroimaging; classification; image filtering; statistical comparison

1. Introduction

Alzheimer’s disease (AD) is a brain disorder that has no effective treatment [1,2].
AD affects brain regions such as the hippocampus, gyrus, etc., during the course of its
progression [3,4]. Deposition of amyloid-β plaques and tau concentrates is likely the first
stage in the development of AD. In addition, neurodegeneration, associated with brain
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atrophy and hypometabolism, affects cognition [5,6]. Due to the extreme and progressive
pathological changes, mild cognitive impairment (MCI), which is a prodromal stage and
an important clinical group of AD and advanced AD stages, is highly correlated [7–10].
Predictors of progression from MCI to AD include hippocampal volume, APOE ε4 alleles,
memory, language, executive function, and other factors [11].

Neuroimaging modalities such as positron emission tomography (PET) can be used to
visualize amyloid-β and tau plaques, while structural magnetic resonance imaging (MRI)
can examine neurodegeneration and macroscopic tissue atrophy [6,12,13]. The structural
MRI modality provides structural connectivity information of the brain, while the PET
modality provides measures of glucose metabolism, which represents the functional activity
of the underlying brain tissue in AD [14–16].

Deep learning methods are hallmarks of modern artificial intelligence techniques and
have been widely deployed in recent studies in a number of applications such as segmen-
tation, classification, and natural language processing tasks. These methods can learn
strong features from the input distribution, forming high-level hierarchical pathways [17].
There are many desirable properties of these networks that make them useful for different
applications such as end-to-end representation and high distinction among classes [18].

In the literature, studies have been proposed to integrate features using structured sparse
regularization for multiclass classification between cognitively normal (NC), MCI, and AD
classes [19]; single-nucleotide polymorphisms for MCI/AD classification [4]; and a multitask
feature selection method using MRI and PET MCI-converter (MCI-C)/MCI-nonconverter
(MCI-NC), AD/NC, and MCI/NC binary classification tasks [1].

Furthermore, research has been conducted to propose a deep-learning-based latent
feature representation framework with a stacked autoencoder for AD/NC, MCI/NC,
AD/MCI, and MCI-C/MCI-NC binary classification tasks [12]; unsupervised feature learn-
ing through a locally linear embedding algorithm to transform multivariate MRI data for
MCI-C/MCI-NC, NC/MCI-NC, AD/MCI-NC, NC/MCI-C, AD/MCI-C, and AD/NC bi-
nary classification tasks [20]; a longitudinal measurement framework for MCI-C/MCI-NC
binary classification tasks [21]; and compare gray matter density and volume, cortical thick-
ness, and region-of-interest (ROI)-based volumetric markers for MCI-C/MCI-NC and
AD/NC binary classification tasks [22].

In addition, research has been conducted to integrate semi-supervised learning for
MCI-C/MCI-NC binary classification tasks [5] to extract spatially distributed diagnostic
biomarkers from structural MR brain images for AD/NC, MCI-C/NC, and MCI-C/MCI-
NC binary classification tasks [13]; utilize intrinsic useful correlation information using
multidomain transfer learning frameworks for AD/NC, MCI/NC, and MCI-C/MCI-NC
binary classification tasks [7]; combine features such as hippocampal volume and classify
them using machine learning methods such as linear discriminant analysis (LDA) and
support vector machine (SVM) classifiers for AD/NC, MCI-C/MCI-NC, and NC/MCI-C
binary classification tasks [9]; utilize a multimodal and multiscale deep-learning-based
network for MCI-C/MCI-NC and NC/AD binary classification tasks [15]; combine MRI,
PET, and CSF biomarkers using a kernel combination method for AD/NC and MCI/NC
binary classification tasks [14]; and propose a diagnostic framework with deep learning
architecture to fuse multimodal neuroimaging features for AD/NC, MCI/NC binary,
and NC/MCI-C/MCI-NC/AD multiclass classification tasks [23].

Furthermore, great strides have been taken to propose cascade CNNs to learn multi-
level and multimodal features for AD/NC, MCI-C/NC, and MCI-NC/NC binary classifica-
tion tasks [24]; capture metabolic activity of the brain through a deep learning framework
for AD/NC and MCI-C/MCI-NC binary classification tasks [25], using Laplacian eigen-
maps for AD/NC, MCI-C/NC, and MCI-NC/NC binary classification tasks [26]; combine
sparse autoencoders and convolutional neural networks for AD/NC/MCI multiclass and
AD/NC, MCI/NC, and AD/MCI binary classification tasks [27]; and propose an interpre-
tation system using fluorodeoxyglucose and florbetapir PET modalities for AD/NC and
MCI-C/MCI-NC binary classification tasks [28].
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Finally, another avenue that has been explored is utilizing graph theory and machine
learning for MCI-C/MCI-NC binary classification tasks [29] to propose a multivariate
prognostic model for MCI-C/MCI-NC binary classification tasks [30]; propose a high-order,
multimodal, multimask feature-learning model for deciphering the temporal relationship
between longitudinal measures and progressive cognitive scores [31] for the integration of
SPARE-AD and cerebrospinal fluid (CSF) values for MCI-C/MCI-NC binary classification
tasks [32]; build a combination of independent component analysis (ICA) and Cox models
to predict MCI progression [33]; propose a framework for the integration of MRI and PET
modalities for binary classification tasks such as AD/NC, MCI-C/MCI-NC, NC/MCI-C,
NC/MCI, etc. [34]; propose an approach for building a robust classifier for AD/NC and
NC/MCI binary classification tasks [10]; employ sparse logistic regression for MCI-C/MCI-
NC binary classification tasks [8]; and utilize multimodality image data for diagnosis and
prognosis of AD at the MCI or preclinical stages [27], as well as a demographic-adjusted
multivariable Cox model for MCI to AD conversion [35].

Image filtering methods are commonly deployed in different applications to modify
an image. These methods alter the appearance and properties of an image to emphasize or
remove certain features. They have found numerous applications in smoothing, sharpen-
ing, and edge enhancement. Box filtering, median filtering, Gaussian filtering, and their
modifications have found a number of applications in the domain of image processing.
Median filtering uses neighborhood operations to remove noise, as well as fine image de-
tails using maximum-likelihood-based operations. Gaussian filtering introduces blurring
to an image in an asymmetric fashion, ignoring image brightness and helping in smoothing
the images significantly by performing nonlinear low-pass filtering. Box filtering, a type
of low-pass filter, works by averaging the values in the neighborhood region, and the
filter kernel defines the type of filtering in a general fashion for different operations such
as smoothing.

In this work, we explored the impact of different image filtering methods such as
box filtering, median filtering, Gaussian filtering, and modified Gaussian filtering on the
performance of deep convolutional neural networks (CNNs) for the early diagnosis of
AD. We deployed 3D-CNN architectures to extract features from the PET neuroimaging
modality and classified them into NC, MCI, and AD classes simultaneously and bilaterally.
We considered four problems: three-class classification among MCI, NC, and AD classes
and binary classifications between MCI and NC, MCI and AD, and NC and AD classes.
We did not employ data augmentation for the binary and multiclass classification tasks
studied using the PET modality.

2. Datasets Description

We used scans of the PET neuroimaging modality from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database, as shown in Table 1. The data are presented in
mean (min–max) format. We split the datasets at subject level for the experiments.

Table 1. Demographics of subjects with PET scans presented in mean (min–max) format.

Research Group NC MCI AD

Number of Subjects 102 97 94
Age 76.01 (62.2–86.6) 74.54 (55.3–87.2) 75.82 (55.3–88)

FAQ Total Score 0.186 (0–6) 3.16 (0–15) 13.67 (0–27)
NPI-Q Total Score 0.402 (0–5) 1.97 (0–17) 4.074 (0–15)

FAQ: Functional Activities Questionnaire, NPI-Q: Neuropsychiatric Inventory Questionnaire.

3. Methodology

In this study, we considered four problems: multiclass (three classes) classification
between MCI, NC, and AD classes and three-binary classification problems; that is, binary
classification between MCI and NC classes, MCI and AD classes, and NC and AD classes.
We will now describe the deep learning architectures for solving these problems using the
PET dataset.
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The detailed 3D-CNN architecture for three binary and one multiclass (3 classes)
classification tasks between NC, MCI, and AD classes using the PET neuroimaging modality
and box filtering, Gaussian filtering, modified Gaussian filtering, and median filtering
approaches is presented in Figure 1, while Figure 2 presents some of the scans used in
the experiments. In Figure 2, SSIM is the structural similarity index. Figure 2b–e shows
the SSIM index of PET scans from the reference image. Here, modified Gaussian filtering
means that Gaussian filtering is applied to the input volume, followed by a second round
of Gaussian filtering. Mathematically,

Modified Gaussian filtering = Gauss(Gauss(INi)), i = 1 . . . N (1)

In Equation (1), N represents the total number of inputs.
For the AD-MCI binary classification task, the number of feature maps in the convolu-

tional feature extracting layers is 8, while the number of neurons is 100, 30, and 2 for Fully
Connected (FC) Layer 1, FC Layer 2, and FC Layer 3, respectively. For the AD-NC binary
classification task, the number of feature maps in the convolutional feature extracting
layers is 6, while the number of neurons is 100, 30, and 2 for FC Layer 1, FC Layer 2,
and FC Layer 3, respectively.

For the MCI-NC binary classification task, the number of feature maps in the convolu-
tional feature extracting layers is 9, while the number of neurons is 100, 30, and 2 for FC
Layer 1, FC Layer 2, and FC Layer 3, respectively.

For the AD-MCI-NC multiclass classification task, the number of feature maps in
the convolutional feature extracting layers is 11, while the number of neurons is 500, 300,
and 3 for FC Layer 1, FC Layer 2, and FC Layer 3, respectively.
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AD: (a) reference image belonging to AD class without filtering; (b) box-filtered image belonging
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SSIM = 0.9971; (d) Gaussian-filtered image belonging to AD class with SSIM = 0.9992; (e) median-
filtered image belonging to AD class with SSIM = 0.9952.

In the architecture given in Figure 1, there is an input layer accepting a volume of
size 79 × 95 × 69 with zero-center normalization applied to it that works by subtracting
the mean and dividing it with the standard deviation to center the data volume on the
origin. After that, a block named Block-A is repeated 5 times, and this block is made up of
a 3D convolutional layer with a kernel of size 3 in all dimensions. A variable number of
feature maps for the extraction of features with a weight and bias L2 factor of 0.00005 is
applied to mitigate the impact of overfitting. After the convolutional layer, there is a batch
normalization layer, the purpose of which is to normalize the incoming batches through
division by standard deviation and subtracting the means, which helps in making the
training process faster. After this layer, there is an exponential linear unit (ELU) activation
layer with an α value of 1, the purpose of which is to introduce nonlinearity to the output
of a neuron. Mathematically,

ELU =

{
x, x ≥ 0

α(ex − 1), x < 0
(2)

After this layer, there is a max-pooling layer with a filter and stride size of 2 in
all dimensions to reduce the dimensions of feature maps for computational efficiency.
Block-A is followed by Block-B, which is repeated a single time and is made up of three
fully connected layers with a variable number of neurons for different classification tasks:
FC Layer 1, FC Layer 2, and FC Layer 3; a dropout layer with a probability of 0.1; a softmax
layer; and, finally, a classification layer. The FC layers offer full connections to the incoming
data volumes for feature extraction, and these layers have bias and weight L2 factors
of 0.00005 to mitigate the impact of overfitting. The dropout layer works by randomly
dropping neurons, and in the process, performs regularization of the inputs, which helps
to mitigate overfitting. In this case, a factor of 0.1 or 10% drops 10% neurons from the
input. Finally, softmax and classification layers convert a vector of numbers into a vector
of probabilities with uniform distribution and classify them into 2 or 3 classes, depending
on the task.
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4. Experiments and Results

To select an optimum set of hyperparameters for the experiments, we used a five-fold
cross-validation approach. In order to test the effectiveness of the model in a real-world
scenario, we built an independent test set and never used it for training. This set has 12 NC
class instances, 7 MCI class subjects, and 4 instances of the AD class. Different performance
metrics such as relative classifier information (RCI), confusion entropy (CEN), index of
balanced accuracy (IBA), geometric mean (GM), Matthews correlation coefficient (MCC),
sensitivity (SEN), specificity (SPEC), F-measure, precision, and balanced accuracy were
chosen to assess the performance of different tasks. Only balanced classes, where training
and validation sets have an equal number of samples, were considered for the experiments.

For the experiments, a learning rate of 0.001 was chosen using a piecewise decay
policy, and this learning rate was reduced after every 7 epochs. The total number of epochs
was set to 35, and the size of the batch was set to 2. Adam [36] was chosen as the optimizer,
while categorical cross-entropy was chosen as a loss function. Examples were randomized
after each epoch. The results of the experiments are presented in Tables 2–5.

Table 2. Result of multiclass classification between AD, NC, and MCI classes.

Architecture Performance Metrics

3D-CNN trained with application of box filtering

RCI = 0.19275,
CEN = {‘AD’: 0.52135, ‘MCI’: 0.8566, ‘NC’: 0.5687},
Average CEN = 0.6488,
IBA = {‘AD’: 0.5358, ‘MCI’: 0.1241, ‘NC’: 0.4145},
Average IBA = 0.3581,
GM = {‘AD’: 0.7697, ‘MCI’: 0.467, ‘NC’: 0.6972},
Average GM = 0.6446,
MCC = {‘AD’: 0.5292, ‘MCI’: 0.0299, ‘NC’: 0.398},
Average MCC = 0.3190

3D-CNN trained with application of modified
Gaussian filtering

RCI = 0.1861,
CEN = {‘AD’: 0.5301, ‘MCI’: 0.8498, ‘NC’: 0.5762},
Average CEN = 0.6520,
IBA = {‘AD’: 0.5351, ‘MCI’: 0.1233, ‘NC’: 0.4258},
Average IBA = 0.3614,
GM = {‘AD’: 0.765, ‘MCI’: 0.4719, ‘NC’: 0.7027},
Average GM = 0.6465,
MCC = {‘AD’: 0.5172, ‘MCI’: 0.0465, ‘NC’: 0.4069},
Average MCC = 0.3235

3D-CNN trained with application of
Gaussian filtering

RCI = 0.18909,
CEN = {‘AD’: 0.53229, ‘MCI’: 0.85359, ‘NC’: 0.5627},
Average CEN = 0.6495,
IBA = {‘AD’: 0.5217, ‘MCI’: 0.1233, ‘NC’: 0.4485},
Average IBA = 0.3645,
GM = {‘AD’: 0.764, ‘MCI’: 0.4719, ‘NC’: 0.711},
Average GM = 0.6489,
MCC = {‘AD’: 0.5199, ‘MCI’: 0.0465, ‘NC’: 0.4188},
Average MCC = 0.3284

3D-CNN trained with application of median filtering

RCI = 0.1848,
CEN = {‘AD’: 0.54475, ‘MCI’: 0.86487, ‘NC’: 0.559},
Average CEN = 0.6562,
IBA = {‘AD’: 0.4671, ‘MCI’: 0.13193, ‘NC’: 0.4151},
Average IBA = 0.3380,
GM = {‘AD’: 0.7386, ‘MCI’: 0.4649, ‘NC’: 0.7043},
Average GM = 0.6359,
MCC = {‘AD’: 0.4767, ‘MCI’: 0.0084, ‘NC’: 0.4161},
Average MCC = 0.3004

In Table 2, it can be seen that the 3D-CNN architecture trained on Gaussian-filtered
data performed the best for the multiclass classification task. It is followed by box filtering
and modified Gaussian-filtering-based approaches. The worst-performing architecture
utilizes median-filtered data. As a matter of fact, considering RCI, average CEN, average
IBA, average GM, and average MCC as performance metrics, the worst-performing model
is the 3D-CNN architecture trained using median-filtered data. In terms of RCI and average
CEN metrics, the best-performing model is the 3D-CNN architecture trained using box-
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filtered data, while, in terms of average IBA, average GM, and average MCC metrics,
the best-performing model is the 3D-CNN architecture trained on Gaussian-filtered data.
Figures 3 and 4 display the results and rankings of methods for the multiclass classification task.

Table 3. Result of binary classification between AD and MCI classes.

Architecture Performance Metrics

3D-CNN trained with application of box filtering

SEN = 0.6702,
SPEC = 0.701,
F-measure = 0.6774,
Precision = 0.6848,
Balanced Accuracy = 0.6856

3D-CNN trained with application of modified
Gaussian filtering

SEN = 0.7021,
SPEC = 0.7216,
F-measure = 0.7059,
Precision = 0.7097,
Balanced Accuracy = 0.7119

3D-CNN trained with application of Gaussian filtering

SEN = 0.6915,
SPEC = 0.7216,
F-measure = 0.6989,
Precision = 0.7065,
Balanced Accuracy = 0.7066

3D-CNN trained with application of median filtering

SEN = 0.7128,
SPEC = 0.6701,
F-measure = 0.6943,
Precision = 0.6768,
Balanced Accuracy = 0.6914

Table 4. Result of binary classification between AD and NC classes.

Architecture Performance Metrics

3D-CNN trained with application of box filtering

SEN = 0.8298,
SPEC = 0.8922,
F-measure = 0.8525,
Precision = 0.8764,
Balanced Accuracy = 0.861

3D-CNN trained with application of modified
Gaussian filtering

SEN = 0.8191,
SPEC = 0.8725,
F-measure = 0.837,
Precision = 0.8556,
Balanced Accuracy = 0.8458

3D-CNN trained with application of Gaussian filtering

SEN = 0.8085,
SPEC = 0.8824,
F-measure = 0.8352,
Precision = 0.8636,
Balanced Accuracy = 0.8454

3D-CNN trained with application of median filtering

SEN = 0.8298,
SPEC = 0.8824,
F-measure = 0.8478,
Precision = 0.8667,
Balanced Accuracy = 0.8561

Table 5. Result of binary classification between MCI and NC classes.

Architecture Performance Metrics

3D-CNN trained with application of box filtering

SEN = 0.5773,
SPEC = 0.6471,
F-measure = 0.5926,
Precision = 0.6087,
Balanced Accuracy = 0.6122
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Table 5. Cont.

Architecture Performance Metrics

3D-CNN trained with application of modified
Gaussian filtering

SEN = 0.5258,
SPEC = 0.7157,
F-measure = 0.5763,
Precision = 0.6375,
Balanced Accuracy = 0.6207

3D-CNN trained with application of Gaussian filtering

SEN = 0.6082,
SPEC = 0.6176,
F-measure = 0.6051,
Precision = 0.602,
Balanced Accuracy = 0.6129

3D-CNN trained with application of median filtering

SEN = 0.6495,
SPEC = 0.6471,
F-measure = 0.6429,
Precision = 0.6364,
Balanced Accuracy = 0.6483
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In Table 3, it can be seen that the 3D-CNN architecture trained using modified
Gaussian-filtered data performed the best for the AD-MCI binary classification task. It is
followed by the 3D-CNN architecture trained using Gaussian-filtered and 3D-CNN ar-
chitecture trained using median-filtered data. The worst-performing model is the 3D-
CNN architecture trained using box-filtered data. It can also be observed that, in terms
of the SEN metric, the best-performing model is the 3D-CNN architecture trained on
median-filtered data. In terms of SPEC, F-measure, precision, and balanced accuracy,
the best-performing model is the 3D-CNN architecture trained on modified Gaussian-
filtered data. Figures 5 and 6 display the results and rankings of methods for the AD-MCI
binary classification task.

Mathematics 2021, 17, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 5. Results of different 3D-CNN architectures for the AD-MCI binary classification task. 

 
Figure 6. Rankings of different 3D-CNN architectures for the AD-MCI binary classification task. 

0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71 0.72 0.73

BOX FILTERING

MODIFIED GAUSSIAN FILTERING

GAUSSIAN FILTERING

MEDIAN FILTERING

Results for the AD-MCI binary classification task

Balanced Accuracy Precision F-measure SPEC SEN

0
1
2
3
4
5

SEN based
ranking

SPEC based
ranking

F-measure
based ranking

Precision
Based Ranking

Balanced
Accuracy

Based Ranking

Overall
Ranking

Rankings of the methods for the AD-MCI binary 
classification task 

BOX FILTERING BINARY CLASSIFICATION AD-MCI

MODIFIED GAUSSIAN FILTERING BINARY CLASSIFICATION AD-MCI

GAUSSIAN FILTERING BINARY CLASSIFICATION AD-MCI

MEDIAN FILTERING BINARY CLASSIFICATION AD-MCI

Figure 5. Results of different 3D-CNN architectures for the AD-MCI binary classification task.

Mathematics 2021, 17, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 5. Results of different 3D-CNN architectures for the AD-MCI binary classification task. 

 
Figure 6. Rankings of different 3D-CNN architectures for the AD-MCI binary classification task. 

0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71 0.72 0.73

BOX FILTERING

MODIFIED GAUSSIAN FILTERING

GAUSSIAN FILTERING

MEDIAN FILTERING

Results for the AD-MCI binary classification task

Balanced Accuracy Precision F-measure SPEC SEN

0
1
2
3
4
5

SEN based
ranking

SPEC based
ranking

F-measure
based ranking

Precision
Based Ranking

Balanced
Accuracy

Based Ranking

Overall
Ranking

Rankings of the methods for the AD-MCI binary 
classification task 

BOX FILTERING BINARY CLASSIFICATION AD-MCI

MODIFIED GAUSSIAN FILTERING BINARY CLASSIFICATION AD-MCI

GAUSSIAN FILTERING BINARY CLASSIFICATION AD-MCI

MEDIAN FILTERING BINARY CLASSIFICATION AD-MCI

Figure 6. Rankings of different 3D-CNN architectures for the AD-MCI binary classification task.

In Table 4, it can be seen that the 3D-CNN architecture trained using box-filtered
data performed the best for the AD-NC binary classification task. It is followed by the
3D-CNN architectures trained on median-filtered and modified Gaussian-filtered data. The
worst-performing model is the 3D-CNN architecture trained on Gaussian-filtered data.
In terms of SEN, F-measure, and balanced accuracy, the worst-performing model is the
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3D-CNN architecture trained on Gaussian-filtered data. In terms of SPEC and precision,
the worst-performing model is the 3D-CNN architecture trained using modified Gaussian-
filtered data. Figures 7 and 8 display the results and rankings of methods for the AD-NC
binary classification task.
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In Table 5, it can be seen that the best-performing model is the 3D-CNN architecture
trained on median-filtered data for the NC-MCI binary classification task. It is followed
by the 3D-CNN architectures trained on modified Gaussian-filtered and Gaussian-filtered
data. The 3D-CNN architecture trained using box-filtered data performed the worst. In
terms of balanced accuracy, F-measure, and SEN, the best-performing model is the 3D-
CNN architecture trained on median-filtered data, while in terms of SPEC and precision,
the best-performing model is the 3D-CNN architecture trained on modified Gaussian-
filtered data. The worst-performing model, in terms of SEN and F-measure, is the 3D-CNN
architecture trained on modified Gaussian-filtered data. Figures 9 and 10 display the results
and rankings of methods for the MCI-NC binary classification task.
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5. Discussion

Whole-brain-based methods such as those used in this study are most advantageous
in advanced stages of the disease when AD-related brain changes have spread to affect
cognitive functions such as daily living activities. This is also confirmed in our study, since
performance on the MCI-NC binary classification task is not as good as on the AD-NC or
MCI-AD binary classification task. Whole-brain-based methods may be helpful in capturing
changes in brain regions that are otherwise nondetectable with other approaches such as
region-of-interest-based approaches. Regions such as the medial temporal lobe, cingulate
gyrus, frontal gyrus, fusiform gyrus, thalamus, and occipital cortices play a pivotal role in
changes associated with AD and can be captured using whole-brain approaches effectively,
which can be instrumental in preclinical studies [37–43].

Despite using a deeper architecture for the MCI-NC binary classification task in
comparison with the other two binary classification tasks AD-NC and AD-MCI, the perfor-
mance of the compared filtering approaches is not as good due to the reasons mentioned
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above. For the multiclass classification task, we used a much deeper architecture in compar-
ison with the architectures used in the other classification tasks; however, the performance
on this task is the worst of all four tasks. This could be explained by the fact that adding
more classes mostly results in deteriorating performances for classification-based stud-
ies if the samples are not increased appropriately. Performance on the AD-NC binary
classification task is the best, despite using the shallowest architecture of all, which is,
again, due to the fact that AD-related brain changes are easily identified at this level of
discrimination. The performance on the AD-MCI binary classification task is in between
the AD-NC and NC-MCI binary classification tasks, which could be explained by slightly
more advanced changes at this stage in the brain. Perhaps the consideration of region-of-
interest-based approaches could be beneficial for the MCI-NC binary and AD-MCI-NC
multiclass classification tasks.

There are many limitations of this work, such as lack of utilization of multimodal
information. This information includes neuropsychological and clinical data such as age,
FAQ and NPI-Q scores, etc. Consideration of this information will likely increase the
performance of classifiers further. Another limitation is generalization issues due to age
in order of AD, MCI, and NC stages, since changes in the brain at the AD stage are more
pronounced, followed by changes in the MCI and NC stages, respectively.

We did not consider longitudinal data in this study, which will likely increase the
performance of classifiers further in comparison with cross-sectional data by learning better
representation and encoding for individual subjects. MCI subjects could potentially benefit
from such data, as MCI lies in continuum between NC and AD for a span of approximately
36 months and has many possible time points within this span. Finally, a comparison of
our best methods with the other methods reported in the literature is given in Table 6.

Table 6. Comparison with the state of- the art.

Author Data Method Accuracy Classification Task

Oh et al. [44] MRI

Inception
autoencoder
based CNN
architecture

84.5% AD/NC Binary Classification

Ekin Yagis et al.
[45] MRI 3D-CNN architectures 73.4% AD/NC Binary Classification

Cosimo
Ieracitano et al.

[46]
MRI Electroencephalographic

signals 85.78% AD/NC Binary Classification

Rukesh Prajapati
et al. [47] MRI

DL model
employing FC

layers
85.19% AD/NC Binary Classification

Selene
Tomassini et al.

[48]
MRI

3D
Convolutional

long
short-term

memory-based
network

86% AD/NC Binary Classification

Rejusha T R et al.
[49] MRI

Deep
convolutional

GAN
83% AD/NC Binary Classification

Ekin Yagis et al.
[50] MRI

2D-CNN
autoencoder
architecture

74.66% AD/NC Binary Classification

Ignacio
Sarasua et al.

[51]
Functional MRI

Template-based
DL

architecture
77.3% AD/NC Binary Classification

Alex
Fedorov et al.

[52]
MRI Multimodal

architectures 84.1% AD/NC Binary Classification
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Table 6. Cont.

Author Data Method Accuracy Classification Task

Our approach
(Box filtering) PET 3D-CNN

Whole brain 86.22% AD/NC Binary Classification

Karim Aderghal et al. [53] MRI 2D CNNs
hippocampal region 66.5% AD/MCI Binary Classification

Karim Aderghal et al. [54] MRI 2D CNNs coronal, sagittal
and axial projections 63.28% AD/MCI Binary Classification

Our approach (Modified
Gaussian filtering) PET 3D-CNN

Whole brain 71.2% AD/MCI Binary Classification

Tae-Eui Kam
et al. [55]

Resting-state
functional

MRI
CNN framework 73.85% NC/MCI Binary Classification

Olfa Ben Ahmed et al. [56] MRI Circular Harmonic
Functions 69.45% NC/MCI Binary Classification

Our approach
(Median filtering) PET 3D-CNN

Whole brain 64.82% NC/MCI Binary Classification

Bijen Khagi
et al. [57] PET, MRI

DL architecture
employing

3D-CNN layers
50.21% AD/NC/MCI Multiclass Classification

Eva Y
Puspaningrum et al.

[58]
MRI

Deep CNN
architecture
having three

convolutional
layers

55.27% AD/NC/MCI Multiclass Classification

Our approach
(Gaussian filtering) PET 3D-CNN

Whole brain 55.63% AD/NC/MCI Multiclass Classification

6. Conclusions

In this work, we presented a deep learning approach to quantify the impact of different
image filtering techniques on the early diagnosis of AD. Box filtering, median filtering,
Gaussian filtering, and modified Gaussian filtering approaches are studied, and their
impacts on the early diagnosis of AD are explored. The obtained results clearly show that
no scheme has superiority over another. As a matter of fact, all four schemes performed
optimally on different binary and multiclass classification problems. The Gaussian-filtered
image is more structurally similar to the reference image. It is followed by the modified
Gaussian-filtered, then median-filtered, and, finally, box-filtered image. The Modified
Gaussian filtering approach is unique and has been used for the first time in the literature.
Its performance is found to be better among other filtering approaches, and an interesting
observation is that it never performed the worst in any of the classification tasks considered
in this study. This study can be extended further by considering other deep learning
approaches such as graph convolutional networks, as well as filtering methods such as
those based on deep learning [59] (see also [60]).
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