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Abstract: This paper is motivated by the difference between the classical principal component
analysis (PCA) in a Euclidean space and the tropical PCA in a tropical projective torus as follows.
In Euclidean space, the projection of the mean point of a given data set on the principle component
is the mean point of the projection of the data set. However, in tropical projective torus, it is not
guaranteed that the projection of a Fermat-Weber point of a given data set on a tropical polytope is a
Fermat-Weber point of the projection of the data set. This is caused by the difference between the
Euclidean metric and the tropical metric. In this paper, we focus on the projection on the tropical
triangle (the three-point tropical convex hull), and we develop one algorithm and its improved
version, such that for a given data set in the tropical projective torus, these algorithms output a
tropical triangle, on which the projection of a Fermat-Weber point of the data set is a Fermat-Weber
point of the projection of the data set. We implement these algorithms in R language and test how they
work with random data sets. We also use R language for numerical computation. The experimental
results show that these algorithms are stable and efficient, with a high success rate.

Keywords: Fermat-Weber point; convex polytope; tropical projection; tropical PCA

1. Introduction

Principal component analysis (PCA) is a standard method for dimensionality re-
duction that analyzes a set of high dimensional data. The goal of PCA is to extract the
important information from the data by computing a set of orthogonal vectors which span
lower dimensional subspaces called principal components [1]. The study of PCA can be
traced back to Pearson [2], and its modern instantiation was formalized by Hotelling [3].
Nowadays, PCA has been widely applied on, for instance, computer vision [4,5], data
visualization [6], and data compression [7].

Recently, R. Yoshida, L. Zhang and X. Zhang proposed the tropical principal com-
ponent analysis (tropical PCA) [8], which is of great use in the analysis of phylogenetic
trees in Phylogenetics (also see [9]). Phylogenetics is a subject that is very powerful for
explaining genome evolution, processes of speciation and relationships among species. It
offers a great challenge of analysing data sets that consist of phylogenetic trees.

Analysing data sets of phylogenetic trees with a fixed number of leaves is difficult
because the space of phylogenetic trees is high dimensional and not Euclidean; it is a union
of lower dimensional polyhedra cones in R(n

2), where n is the number of leaves [9]. Many
multivariate statistical procedures have been applied to such data sets [10–15]. Researchers
have also undertaken a lot of work to apply PCA on data sets that consist of phylogenetic
trees. For instance, Nye showed an algorithm [16] to compute the first order principal
component over the space of phylogenetic trees. Nye [16] used a two-point convex hull
under the CAT(0)-metric as the first order principal component over the Billera-Holmes-
Vogtman (BHV) tree space introduced in [17]. However, Lin et al. [18] showed that the
three-point convex hull in the BHV tree space can have arbitrarily high dimension, which
means that the idea in [16] cannot be generalized to higher order principal components
(e.g., see [9]). In addition, Nye et al. [19] used the locus of the weighted Fréchet mean when
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the weights vary over the k-simplex as the k-th principal component in the BHV tree space,
and this approach performed well in simulation studies.

On the other hand, the tropical metric in tree spaces is well-studied [20] (Chapter 5)
and well-behaved [18]. In 2019, Yoshida et al. [8] defined the tropical PCA under the
tropical metric in two ways: the Stiefel tropical linear space of fixed dimension, and the
tropical polytope with a fixed number of vertices. Page et al. [9] used tropical polytopes
for tropical PCA to visualize data sets of phylogenetic trees, and used Markov Chain
Monte Carlo (MCMC) approach to optimally estimate the tropical PCA. Their experimental
results [9] showed that the MCMC method of computing tropical PCA performed well on
both simulated data sets and empirical data sets.

This paper is motivated by the difference between the classical PCA (in Euclidean
spaces) and the tropical PCA as follows. In the classical PCA, by the definition of Euclidean
metric, the projection of the mean point of a data set X on the principle component is
the mean point of the projection of X. Based on this fact and the definition of Euclidean
metric, the mean squared error (MSE) between X and the projection of X reaches the
minimum, and the projected variance reaches the maximum simultaneously (e.g., see [21]
(Page 188 to 189)). In fact, the PCA in the BHV tree space proposed by Nye [16] also makes
the MSE between a data set X and the projection of X reaches the minimum, and the
projected variance reaches the maximum simultaneously. However, in tropical PCA [8,9], it
is not guaranteed that the variance of the projection of X reaches the maximum, while the
MSE between X and the projection of X reaches the minimum. The fundamental reason
for this is that the tropical metric is different from Euclidean metric. Also, in the tropical
PCA defined by tropical polytopes, the projection of a tropical mean point (in this paper
we call it a Fermat-Weber point) of a data set X is not necessarily a Fermat-Weber point
of the projection of X (see Example 4). More specifically, it is known that, for a data set
X in the Euclidean space, the mean point of X is unique. However, for a data set X in the
tropical projective torus (denoted by Rn/R1), the Fermat-Weber point of X is not necessarily
unique [22] (Proposition 20). For a data set X ⊂ Rn/R1 and a tropical convex hull C, the
tropical projection [23] (Formula 3.3) of the set of Fermat-Weber points of X on C are not
exactly equal to the set of Fermat-Weber points of the projection of X on C. In addition,
it is also known that, in Rn/R1, if a set is the union of X and a Fermat-Weber point of X,
then the union has exactly one Fermat-Weber point [24] (Lemma 8). So, if a set is the union
of X and a Fermat-Weber point of X, can the projection of the Fermat-Weber point of the
union be a Fermat-Weber point of the projection of the union? By experiments we know
that this is still not guaranteed, and it depends on the choice of the tropical convex hull C
(see Example 5). Therefore, it is natural to ask the following question.

Main Question. For a given data set X in the tropical projective torus, how to find a tropical
polytope C, such that the projection of a Fermat-Weber point of X on C is a Fermat-Weber point of
the projection of X on C?

In this paper, we study the main question by focusing on tropical triangles (three-point
tropical polytopes). Our goal is to develop an algorithm that can answer the main question
with a high success rate. We develop one algorithm (Algorithm 1) and its improved version
(Algorithm 2), such that for a given data set X ⊂ Rn/R1, these algorithms output a tropical
triangle C, on which the projection of a Fermat-Weber point of X is a Fermat-Weber point
of the projection of X. By sufficient experiments with random data sets, we show that
Algorithms 1 and 2 can both succeed with a much higher probability than choosing a
tropical triangle C randomly. We also show that the success rate of these two algorithms is
stable while data sets are changing randomly. Algorithm 2 can output the result much faster
than Algorithm 1 does averagely, because in most cases, Algorithm 2 correctly terminates
with less steps than Algorithm 1 does (See Section 5). Our work can be viewed as a first
step to an ambitious goal. We remark that, once the main question is completely solved,
we can then ask how to characterize all nice tropical polytopes. Here, by a “nice tropical
polytope”, we mean a tropical polytope, on which the projection of a Fermat-Weber point
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of a given data set X is a Fermat-Weber point of the projection of X. Then, we can use the
nice tropical polytopes as principal components in the tropical PCA and possibly in other
data analysis such as linear discriminant analysis.

Algorithm 1: First Version

Input: {x(1), . . . , x(m)} ⊂ Rn/R1
Output: u(1), u(2), u(3),
where u(1), u(2) and u(3) are three points in Rn/R1, such that the projection of a
Fermat-Weber point of {x(1), . . . , x(m)} on C := tconv({u(1), u(2), u(3)}) is a
Fermat-Weber point of the projection of {x(1), . . . , x(m)} on C

1 Xm×n ← {x(1), . . . , x(m)}
2 FX ← a Fermat-Weber point of Xm×n
3 X(m+1)×n ← the last row is FX , and the first m rows come from Xm×n

4 u(1), u(2), u(3) ← n-dimensional null vectors
5 for d1 from 2 to n− 1 do
6 for d2 from d1 + 1 to n do
7 if Verify-FW-Point(Pd1,d2(X))=TRUE then
8 u(1), u(2), u(3) ← Compute-Triangle(X, d1, d2)

9 if u(1), u(2) and u(3) are not null then break

10 if u(1), u(2) and u(3) are null then return FAIL, otherwise, return u(1), u(2), u(3)

This paper is organized as follows. In Section 2, we remind readers of the basic defini-
tions in tropical geometry. In Section 3, we prove Theorem 1 and Theorem 2 for the correct-
ness of the algorithms developed in this paper. In Section 4, we present Algorithms 1 and 2.
We also explain how the algorithms work by two examples. In Section 5, we apply the algo-
rithms developed in Section 4 on random data sets, and illustrate the experimental results.
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Algorithm 2: Improved Version

Input: {x(1), . . . , x(m)} ⊂ Rn/R1
Output: u(1), u(2), u(3),
where u(1), u(2) and u(3) are three points in Rn/R1, such that the projection of a
Fermat-Weber point of {x(1), . . . , x(m)} on C := tconv({u(1), u(2), u(3)}) is a
Fermat-Weber point of the projection of {x(1), . . . , x(m)} on C

1 Xm×n ← {x(1), . . . , x(m)}
2 FX ← a Fermat-Weber point of Xm×n
3 X(m+1)×n ← the last row is FX , and the first m rows come from Xm×n

4 L← all pairs of indices (d1, d2)(2 ≤ d1 < d2 ≤ n) in the lexicographical order,
that is: {(2, 3), (2, 4), . . . , (2, n), (3, 4), . . . , (3, n), . . . , (n− 1, n)}

5 S← ∅ (we will record in S the pairs that have been traversed)
6 W ← ∅ (we will record in W the indices that will be traversed in priority)
7 t← 0
8 u(1), u(2), u(3) ← n-dimensional null vectors

9 while |S| < (n−1)(n−2)
2 , and u(1), u(2) and u(3) are null do

10 t← t + 1
11 if L[t] ∈ S (here, L[t] denotes the i-th element of L) then skip this round
12 S← S ∪ {L[t]}
13 (d1, d2)← L[t]
14 r← the (m + 1)-th row of Pd1,d2(X)

15 f← FPd1,d2
(X)

16 if Verify-FW-Point(Pd1,d2(X))=TRUE then
17 u(1), u(2), u(3) ← Compute-Triangle(X, d1, d2)

18 if u(1), u(2) and u(3) are not null then break
19 if fk = rk for k = d1 or d2 then
20 W ←W ∪ {k}
21 while W 6= ∅ and u(1), u(2) and u(3) are null do
22 ω ←W[1] (here, W[1] denotes the first element in W)
23 Lω ← {(ω1, ω2) ∈ L|ω = ω1 or ω = ω2}
24 for all (ω1, ω2) ∈ Lω such that (ω1, ω2) /∈ S do
25 S← S ∪ {(ω1, ω2)}
26 r← the (m + 1)-th row of Pω1,ω2(X)
27 f← FPω1,ω2 (X)

28 if Verify-FW-Point(Pω1,ω2(X))=TRUE then
29 u(1), u(2), u(3) ← Compute-Triangle(X, ω1, ω2)

30 if u(1), u(2) and u(3) is not null then break
31 if f j = rj for j = ω1 or ω2, and j /∈W then W ←W ∪ {j}
32 W ←W\W[1]

33 if u(1), u(2) and u(3) are null then return FAIL, otherwise, return u(1), u(2), u(3)

2. Tropical Basics

In this section, we set up the notation throughout this paper, and prepare some basic
tropical arithmetic and geometry (see more details in [20]). We will redefine our motivation
in a precise way after Definition 6.

Definition 1 (Tropical Arithmetic Operations). We denote by (R ∪ {−∞},�,�) the max-
plus tropical semi-ring. We define the tropical addition and the tropical multiplication as

c � d := max{c, d}, c� d := c + d, where c, d ∈ R∪ {−∞}. (1)
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Definition 2 (Tropical Vector Addition). For any scalars c, d ∈ R∪{−∞}, and for any vectors

u = (u1, . . . , un), v = (v1, . . . , vn) ∈ (R∪ {−∞})n, (2)

we define the tropical vector addition as:

c� u � d� v := (max{c + u1, d + v1}, . . . , max{c + un, d + vn}). (3)

Example 1. Let
u = (2, 1, 3), v = (2, 2, 2). (4)

Also we let c = −2, d = 1. Then we have

c� u � d� v = (max{−2 + 2, 1 + 2}, max{−2 + 1, 1 + 2}, max{−2 + 3, 1 + 2}) = (3, 3, 3). (5)

For any point u ∈ Rn, we define the equivalence class [u] := {u + c · 1|c ∈ R}, where
1 = (1, . . . , 1). For instance, the vector (3, 3, 3) is equivalent to (0,0,0). In the rest of this
paper, we consider the tropical projective torus

Rn/R1 := {[u]|u ∈ Rn}. (6)

For convenience, we simply denote by u its equivalence class instead of [u], and we assume
the first coordinate of every point in Rn/R1 is 0. Because for any u = (u1, . . . , un) ∈ Rn/R1, it
is equivalent to

u = (0, u2 − u1, . . . , un − u1). (7)

Definition 3 (Tropical Distance). For any two points

u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Rn/R1, (8)

we define the tropical distance dtr(u, v) as:

dtr(u, v) := max{|ui − vi − uj + vj| : 1 ≤ i < j ≤ n} = max
1≤i≤n

{ui − vi} − min
1≤i≤n

{ui − vi}. (9)

Note that the tropical distance is a metric in Rn/R1 [18] (Page 2030).

Example 2. Let u = (0, 4, 2), v = (0, 1, 1) ∈ R3/R1. The tropical distance between u, v is

dtr(u, v) = max{0, 3, 1} −min{0, 3, 1} = 3− 0 = 3. (10)

Definition 4 (Tropical Convex Hull). Given a finite subset

X = {x(1), . . . , x(t)} ⊂ Rn/R1, (11)

we define the tropical convex hull as the set of all tropical linear combinations of X:

tconv(X) := {c1 � x(1) � c2 � x(2) � · · ·� ct � x(t)|c1, . . . , ct ∈ R}. (12)

If |X| = 3, then the tropical convex hull of X is called a tropical triangle.

Example 3. Consider a set X = {x(1), x(2), x(3)} ⊂ R3/R1, where

x(1) = (0, 0, 0), x(2) = (0, 4, 2), x(3) = (0, 2, 4). (13)

The tropical convex hull tconv(X) is shown in Figure 1.
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x2

x3

(0,0,0)

(0,0,2)

(0,2,4) (0,4,4)

(0,4,2)

(0,2,0)

Figure 1. Blue region is the tropical convex hull of the set of red points. Notes: R3/R1 is isomorphic to
R2 [25] (i.e., every point in R3/R1 can be presented as (0, x2, x3)), so the points in this figure are drawn on
the x2x3-plane.

Definition 5 (Tropical Fermat-Weber Points). Suppose we have

X = {x(1), . . . , x(t)} ⊂ Rn/R1. (14)

We define the set of tropical Fermat-Weber points of X as

argmin
y∈Rn/R1

t

∑
i=1

dtr(y, x(i)). (15)

The Fermat-Weber point of X is denoted by FX .

Proposition 1 ([18], Proposition 25). Given X = {x(1), . . . , x(t)} ⊂ Rn/R1, the set of tropical
Fermat-Weber points of X in Rn/R1 is a convex polytope in Rn−1. It consists of all optimal
solutions y = (y1, . . . , yn) to the linear programming problem:

minimize
t

∑
i=1

γi,

subject to γi ≥ yk − x(i)k − y` + x(i)` ,

γi ≥ −(yk − x(i)k − y` + x(i)` ),

for all 1 ≤ k < ` ≤ n, and for all i ∈ {1, 2, . . . , t}.

(16)

Definition 6 (Tropical Projection). Let

U = {u(1) = (u(1)
1 , . . . , u(1)

n ), . . . , u(t) = (u(t)
1 , . . . , u(t)

n )} ⊂ Rn/R1. (17)

Also let C = tconv(U). For any point x = (x1, . . . , xn) ∈ Rn/R1, we define the projection
of x on C as:

δC(x) := λ1 � u(1) � λ2 � u(2) � · · ·� λt � u(t), (18)

where λi := min{x1 − u(i)
1 , . . . , xn − u(i)

n } for all i ∈ {1, . . . , t} [23] (Formula 3.3).

Now we are prepared to repeat the main question in a precise way: for a given data
set X, how to find a tropical triangle C such that the following equality holds

δC(FX) = F{δC (x(1)), ..., δC (x(t))}. (19)
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The above question is motivated by the fact that the equality (19) does not hold for
any tropical triangle C (see Example 4). It is remarkable that the Fermat-Weber point might
not be unique. The following Proposition 2 indicates that for some special data sets, the
Fermat-Weber point is unique. But even for these special sets, the equality (19) still does
not hold for any tropical triangle (see Example 5). In the rest of this paper, we will develop
algorithms for automatically searching tropical triangles such that the equality (19) holds.

Proposition 2 ([24], Lemma 8). Let X = {x(1), . . . , x(m)} ⊂ Rn/R1. Suppose FX is a Fermat-
Weber point of X. Then {FX , x(1), . . . , x(m)} has exactly one Fermat-Weber point, which is FX .

Examples

Example 4. This example shows that, for a given data set X ⊂ R3/R1 and a given two-point
tropical polytope C, the projection of a Fermat-Weber point of X on C is not necessarily a Fermat-
Weber point of the projection of X on C.

Suppose we have X = {(0, 1, 5), (0, 2, 4), (0, 3, 1), (0, 4, 3)} ⊂ R3/R1. By solving the
linear programming (16) in Proposition 1 (e.g., using lpSolve in R), we obtain that, (0, 3, 3) is a
Fermat-Weber point of X. Let C = tconv({(0, 0, 2), (0, 33

10 , 2)}). Then the projection of X on C is
P = {(0, 1, 2), (0, 2, 2), (0, 33

10 , 2)}.
We remark that, in P, (0, 1, 2) is the projection of (0, 1, 5), (0, 2, 2) is the projection of (0, 2, 4),

and (0, 33
10 , 2) is the projection of both (0, 3, 1) and (0, 4, 3) on C.

Note that (0, 2, 2) is the unique Fermat-Weber point of P, while the projection of a Fermat-
Weber point (0, 3, 3) of X is (0, 3, 2). So we can see that the projection of a Fermat-Weber point of
X on C is not a Fermat-Weber point of the projection. In Figure 2, the red points are the points in
X. The green point is a Fermat-Weber point of X. The blue line segment is the tropical convex hull
C generated by (0, 0, 2) and (0, 33

10 , 2). The blue points are the projection P of X. And the biggest
blue one (0, 2, 2) is the Fermat-Weber point of P. The black point (0, 3, 2) is the projection of the
green point.

x2

x3

(0,0,2)

(0,1,5)

(0,2,4)

(0,3,3) (0,4,3)

(0,3,1)

(0, 33
10 ,2)

(0,2,2)(0,1,2)

Figure 2. The projection of a Fermat-Weber point of a given data set X on a tropical polytope C is not
necessarily a Fermat-Weber point of the projection of X on C. Notes: (i) The red points are the points
in X. The green point is a Fermat-Weber point of X. (ii) The blue line segment is the tropical convex hull C
generated by (0, 0, 2) and (0, 33

10 , 2). (iii) The blue points are the projection P of X. And the biggest blue one
(0, 2, 2) is the Fermat-Weber point of P. The black point (0, 3, 2) is the projection of the green point.
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Example 5. This example shows that, in Rn/R1, if a set X̃ is the union of X and a Fermat-Weber
point FX of X, then it is not guaranteed that the projection of the Fermat-Weber point FX of X̃ is
a Fermat-Weber point of the projection of X̃. Besides, whether the projection of the Fermat-Weber
point FX of X̃ is a Fermat-Weber point of the projection of X̃ depends on the choice of the tropical
convex hull C.

Suppose we have

X = {(0, 1, 5), (0, 2, 4), (0, 3, 1), (0, 4, 3)} ⊂ R3/R1. (20)

By solving the linear programming (16) in Proposition 1, we obtain that, (0, 3, 3) is a Fermat-
Weber point of X. Then

X̃ = X ∪ {FX} = {(0, 1, 5), (0, 2, 4), (0, 3, 1), (0, 4, 3), (0, 3, 3)}. (21)

Let C1 = tconv({(0, 0, 2), (0, 5
2 , 2)}), C2 = tconv({(0, 0, 2), (0, 4, 2)}). P1 and P2 are the

projection of X̃ on C1 and C2 respectively, where

P1 = {(0, 1, 2), (0, 2, 2), (0,
5
2

, 2)}, P2 = {(0, 1, 2), (0, 2, 2), (0, 3, 2), (0, 4, 2)}. (22)

We remark that, in P1, (0, 1, 2) is the projection of (0, 1, 5), (0, 2, 2) is the projection of (0, 2, 4),
and (0, 5

2 , 2) is the projection of (0, 3, 1), (0, 4, 3) and (0, 3, 3) on C1. And in P2, (0, 1, 2) is the
projection of (0, 1, 5), (0, 2, 2) is the projection of (0, 2, 4), (0, 3, 2) is the projection of (0, 3, 3), and
(0, 4, 2) is the projection of (0, 3, 1) and (0, 4, 3) on C2.

Note that (0, 2, 2) is the unique Fermat-Weber point of P1, while the projection of the Fermat-
Weber point (0, 3, 3) of X̃ on C1 is (0, 5

2 , 2). So we can see that the projection of the Fermat-Weber
point of X̃ on C1 is not a Fermat-Weber point of the projection. On the other hand, the projection of
the Fermat-Weber point (0, 3, 3) on C2 is (0, 3, 2), which is exactly a Fermat-Weber point of the
projection. In the panel (a) of Figure 3, the points in X̃ are red. The projection points of X̃ are blue.
The blue line segment is the tropical convex hull generated by (0, 0, 2) and (0, 5

2 , 2). The blue points
are the projection P1 of X̃. Note that (0, 5

2 , 2) is the projection of the Fermat-Weber point (0, 3, 3)
of X̃, and (0, 2, 2) is the unique Fermat-Weber point of P1. In the panel (b) of Figure 3, the points
in X̃ are red. The projection points of X̃ are blue. The blue line segment is the tropical convex hull
generated by (0, 0, 2) and (0, 4, 2). The blue points are the projection P2 of X̃. Note that (0, 3, 2) is
the projection of the Fermat-Weber point (0, 3, 3) of X̃, which is a Fermat-Weber point of P2.
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x2

x3

(0,0,2)

(0,1,5)

(0,2,4)

(0,3,3) (0,4,3)

(0,3,1)

(0,2,2)(0,1,2)
(0, 5

2 ,2)

(a)

x2

x3

(0,0,2)

(0,1,5)

(0,2,4)

(0,3,3) (0,4,3)

(0,3,1)

(0,4,2)
(0,2,2)(0,1,2) (0,3,2)

(b)

Figure 3. Wether the projection of a Fermat-Weber point of a given data set X on a tropical polytope C
is the Fermat-Weber point of the projection of X on C depends on the choice of the tropical polytope.
Notes: (a): (i) The points in X̃ are red. The projection points of X̃ are blue. (ii) The blue line segment is the
tropical convex hull generated by (0, 0, 2) and (0, 5

2 , 2). (iii) The blue points are the projection P1 of X̃. Note
that (0, 5

2 , 2) is the projection of the Fermat-Weber point (0, 3, 3) of X̃, and (0, 2, 2) is the unique Fermat-Weber
point of P1. (b): (i) The points in X̃ are red. The projection points of X̃ are blue. (ii) The blue line segment
is the tropical convex hull generated by (0, 0, 2) and (0, 4, 2). (iii) The blue points are the projection P2 of X̃.
Note that (0, 3, 2) is the projection of the Fermat-Weber point (0, 3, 3) of X̃, which is a Fermat-Weber point
of P2.

3. Theorems

In this section, we introduce Theorems 1 and 2 for proving the correctness of the
algorithms developed in the next section.

Lemma 1. Suppose we have a data set

X = {x(1) = (x(1)1 , x(1)2 , . . . , x(1)n ), . . . , x(m) = (x(m)
1 , x(m)

2 , . . . , x(m)
n )} ⊂ Rn/R1. (23)

Let t be a number which is no more than

min
1≤k≤m

min
1≤`≤n

{x(k)` }. (24)

For any two fixed integers d1 and d2 (2 ≤ d1 < d2 ≤ n), we define three points
u(1), u(2), u(3) ∈ Rn/R1 as follows.

for k = 1, 2, 3, u(k)
1 := 0, (25)

u(1)
d1

:= min
1≤k≤m

{x(k)d1
} − 1, u(1)

d2
:= min

1≤k≤m
{x(k)d2

} − 1, (26)

u(2)
d1

:= min
1≤k≤m

{x(k)d1
}+ 1, u(2)

d2
:= max

1≤k≤m
{x(k)d2

}+ 1, (27)

u(3)
d1

:= max
1≤k≤m

{x(k)d1
}+ 1, u(3)

d2
:= min

1≤k≤m
{x(k)d2

}+ 1, (28)

for k = 1, 2, 3, and for all ` 6= 1, d1, d2, u(k)
` := t. (29)

Let C = tconv({u(1), u(2), u(3)}). Then, the projection of X on C is

δC(x(k)) = (0, t, . . . , t, x(k)d1
, t, . . . , t, x(k)d2

, t, . . . , t), for all k ∈ {1, 2, . . . , m}, (30)
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where x(k)d1
and x(k)d2

are respectively located at the d1-th and d2-th coordinates of δC(x(k)).

Proof. Recall that we assume the first coordinate of every point in Rn/R1 is 0. For any

x(i) = (x(i)1 , x(i)2 , . . . , x(i)n ) ∈ X, (31)

by Definition 6, we have that λi in (18) should be:

λ1 = 0, λ2 = x(i)d2
− max

1≤k≤m
{x(k)d2

} − 1, λ3 = x(i)d1
− max

1≤k≤m
{x(k)d1

} − 1. (32)

Then the conclusion follows from (18).

Suppose X is the data set stated in Lemma 1. For u(1), u(2) and u(3) in Lemma 1, let
C = tconv({u(1), u(2), u(3)}), we have the following remarks: the equalities (26)–(28) make
sure that the tropical triangle C is big enough; the equalities (25) and (29) make sure that C
parallels with a coordinate plane; the equality (29) makes sure that C is located under all
points in X. Lemma 1 shows that we can project X vertically onto C (see Example 6 and
Figure 4).

x2

x4

x3

Figure 4. How data points (red) project onto the tropical triangle (green) in Lemma 1. Notes: R4/R1
is isomorphic to R3 [25] (i.e., every point in R4/R1 can be presented as (0, x2, x3, x4)), so this figure is drawn
on the x2x3x4-plane.

Example 6. Suppose we have

X = {(0, 2, 3, 1), (0, 1, 4, 1), (0, 3, 3, 2), (0, 3, 5, 3), (0, 2, 2, 3)} ⊂ R4/R1. (33)

Let t = 1. Fix d1 = 2, and d2 = 4. By (25)–(29), we can define three points u(1), u(2), and u(3)

as:
u(1) = (0, 0, 1, 0), u(2) = (0, 2, 1, 4), u(3) = (0, 4, 1, 2). (34)

Let C = tconv({u(1), u(2), u(3)}) (see the green region in Figure 4). Then, by Lemma 1, the
projection points of X on C are shown in Figure 4 (see the blue points).

Definition 7 (Data Matrix). We define any matrix X with n columns as a data matrix, where
each row of X is regarded as a point in Rn/R1.

Below we denote by Xm×n the data matrix X with size m× n.
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Definition 8 (Fermat-Weber Points of a Data Matrix). For a given data matrix Xm×n, suppose
the i-th row of X is x(i) (i ∈ {1, . . . , m}). We define the Fermat-Weber point of X as the Fermat-
Weber point of {x(1), . . . , x(m)}. We still denote by FX the Fermat-Weber point of X.

Definition 9 (Projection Matrix). For a given data matrix Xm×n, and for any two fixed integers
d1 and d2 (2 ≤ d1 < d2 ≤ n), we define the projection matrix of X (denoted by Pd1,d2(X)) as a
matrix with size m× n, such that for all k ∈ {1, . . . , m}, the k-th row of Pd1,d2(X) is

(0, t, . . . , t, x(k)d1
, t, . . . , t, x(k)d2

, t, . . . , t), (35)

where

• x(k)d1
and x(k)d2

are respectively the (k, d1)-entry and the (k, d2)-entry of X, and are respectively
located at the (k, d1)-entry and the (k, d2)-entry of of Pd1,d2(X).

• t is a fixed number, such that t = min
1≤k≤m

min
1≤`≤n

{(k, `)-entry of X}.

Note that the projection matrix Pd1,d2(X) is still a data matrix.
Recall the Proposition 2 tells that, if FX is a Fermat-Weber point of X = {x(1), . . . , x(m)}

⊂ Rn/R1, then FX is the unique Fermat-Weber point of {FX , x(1), . . . , x(m)}.

Theorem 1. Suppose we have a data matrix X(m+1)×n, where the last row of X is a Fermat-Weber
point of the matrix made by the first m rows of X. We fix two integers d1 and d2 (2 ≤ d1 < d2 ≤ n).
Let r be the last row of Pd1,d2(X).

If r is a Fermat-Weber point of Pd1,d2(X), and u(1), u(2) and u(3) are defined by (25)–(29),
then the projection of the Fermat-Weber point of X on tconv({u(1), u(2), u(3)}) is a Fermat-Weber
point of the projection of X on tconv({u(1), u(2), u(3)}).

Proof. By Lemma 1 and Definition 9 we know that, the projection of X on

C := tconv({u(1), u(2), u(3)}) (36)

is Pd1,d2(X). Note that the last row of X is the unique Fermat-Weber point of X. Also note
that r is the projection of the last row of X. Then by the assumption that r is a Fermat-Weber
point of Pd1,d2(X) we know that, the projection of the Fermat-Weber point of X on C is a
Fermat-Weber point of the projection of X on C.

Theorem 2. Suppose we have a data matrix Xm×n. We fix two integers d1 and d2 (2 ≤ d1 <
d2 ≤ n). Let r be a point

(0, t, . . . , t, rd1 , t, . . . , t, rd2 , t, . . . , t), (37)

where rd1 and rd2 are undetermined numbers, and t is the smallest entry of X. Let f be a Fermat-
Weber point of Pd1,d2(X). If rd1 = fd1 , and rd2 = fd2 , then r is a Fermat-Weber point of Pd1,d2(X).

Proof. By Definition 9, the i-th row of Pd1,d2(X) has the form

p(i) := (0, t, . . . , t, x(i)d1
, t, . . . , t, x(i)d2

, t, . . . , t), for all i ∈ {1, . . . , m}. (38)

Assume that f = (0, f2, . . . , fn) is a Fermat-Weber point of Pd1,d2(X). Suppose there
exists k ∈ S := {1, . . . , n}\{1, d1, d2}, such that fk 6= t. For any i ∈ {1, . . . , m}, let

Ai = min{0, fd1 − x(i)d1
, fd2 − x(i)d2

}, (39)

Bi = max{0, fd1 − x(i)d1
, fd2 − x(i)d2

}. (40)

Then we have
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m

∑
i=1

dtr(p(i), r) =
m

∑
i=1

(Bi − Ai),
m

∑
i=1

dtr(p(i), f) =
m

∑
i=1

(max
k∈S
{Bi, fk − t} −min

k∈S
{Ai, fk − t}). (41)

It is easy to see that
m
∑

i=1
dtr(p(i), f) ≥

m
∑

i=1
dtr(p(i), r). So, by Definition 5, r is a Fermat-

Weber point of Pd1,d2(X).

4. Algorithms

In this section, we develop Algorithms 1 and 2, such that for a given data set
X ⊂ Rn/R1, these two algorithms output a tropical triangle C, on which the projection of a
Fermat-Weber point of X is a Fermat-Weber point of the projection of X.

The input of Algorithms 1 and 2 is a data set

{x(1), . . . , x(m)} ⊂ Rn/R1. (42)

Algorithms 1 and 2 output three points

u(1), u(2), u(3) ∈ Rn/R1, (43)

such that the projection of a Fermat-Weber point of {x(1), . . . , x(m)} on

C := tconv({u(1), u(2), u(3)}) (44)

is a Fermat-Weber point of the projection of {x(1), . . . , x(m)} on C.
There are two main steps in each algorithm as follows.

Step 1. We define a data matrix X, such that for all i ∈ {1, . . . , m}, the i-th row of X is x(i).
We obtain a Fermat-Weber point FX by solving the linear programming (16). We define a
matrix X̃ with size (m + 1)× n, such that the last row of X̃ is FX , and the first m rows of X̃
come from X.
Step 2. We traverse all pairs (d1, d2) such that 2 ≤ d1 < d2 ≤ n, and we calculate the
projection matrix Pd1,d2(X̃) by Definition 9. Check if the last row of Pd1,d2(X̃) is a Fermat-
Weber point of Pd1,d2(X̃). If so, we calculate the three points u(1), u(2) and u(3) by (25)–(29)
in Lemma 1, return the output, and terminate. By Theorem 1 we know that, the projection
of a Fermat-Weber point of X on C = tconv({u(1), u(2), u(3)}) is a Fermat-Weber point of
the projection of X on C. If for all (d1, d2), the last row of Pd1,d2(X̃) is not a Fermat-Weber
point of Pd1,d2(X̃), then return FAIL.

Remark 1. It is not guaranteed that Algorithms 1 and 2 will always succeed (return the trop-
ical triangle). If the algorithms succeed, then by Theorem 1, Algorithm 1 is correct, and by
Theorems 1 and 2, Algorithm 2 is correct.

Algorithms 1 and 2 always succeed or fail simultaneously. But our experimental results
in the next section show that, Algorithm 1 or Algorithm 2 succeeds with a much higher prob-
ability than choosing tropical triangles randomly. Our experimental results also show that, if
Algorithms 1 and 2 succeed, then with the probability more than 50%, Algorithm 2 would termi-
nate in less traversal steps than Algorithm 1 does (see Section 5).

Remark that, the difference between Algorithms 1 and 2 is the traversal strategy, i.e.,
the Step 2. is different. Below we give more details about Step 2.

Let

L = {(2, 3), (2, 4), . . . , (2, n), (3, 4), (3, 5), . . . , (3, n), . . . , (n− 1, n)}. (45)

1. In Algorithm 1: Step 2.,we traverse all pairs (d1, d2) (2 ≤ d1 < d2 ≤ n) in L one by
one, i.e., we traverse the pairs in the lexicographical order.
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2. In Algorithm 2: Step 2., we consider the same L defined in (45). Note that

|L| = (n−1)(n−2)
2 . Let W and S be two empty sets. In the future, we will record

in W some indices that will be traversed in priority, and record in S the pairs that have
been traversed. Let u(1), u(2) and u(3) be null vectors.
Now we start a loop (see lines 9–32 in Algorithm 2). In this loop, we traverse all
pairs in L while |S| < (n−1)(n−2)

2 , and u(1), u(2) and u(3) are null. For each pair
(d1, d2) ∈ L, if (d1, d2) ∈ S, then we skip the pair. If (d1, d2) /∈ S, then we add
the pair into S, and calculate the projection matrix Pd1,d2(X̃) by Definition 9. Let
r be the last row of Pd1,d2(X̃). If r is a Fermat-Weber point of Pd1,d2(X̃), then we
calculate u(1), u(2) and u(3) by formulas (25)–(29) in Lemma 1, return the output and
terminate. By Theorem 1 we know that, the projection of a Fermat-Weber point of X
on C := tconv({u(1), u(2), u(3)}) is a Fermat-Weber point of the projection of X on C.
If r is not a Fermat-Weber point of Pd1,d2(X̃), then by Theorem 2, at most one of the
following two equalities holds:

rd1 = fd1 , (46)

rd2 = fd2 , (47)

where f is a Fermat-Weber point of Pd1,d2(X̃). So we have 3 cases.

(Case 1) If only (46) holds, then we add d1 into W, and stop doing the traversal of L.
(Case 2) If only (47) holds, then we add d2 into W, and stop doing the traversal of L.
(Case 3) If neither (46) nor (47) holds, then we move on to the next pair in L.

Now we explain what we do if (Case 1) happens ((Case 2) is similar). Note that W
is nonempty at this time, and u(1), u(2) and u(3) are null. For each element ω ∈ W,
we define

Lω = {(ω1, ω2) ∈ L|ω1 = ω or ω2 = ω}. (48)

We start traversing all pairs in Lω. For each pair (ω1, ω2) ∈ Lω, if (ω1, ω2) ∈ S, then
we skip the pair. If (ω1, ω2) /∈ S, then we add the pair into S, and calculate the projec-
tion matrix Pω1,ω2(X̃) by Definition 9. Let r be the last row of Pω1,ω2(X̃). If r is a Fermat-
Weber point of Pω1,ω2(X̃), then calculate u(1), u(2) and u(3) by formulas (25)–(29) in
Lemma 1, output u(1), u(2) and u(3), and terminate. If r is not a Fermat-Weber point
of Pω1,ω2(X̃), then by Theorem 2, at most one of the following two equalities holds:

rω1 = fω1 , (49)

rω2 = fω2 , (50)

where f is a Fermat-Weber point of Pω1,ω2(X̃). So we have 2 cases.

(Case 1.1) If only (49) holds, then add ω1 into W.
(Case 1.2) If only (50) holds, then add ω2 into W.

We move on to the next pair in Lω . If for any pair (ω1, ω2) ∈ L, we have (ω1, ω2) ∈ S,
and the last row of Pω1,ω2(X̃) is not a Fermat-Weber point of Pω1,ω2(X̃), then we
remove this ω from W. If W becomes empty again, then we continue the traversal
of L we paused in (Case 1). If W is still nonempty after one element in W has been
removed, then for the next ω ∈W, we traverse Lω.

Now we give two examples to better explain how Algorithms 1 and 2 work.
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Example 7. This example explains how Algorithm 1 works. Suppose we have a data matrix

X =



0 211 45 −33 10
0 −365 23 35 64
0 −40 −59 63 14
0 65 257 39 −35
0 13 5 −261 21
0 −1 91 355 7
0 −644 21 58 36
0 59 4 362 15


. (51)

By running the package lpSolve [26] in R to solve the linear programming (16), we obtain a
Fermat-Weber point of X, which is

FX = (0,−40, 4, 89, 15). (52)

Define a matrix X̃ with size (m + 1)× n, such that the last row of X̃ is FX, and the first m
rows of X̃ come from X. We have

X̃ =



0 211 45 −33 10
0 −365 23 35 64
0 −40 −59 63 14
0 65 257 39 −35
0 13 5 −261 21
0 −1 91 355 7
0 −644 21 58 36
0 59 4 362 15
0 −40 4 89 15


. (53)

Now we start traversing all pairs (d1, d2)(2 ≤ d1 < d2 ≤ 5) in L, where

L = {(2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}. (54)

1. The first pair is (2, 3). Note that by Definition 9 we have

P2,3(X̃) =



0 211 45 −644 −644
0 −365 23 −644 −644
0 −40 −59 −644 −644
0 65 257 −644 −644
0 13 5 −644 −644
0 −1 91 −644 −644
0 −644 21 −644 −644
0 59 4 −644 −644
0 −40 4 −644 −644


. (55)

We can compute a Fermat-Weber point of P2,3(X̃): FP2,3(X̃) = (0,−23, 21,−644,−644). The

last row of P2,3(X̃) is r =(0,−40, 4,−644,−644). By Definition 5 we can check that, r is not a
Fermat-Weber point of P2,3(X̃). We move on to the next pair.
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2. Similarly, we pass (2, 4), (2, 5) and (3, 4). For the pair (3, 5), note that

P3,5(X̃) =



0 −644 45 −644 10
0 −644 23 −644 64
0 −644 −59 −644 14
0 −644 257 −644 −35
0 −644 5 −644 21
0 −644 91 −644 7
0 −644 21 −644 36
0 −644 4 −644 15
0 −644 4 −644 15


. (56)

We can compute a Fermat-Weber point of P3,5(X̃): FP3,5(X̃) = (0,−644, 4,−644, 15), which

is exactly the last row of P3,5(X̃). By (25)–(29) in Lemma 1, we make three points:

u(1) = (0,−644,−60,−644,−36), (57)

u(2) = (0,−644,−58,−644, 65), (58)

u(3) = (0,−644, 258,−644,−34). (59)

Then, output u(1), u(2), and u(3), and terminate.

Example 8. This example explains how Algorithm 2 works. Suppose we have a data matrix

X =



0 211 45 −33 10
0 −365 23 35 64
0 −40 −59 63 14
0 65 257 39 −35
0 13 5 −261 21
0 −1 91 355 7
0 −644 21 58 36
0 59 4 362 15


. (60)

By solving the linear programming (16), we obtain a Fermat-Weber point of X, which is
FX = (0,−40, 4, 89, 15). Define a matrix X̃ with size (m + 1)× n, such that the last row of X̃ is
FX , and the first m rows of X̃ come from X. We have

X̃ =



0 211 45 −33 10
0 −365 23 35 64
0 −40 −59 63 14
0 65 257 39 −35
0 13 5 −261 21
0 −1 91 355 7
0 −644 21 58 36
0 59 4 362 15
0 −40 4 89 15


. (61)

Let L be a list that contains all pairs (d1, d2)(2 ≤ d1 < d2 ≤ 5) in the lexicographical order,
that is L = {(2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}. Also let W and S be two empty sets. We
will record in W some indices that will be traversed in priority, and record in S the pairs that have
been traversed. Now we start the traversal.
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1. We first start traversing pairs in L. The first pair in L is (2, 3). Add (2, 3) into S. Note that

P2,3(X̃) =



0 211 45 −644 −644
0 −365 23 −644 −644
0 −40 −59 −644 −644
0 65 257 −644 −644
0 13 5 −644 −644
0 −1 91 −644 −644
0 −644 21 −644 −644
0 59 4 −644 −644
0 −40 4 −644 −644


. (62)

We can compute a Fermat-Weber point of P2,3(X̃): f = (0,−23, 21,−644,−644). The last
row of P2,3(X̃) is r = (0,−40, 4,−644,−644). By Definition 5 we can check that, r is not a
Fermat-Weber point of P2,3(X̃). We have r2 = −40 6= −23 = f2, and r3 = 4 6= 21 = f3. Now
(Case 3) happens, so we move on to the next pair in L.

2. The next pair in L is (2, 4). Add (2, 4) into S. Note that

P2,4(X̃) =



0 211 −644 −33 −644
0 −365 −644 35 −644
0 −40 −644 63 −644
0 65 −644 39 −644
0 13 −644 −261 −644
0 −1 −644 355 −644
0 −644 −644 58 −644
0 59 −644 362 −644
0 −40 −644 89 −644


. (63)

We can compute a Fermat-Weber point of P2,4(X̃): f = (0,−40,−644, 63,−644). The last
row of P2,4(X̃) is r = (0,−40,−644, 89,−644). By Definition 5 we can check that, r is not a
Fermat-Weber point of P2,4(X̃). We have r2 = −40 = f2, and r4 = 63 6= 89 = f4. Now (Case 1)
happens, so we add 2 into W, and pause the traversal in L. Note that, now W= {2} is nonempty,
and the first element in W is 2. By (48), we have L2 = {(2, 3), (2, 4), (2, 5)}. We start traversing
pairs in L2.

3. Note that now S = {(2, 3), (2, 4)}. The first pair in L2 is (2, 3), which is in S already, so we
skip it. Similarly we skip (2, 4). The third pair in L2 is (2, 5), which is not in S, so we do the
following steps. Add (2, 5) into S. Note that

P2,5(X̃) =



0 211 −644 −644 10
0 −365 −644 −644 64
0 −40 −644 −644 14
0 65 −644 −644 −35
0 13 −644 −644 21
0 −1 −644 −644 7
0 −644 −644 −644 36
0 59 −644 −644 15
0 −40 −644 −644 15


. (64)

We can compute a Fermat-Weber point of P2,5(X̃): f = (0,−1,−644,−644, 15). The last row
of P2,5(X̃) is r = (0,−40,−644,−644, 15). By Definition 5 we can check that, r is not a Fermat-
Weber point of P2,5(X̃). We have r2 = −40 6= −1 = f2, and r5 = 15 = f5. Now (Case 1.2)
happens, so we add 5 into W, and now W = {2, 5}. Note that S = {(2, 3), (2, 4), (2, 5)}. Since for
every pair (ω1, ω2) ∈ L2, (ω1, ω2) is in S, and the last row of Pω1,ω2(X̃) is not a Fermat-Weber
point of Pω1,ω2(X̃), we remove 2 from W.
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4. Note that, now W = {5} is nonempty. By (48), we have L5 = {(2, 5), (3, 5), (4, 5)}. The
first pair in L5 is (2, 5), which is in S already, so we skip it. The second pair in L5 is (3, 5),
which is not in S, so we do the following steps. Add (3, 5) into S. Note that

P3,5(X̃) =



0 −644 45 −644 10
0 −644 23 −644 64
0 −644 −59 −644 14
0 −644 257 −644 −35
0 −644 5 −644 21
0 −644 91 −644 7
0 −644 21 −644 36
0 −644 4 −644 15
0 −644 4 −644 15


. (65)

We can compute a Fermat-Weber point of P3,5(X̃): f = (0,−644, 4,−644, 15), which is
the last row of P3,5(X̃). By (25)–(29) in Lemma 1, we make three points: u(1) = (0,−644,−60,
−644,−36), u(2) = (0,−644,−58,−644, 65), and u(3) = (0,−644, 258,−644,−34). Then,
output u(1), u(2), and u(3), and terminate.

Below we give the pseudo code of Algorithms 1 and 2. Note that, Algorithms 3 and 4
are sub-algorithms of Algorithms 1 and 2. For a given data matrix X, Algorithm 3 calculates
the summation of tropical distance between the last row of X and each row of X, and also
calculates the summation of tropical distance between a Fermat-Weber point of X and each
row of X. We will use Algorithm 3 to check if the last row of X is a Fermat-Weber point of
X. Algorithm 4 calculates three points u(1), u(2) and u(3) by (25)–(29).

Algorithm 3: Verify-FW-Point
Input: Data matrix Xm×n
Output: TRUE, if the last row of X is a Fermat-Weber point of X; FALSE, if the last

row of X is not a Fermat-Weber point of X
1 r← the last row of X
2 f← a Fermat-Weber point of X

3 dr ←
m
∑

i=1
dtr(r, x(i)), df ←

m
∑

i=1
dtr(f, x(i)), where x(i) is the i-th row of X

4 if dr = df then return TRUE, otherwise, return FALSE
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Algorithm 4: Compute-Triangle
Input: Data matrix Xm×n, and two indices d1, d2
Output: u(1), u(2), u(3),
where u(1), u(2) and u(3) are defined by (25)–(29)

1 u(1), u(2), u(3) ← n-dimensional null vectors
2 Xmin ← the smallest entry of X

3 v(S)1 , v(S)2 ← the smallest coordinates in the d1-th and d2-th columns of X
respectively

4 v(L)
1 , v(L)

2 ← the largest coordinates in the d1-th and d2-th columns of X
respectively

5 u(i)
1 ← 0 for i = 1, 2, 3

6 u(1)
d1
← v(S)1 − 1, u(1)

d2
← v(S)2 − 1

7 u(2)
d1
← v(S)1 + 1, u(2)

d2
← v(L)

2 + 1

8 u(3)
d1
← v(L)

1 + 1, u(3)
d2
← v(S)2 + 1

9 all other coordinates of u(1), u(2), u(3) ← Xmin

10 return u(1), u(2), u(3)

5. Implementation and Experiment

We implement Algorithms 1 and 2 in R language, and test how Algorithms 1 and 2
perform. We also use R language for numerical computation. Data matrices, R code and
computational results in this paper are available in Supplementary Materials.

Now we present four tables and one figure to illustrate how Algorithms 1 and 2 perform.
For each table or figure, we provide one paragraph for explaining presented information.

For a fixed data matrix Xm×n, Table 1 shows the proportion of random tropical
triangles, on which the projection of a Fermat-Weber point of X is a Fermat-Weber point
of the projection of X. First, we explain what we mean by “success rate” in Table 1. In
fact, we mean the proportion of random tropical triangles, on which the projection of a
Fermat-Weber point of X is a Fermat-Weber point of the projection of X. For example, we
explain how we calculate the success rate for n = 5 and m = 30. We generated a data
matrix X with size 30× 5, and randomly chose 100 tropical triangles. There were only 16
triangles such that the projection of a Fermat-Weber point of X is a Fermat-Weber point
of the projections. So, the success rate is 16

100 = 16%. From Table 1 we can see that, for a
given data matrix X, when randomly choosing tropical triangles, the “success rate” is low.
For instance, the highest success rate is 16%, and the lowest success rate is even only 1%.
Besides, the success rate is extremely low when m and n are both big.

Table 1. The success rate of projecting data onto random tropical triangles.

Size Succeed Rate Size Succeed Rate Size Succeed Rate Size Succeed Rate

n = 5, m = 30 16% n = 10, m = 30 4% n = 15, m = 30 11% n = 20, m = 30 8%

n = 5, m = 60 8% n = 10, m = 60 9% n = 15, m = 60 5% n = 20, m = 60 6%

n = 5, m = 90 10% n = 10, m = 90 8% n = 15, m = 90 2% n = 20, m = 90 1%

n = 5, m = 120 6% n = 10, m = 120 5% n = 15, m = 120 1% n = 20, m = 120 1%

Notes: (i) “size" means the size of data matrix X. More specifically, n represents the dimension of data points in X, and m represents
the number of data points in X. (ii) We record the proportion by “success rate". More specifically, for each pair (m, n), we generate one
data matrix Xm×n ∼ N(0, diag(10)) and 100 random tropical triangles C := tconv({u(1), u(2), u(3)}). Here, for all i = 1, 2, 3, we
make the first coordinate of u(i) as 0, and all other coordinates of u(i) obey the uniform distribution on [−9999, 9999]. For each triangle
C, we test if the projection of a Fermat-Weber point of Xm×n on C is a Fermat-Weber point of the projection of Xm×n on C.
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Table 2 shows the success rate of Algorithm 1 or Algorithm 2 (recall Remark 1 tells
that, Algorithms 1 and 2 always succeed or fail simultaneously). From Tables 1 and 2 we
can see that, the success rates recorded in Table 2 are much higher than those in Table 1.
For instance, the lowest rate in Table 2 is 34%, which is still higher than the highest rate in
Table 1, and the highest rate in Table 2 is 94%, which is close to 100%.

Table 2. The success rate of the new algorithms when the size of the data is increasing.

Size Succeed Rate Size Succeed Rate Size Succeed Rate Size Succeed Rate

n = 5, m = 30 86% n = 10, m = 30 82% n = 15, m = 30 89% n = 20, m = 30 94%

n = 5, m = 60 62% n = 10, m = 60 67% n = 15, m = 60 76% n = 20, m = 60 82%

n = 5, m = 90 53% n = 10, m = 90 60% n = 15, m = 90 76% n = 20, m = 90 76%

n = 5, m = 120 34% n = 10, m = 120 54% n = 15, m = 120 61% n = 20, m = 120 79%

Notes: (i) “size" means the size of data matrix X. More specifically, n represents the dimension of data points in X, and m represents
the number of data points in X. (ii) We record the proportion as “success rate". More specifically, for each pair (m, n), we generate
100 data matrices Xm×n ∼ N(0, diag(10)), run Algorithm 1 or Algorithm 2, and calculate the proportion of that Algorithm 1 or
Algorithm 2 succeeds.

We fix m = 120, and we fix n = 20. Table 3 shows how high the success rate of
Algorithm 1 or Algorithm 2 would be when we change the data matrix X120×20. In order
to change X, we change v, such that X ∼ N(0, diag(v)). We can see from Table 3 that,
when v is changing from 1 to 800, the success rate of Algorithm 1 or Algorithm 2 is still
around 70%. Note that v is the variance of each coordinate of data points, which means
that, when the coordinate of data points fluctuates violently, the success rate of Algorithm 1
or Algorithm 2 is still stable.

Table 3. The success rate of the new algorithms when the variance of data points is changing.

v 1 5 10 50 800

succeed rate 67% 65% 73% 66% 67%
Notes: (i) v is a real number such that X120×20 ∼ N(0, diag(v)). (ii) We record the proportion as “success
rate". More specifically, for each v, we generate 100 random data matrices X120×20 ∼ N(0, diag(v)), run
Algorithm 1 or Algorithm 2, and calculate the proportion of that Algorithm 1 or Algorithm 2 succeeds.

By “time” we mean the total computational time that Algorithm 1 or Algorithm 2
takes divided by the number of input data matrices. From Table 4 we can see that,
Algorithms 1 and 2 are both efficient. For instance, when there are 120 data points, and the
dimension of each point is 20, the computational timings of Algorithms 1 and 2 are still no
more than 7 min (373.5734 s and 291.9031 s). In addition, in most cases, Algorithm 2 takes
less time than Algorithm 1 does. For instance, when m is 120, and n is 20, Algorithm 2
takes around one and a half minutes less than Algorithm 1 does.

Figure 5 compares the numbers of traversal steps of Algorithms 1 and 2. From Figure 5
we can see that, with the proportion more than 50%, Algorithm 1 takes more traversal
steps than Algorithm 2 does. In Figure 5, m represents the number of data points in data
matrix X; n represents the dimension of data points in data matrix X. “A1 > A4” means
Algorithm 1 takes more steps than Algorithm 2 does. “A1 < A4” means Algorithm 1
takes less steps than Algorithm 2 does. “A1 = A4” means Algorithm 1 takes equal steps
to Algorithm 2. For each pair (m, n), we run Algorithms 1 and 2 with 100 random data
matrices Xm×n ∼ N(0, diag(10)). If Algorithms 1 and 2 correctly terminate, then record
the number of traversal steps that Algorithms 1 and 2 respectively take.
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(a) (b)

(c) (d)

Figure 5. The comparison on the numbers of traversal steps of Algorithms 1 and 2. Notes:
(a): (i) m represents the number of data points in data matrix X. (ii) n represents the dimension of
data points in data matrix X. (iii) “A1 > A4" means Algorithm 1 takes more steps than Algorithm 2 does.
(iv) “A1 < A4" means Algorithm 1 takes less steps than Algorithm 2 does. (v) “A1 = A4" means
Algorithm 1 takes equal steps to Algorithm 2. (vi) We run Algorithms 1 and 2 with 100 random data matrices
X30×20 ∼ N(0, diag(10)). If Algorithms 1 and 2 correctly terminate, then record the number of traversal steps
that Algorithms 1 and 2 respectively take. (b): (i) m represents the number of data points in data matrix X. (ii)
n represents the dimension of data points in data matrix X. (iii) “A1 > A4" means Algorithm 1 takes more
steps than Algorithm 2 does. (iv) “A1 < A4" means Algorithm 1 takes less steps than Algorithm 2 does. (v)

“A1 = A4" means Algorithm 1 takes equal steps to Algorithm 2. (vi) We run Algorithms 1 and 2 with 100
random data matrices X60×20 ∼ N(0, diag(10)). If Algorithms 1 and 2 correctly terminate, then record the
number of traversal steps that Algorithms 1 and 2 respectively take. (c): (i) m represents the number of data
points in data matrix X. (ii) n represents the dimension of data points in data matrix X. (iii) “A1 > A4"
means Algorithm 1 takes more steps than Algorithm 2 does. (iv) “A1 < A4" means Algorithm 1 takes less
steps than Algorithm 2 does. (v) “A1 = A4" means Algorithm 1 takes equal steps to Algorithm 2. (vi) We
run Algorithms 1 and 2 with 100 random data matrices X90×20 ∼ N(0, diag(10)). If Algorithms 1 and 2
correctly terminate, then record the number of traversal steps that Algorithms 1 and 2 respectively take.
(d): (i) m represents the number of data points in data matrix X. (ii) n represents the dimension of data
points in data matrix X. (iii) “A1 > A4" means Algorithm 1 takes more steps than Algorithm 2 does.
(iv) “A1 < A4" means Algorithm 1 takes less steps than Algorithm 2 does. (v) “A1 = A4" means
Algorithm 1 takes equal steps to Algorithm 2. (vi) We run Algorithms 1 and 2 with 100 random data matrices
X120×20 ∼ N(0, diag(10)). If Algorithms 1 and 2 correctly terminate, then record the number of traversal
steps that Algorithms 1 and 2 respectively take.
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Table 4. The average computational time for the new algorithms.

Size
Time

Size
Time

Size
Time

Size
Time

A1 A4 A1 A4 A1 A4 A1 A4

n = 5, m = 30 0.0549 0.0637 n = 10, m = 30 0.6007 0.5286 n = 15, m = 30 3.8845 2.5153 n = 20, m = 30 15.7162 8.9255

n = 5, m = 60 0.1216 0.1289 n = 10, m = 60 2.3137 2.1613 n = 15, m = 60 17.5981 14.1034 n = 20, m = 60 96.1014 64.3878

n = 5, m = 90 0.2066 0.2125 n = 10, m = 90 5.3013 4.974 n = 15, m = 90 42.2672 35.6299 n = 20, m = 90 211.1096 174.5119

n = 5, m = 120 0.3376 0.3406 n = 10, m = 120 9.6333 8.8836 n = 15, m = 120 84.7549 76.1394 n = 20, m = 120 373.5734 291.9031

Notes: (i) “size" means the size of data matrix X. More specifically, n represents the dimension of data points in X, and m represents
the number of data points in X. (ii) We record the average computational time (in seconds) as “time". More specifically, for each pair
(m, n), we run Algorithms 1 and 2 for 100 random data matrices Xm×n ∼ N(0, diag(10)), and record the average computational
time for Algorithm 1 and that for Algorithm 2. (iii) “A1" means the average computational time of Algorithm 1, and “A4" means the
average computational time of Algorithm 2.

6. Discussions

Recall that our main focus is the main question: for a given data set X in the tropical
projective torus, how to find a tropical polytope C, such that the projection of a Fermat-
Weber point of X on C is a Fermat-Weber point of the projection of X on C? Tables 1 and 2
shown in Section 5 indicates that Algorithms 1 and 2 can answer the main question with a
high success rate, while the success rate of randomly choosing tropical triangles is much
lower. For instance, the average success rate of these algorithms in Table 2 is 70.69%, and
the average success rate of the randomly choosing method in Table 1 is only 6.31%. Table 3
shows that the success rate of these two algorithms is stable while the variance is changing
with a large range. Compared to Algorithm 1, the advantage of Algorithm 2 is that,
Algorithm 2 needs much less computational time, while Algorithm 2 has the same success
rate with Algorithm 1 (see Table 4). Figure 5 shows a possible reason for Algorithm 2 being
faster: Algorithm 2 usually takes less traversal steps than Algorithm 1 does.

As what has been mentioned in Section 1, this study is motivated by the fact that in
tropical PCA [8,9], the variance of the projections might not reach the maximum when
the mean squared error reaches the minimum. One possible approach for improving the
tropical PCA is using only nice tropical polytopes as the principal component. By “nice
tropical polytopes”, we mean the projection of a Fermat-Weber point is a Fermat-Weber
point of the projections. Here, our work is the first tool for efficiently computing the nice
tropical triangles, which is a potential tool for tropical data analysis. For the users interested
in tropical data analysis, we provide the software and system information.

Software: We implement Algorithms 1 and 2 in R (version 4.0.4) [27], where we use the
command lp() in the package lpSolve [26] to implement Line 2 in Algorithm 1 and Line 2
in Algorithm 2 for computing a Fermat-Weber point of a data matrix.
In our experiments, we use the command rmvnorm() in the package Rfast [28] to generate
data matrices that obey multivariate normal distribution.
Hardware and System: We use a 3.6 GHz Intel Core i9-9900K processor (64 GB of RAM)
under Windows 10.

7. Conclusions

In this paper, we develop an Algorithm (Algorithm 1) and its improved version
(Algorithm 2), such that for a given data set in the tropical projective torus, these algorithms
output a tropical triangle, on which the projection of a Fermat-Weber point of the data set
is a Fermat-Weber point of the projections. The experiments presented in Section 5 shows
that these algorithms are stable and efficient with high success rate.

We want to highlight that the limitation of the algorithms developed in this paper is
that the output of the algorithms is only the tropical convex hull of three points, which
means the algorithms cannot be applied to calculate higher dimensional tropical polytopes.
In addition, it is not guaranteed that the algorithms will always succeed. In the future,
we can continue this study in the following directions. First, in order to generalize the
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algorithms, one has to generalize Theorem 1 to tropical tetrahedrons or higher dimensional
tropical polytopes by studying the relative positions between the points and the polytopes
in high dimensional tropical projective torus. Second, one possible way to improve the
success rate of the algorithms is to traverse all Fermat-Weber points instead of computing a
single Fermat-Weber point in Line 2.

Supplementary Materials: Data matrices, R code and computational results are available in are
available online at https://www.mdpi.com/article/10.3390/math9233102/.
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