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Abstract: There is presently a need for more robust navigation algorithms for autonomous industrial
vehicles. These have reasonably guaranteed the adequate reliability of the navigation. In the current
work, the stability of a modified algorithm for collision-free guiding of this type of vehicle is ensured.
A lateral control and a longitudinal control are implemented. To demonstrate their viability, a
stability analysis employing the Lyapunov method is carried out. In addition, this mathematical
analysis enables the constants of the designed algorithm to be determined. In conjunction with the
navigation algorithm, the present work satisfactorily solves the localization problem, also known as
simultaneous localization and mapping (SLAM). Simultaneously, a convolutional neural network is
managed, which is used to calculate the trajectory to be followed by the AGV, by implementing the
artificial vision. The use of neural networks for image processing is considered to constitute the most
robust and flexible method for realising a navigation algorithm. In this way, the autonomous vehicle
is provided with considerable autonomy. It can be regarded that the designed algorithm is adequate,
being able to trace any type of path.

Keywords: navigation; localization; SLAM; computer vision; neural network; semantic segmentation;
Lyapunov; AGV; path planning; path following

1. Introduction

In industrial applications, the current demand is to have an intelligent navigation
system for mobile robots. Those systems must include navigation and localization methods,
both of which are implemented in automated guided vehicles (AGVs). Nevertheless,
the study of those methods has usually been carried out in independent ways. The
consideration of the study as separate techniques in not a disadvantage, but rather a
division of problems. The unification of these systems is major research; however, while
performing, the AGVs must integrate all of them. This paper is focused on giving more
robustness to this type of autonomous vehicle. With that purpose, the following topics
specify the analyses that have been performed for the various techniques that form the
whole AGV system.

1.1. Localization

One of the indispensable systems of autonomous guided vehicles is the one that
determines their positioning, defined by the vector

→
pose. With this information, it is

possible to generate a map of the environment where the AGV is located and to determine
where the vehicle is placed on the map. This is known as simultaneous localization and
mapping (SLAM) and it is important to execute it in real-time.

A traditional approach to the actual problem is to use the wheel odometry as Kilic
et al. [1] studied, combined with an inertial navigation system, where measurements are
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taken by an encoder. The present work rejects this method due to the slippage that the
wheels suffer during the movement, being necessary data to be predicted. It also penalizes
accuracy. According to Chen [2], it is recognized that these aspects can be clarified with a
Kalman filter.

The Kalman filter can also be suitable for use in conjunction with matching techniques.
According to the study carried out by Cho et al. [3], two matching methods can be employed
in combination with that filter. Firstly, the geometric method, and secondly, a method based
on the point-to-line matching of the iterative closest point (ICP) algorithm. In this way, the
geometric method is applied to predict, and the ICP is used for correcting the estimated
position. This requires prior information concerning the environment in which the AGV
is located. The unique use of geometric methods is also possible, as Shamsfakhr et al. [4]
demonstrate in their developed algorithm. Geometric pattern registration is performed
based on the segmentation of the real laser range data and simulated laser data. Looking for
the critical points of both and with the discrepancy between them, it is possible to achieve
a robust and computationally efficient algorithm for determining the

→
pose in real-time.

The iterative closest point (ICP) persist in being a recurrent approach to solving the
localization problem. In addition, knowing that LiDAR sensors do not require external
spatial infrastructure, they can be utilized for SLAM (see Naus et al. [5]). Employing
architecture to reduce iterations (wP-ICP) coupled with LiDAR sensors, Wang et al. [6]
achieve a reduction of computational effort. In this way, it can be better managed in
real-time. It is equally possible to generate more 3D point sets by focusing on the geometry
of the environment as Senin et al. [7] do, obtaining better results. Using different sensors
such as INS and GPS coupled with LiDAR, Gao et al. [8] achieved localization in indoor
and outdoor areas. However, it is impossible to distinguish areas with unevenness, solved
with KITTI arrays as Kim et al. [9] summarized.

Avoiding the application of a GPS antenna, one approach to localize AGVs is to use
trilateration, through a number of signals that can estimate their distance to the vehicle.
For algorithms that need more speedup and high efficiency, Sadeghi Bigham et al. [10]
prove that by focusing on orthogonal polygons the n/2 landmarks are sufficient to solve
the localization problem. So that trilateration of an orthogonal n-gon can be performed.
Further to the concept of using landmarks, it is possible to merge them with computer
vision to be detected. As Yap et al. [11] explain, the distance between the landmarks and
the AGV is estimated with an algorithm based on two landmarks according to the idea of
the intersection of two circles.

The noise that can be generated by the sensing devices used must also be taken into
account, so the choice of the sensors implemented in the AGV is crucially important. A
cost-effective option represents the use of RGB sensors, which process images to extract
features by finding similarities between frames (see Gao and Zhang [12]). Deriving the ICP
algorithm with all necessary sensing elements and constructing random point maps, devel-
ops the algorithm for SLAM independent of sensor type as Clemens et al. [13] discussed.
In this way, noise becomes a measure for determining uncertainty.

The use of an algorithm based on Bayesian filtering has also given good results in the
localization of mobile robots, without the need for prior information about the environment
as Gentner et al. [14] explained. In this way, it is possible to obtain the positioning of the
AGV in the SLAM. Continuing with the use of filters, the particle filter has remained a
recurring method when trying to solve the localization problem. With it, it is possible to
estimate the state of an environment over time. The precision is related to the number
of particles, but it should be noted that increasing the number of particles penalizes the
computational cost (see Yang and Wu [15]).

For that reason, a method of optimizing the cells produced in the SLAM is necessary.
Because of this optimization, Zhang et al. [16] demonstrated that there is a difficulty in
distinguishing between areas with the same appearance. Therefore, the reference has to
be taken as a global localization. However, at large distances, the accuracy decreases.
Carrera Villacres et al. [17] described that focusing the problem on a deep learning model
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provides a satisfactory result, with the need to include new filters to reduce failures. In
addition, combining the particle filter with a vector field histogram (VFH) provides a way
to circumvent obstacles (see Wang [18]).

Integrated into a particle filter, Tao et al. [19] include a novel ratio frequency identifi-
cation (RFID) based method. By combining the information from two RFID signals, this
strategy is able to predict the

→
pose. In addition, in AGVs where magnetic field lines are

involved, it is equally possible to use a for-field active RFID locating method, providing
higher accuracy, more stable movements and a smaller fluctuating rate. (see Lu et al. [20]).

1.2. Path Following

Another faculty that AGVs must possess is the ability to navigate in diverse environ-
ments. This is based on immediate sensor readings, providing the mobile robot with the
capacity to decide and circumvent obstacles. The dynamic properties of the vehicle must
also be taken into account. The most commonly used method for trajectory tracking is
the dynamic window approach (DWA). By hybridizing with a teaching-learning based
technique, it is possible to achieve the endpoint to be reached by the AGV, as Kashyap et al.
studied [21]. This additionally provides the ability to avoid obstacles without stopping. In
succession, it is possible to combine it with a real-time motion planning method, giving the
AGV the possibility to gain a high speed (see Brock and Khatib [22]).

By mixing Dijkstra’s algorithm and the DWA, it is possible to attain the desired
position with the information provided by a SLAM system, as Liu et al. [23] summarised.
Another fusion option is discussed by Dobrevski et al. [24] in their work, where they
manage a convolutional neural network to select the parameters of the DWA algorithm.
This provides a combination between data-driven learning and the dynamic model of
the mobile robot. It is substantial to take into account the dynamic properties due to the
constraints imposed by the AGV itself on velocity and acceleration, as pointed out by
Fox et al. [25].

As Wang et al. [26] studied, the problem can be divided into two layers. On one hand,
decision-making is performed for the path, and on the other hand, trajectory tracking is
carried out. In the second layer, it is possible to employ the virtual force field (VFF) to
detect objects. Similarly, it is possible to combine it with a potential force field (PFF) to
build a viable means of navigation (see Burgos et al. [27]). Another algorithm used to solve
the path following is the vector field histogram (VFH), as done by Borenstein et al. [28],
where they employ histogram grids as a model to generate a map of the environment. In
this way, it is possible to obtain the AGV control commands. There is a modification of
the latter method called the traversability field histogram (TFH), which is independent
of the instantaneous vehicle speed, as Ye [29] noted. In this way, distant obstacles can be
prevented from impairing optimal path following.

From another perspective, the use of a lateral control for path following resolution
represents an interesting method, performing an identification of the closest point between
the trajectory and the AGV. One of the algorithms that can conclude this is the Stanley. It
performs a discrete prediction model of the subsequent states of the mobile robot. In the
study by AbdElmoniem et al. [30] a combination with a LiDAR is used, creating a local
path planner and being able to complete collision-free navigation.

1.3. Path Planning

Path planning is one of the most complex areas of mobile robotics, where it is necessary
to calculate the trajectory to be followed by the AGV. In this case, the most conventional
technique is Particle Swarm Optimization (PSO). By improving the inertia weights with
a linear variation, the algorithm can be prevented from falling into a local minimum,
achieving a higher convergence speed as Fei et al. [31] demonstrated. In this way, it is
possible to obtain the optimal trajectory in any environment, with better path length than
with the A* algorithm on 2D maps.
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Authors such as Liu et al. [32] explained that the A* algorithm can be used as a
map modelling method to procure path planning. In many cases, considering only the
optimal distance to the destination point is not enough, so it is meaningful to evaluate
also the shortest time to that point. The A* algorithm, depending on these attributes,
can search for one or another trajectory as Cheng et al. [33] explained. Combining
this algorithm with the Rapidly-Exploring Radom Tree (RRT) achieves good efficiency
(see da Silva Costa et al. [34]). A modification of the RTT itself gets a new path planning
diagram, in which the trajectory is found instantly, as the study of Wang et al. [35] develop.
Another design represents the one by Wen and Rei [36], called Smoothly RRT, where the
optimization strategy focuses on the maximum curve of the trajectory, achieving a higher
exploration speed.

The Wavefront algorithm is equally implemented to calculate the path, employing
it to obtain the closest front points. In this way, it is possible to select the optimal point
based on the motion requirements. Therefore, the Wavefront algorithm can search for
additional paths, if necessary, as Tang et al. [37] summarized. The generalized Wavefront
algorithm is also discussed. Multiple sets of target points, multilevel grid costs and
geometric expansions around obstacles are combined, and with this information, the path
is optimized, recognizing a safe and smooth trajectory (see Sifan et al. [38]).

A less conventional, but also interesting technique to perform trajectory planning
represents the use of neural networks. Using the Q-learning algorithm with reinforcement
learning can support the features of the environment, as Sdwk et al. [39] do. Advancing
neural network training provides an optimal path. In addition, with an incremental training
method, where algorithms are first evaluated, a more pleasing ultimate design of the deep
learning algorithm can be obtained (see Gao et al. [40]).

Operating the Resnet-50 network, a path planning algorithm based on deep reinforce-
ment learning has been created. In this way, the parameters of the deep Q-network are
trained, solving the path planning problem, as Zheng et al. [41] demonstrated. Another
option is to implement a convolutional neural network (CNN) that segments an image to
condition the navigation zone, proposed by Teso-Fz-Betoño et al. [42]. The study manages
a residual neural network that participates in the learning of the Resnet-18 network. As
follows, it is possible to perform semantic segmentation for AGV navigation by selecting
the mask of the navigation area.

Focusing on computer vision, there are networks established specifically for path plan-
ning, such as PilotNet, which can detect lanes using cameras and apply vehicle following
algorithms to gain the direction, as discussed by Olgun et al. [43]. This is merely effective
for single-lane trajectories. LaneNet is, furthermore, a network that applies computer
vision, detecting lane markings and lane locations, and being able to create maps and paths
using semantic segmentation (see Azimi et al. [44]).

The fundamental objective of the present study is to ensure the stability of an indoor
navigation algorithm in a 2D environment for the AGV shown in Figure 1. Based on
Stanley’s algorithm, a lateral control adapted to this autonomous vehicle is proposed. The
algorithm calculates the velocity and rotation angle commands to perform the movement,
applying different mathematical operations. In this manner, lateral control and longitudinal
control should coexist.
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The main goal of the current work is to implement the algorithm in the AGV and be
able to perform collision-free navigation. This issue is achieved by using computer vision
and a neural network that segments the environment to generate a path.

2. Materials and Methods

This article presents an algorithm for indoor navigation of AGVs and the study of
its stability. With the idea of the Stanley algorithm (see Hoffmann et al. [45]), this work
proposes a modification because of the use of the AGV shown in Figure 1. This autonomous
vehicle allows the adjustment of the angular and linear velocity criteria.

Accordingly, in this paper, the algorithm focuses on the lateral control of the AGV,
acting mainly on the rotational speed

.
θ (rad/s). It is necessary to observe that the alignment

error ϕ (rad) remains the difference between the vehicle angle θ (rad) and the path curvature
ϕpath (rad). The positioning error noted as e (m), refers to the minimum distance between
the autonomous vehicle and the closest point of the trajectory in reference to the vehicle as
represented in Figure 2.
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Figure 2. Schematic representation of the lateral control proposal.

The side wheels of the AGV used, rotate on the same axis, as represented in Figure 2.
Note that ω should take into account both the positioning error noted as e and the alignment
error noted as ϕ. The alignment error remains a revealed fact, so the positioning error is
the variable, where two opposite cases are assumed. If e is remarkably large, it is of interest
to situate the AGV perpendicular to the path, in order to get closer to it, so the value of
ϕ is be π

2 . In the case that e is significantly smaller, there is no alignment error, so it is of
interest to keep both angles with the same value. The curve given by the values of ϕ is an
Arctangent function, which also appears in Stanley’s algorithm.

In this manner, it is proposed to implement Stanley’s algorithm as shown in the
following equations. Knowing that θ is derivable in time, the value that ω should have is
proposed in Equation (1).

dθ

dt
= ω = K1(ϕsetpoint(e)−

(
θ − ϕpath

)
(1)

The introduction of the parameter ϕsetpoint (rad) is necessary, to adapt the range of
values of ϕ. Its value is defined in Equation (2):

ϕsetpoint(e) = arctg(K2·e) (2)

In this way, it is proposed to have two functions depending on the constants K1 (s−1)
and K2 (1/m), which are to be determined. It can be appreciated that the constant K1 is the
one related to the alignment error ϕ and K2 controls the value of the positioning error e.
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Some other equations also need to be accounted for.
.
x (m/s) and

.
y (m/s) represent

the linear velocities in the directions of the axes, as indicated in Equations (3) and (4).

.
x = V cos θ (3)

.
y = V sin θ (4)

As mentioned throughout this work, the objectives of the lateral control are that the
positioning error tends to be 0 and that θ equals ϕpath.

A study is required to demonstrate the proposed design is stable for all types of paths.
For this purpose, the Lyapunov function will be used. Through the study, it is equally
possible to dictate the value of the constants K1 and K2 in Equations (1) and (2). The
Lyapunov energy equation noted as L (m2) is proposed based on the previous equations
in Equation (5). {

L = e2 > 0
dL
dt < 0

(5)

For the first approach, the linear velocity V (m/s) is assumed to be constant.
The autonomous vehicle is placed with a random

→
pose = [x, y, θ] value, and the con-

stants K1 and K2 are applied to the lateral control, analysing how the AGV behaves as a func-
tion of these coefficients. To simplify the analysis, a trajectory of the form Ax + By + C = 0
will be considered.

Distinction of the Positioning Error Sign

To implement the lateral control design, it is necessary to contemplate the sign of e
because it is not taken into account in either of Equation (1) or Equation (2). It is necessary
to differentiate on which side of the path the AGV is located because depending on this; it
must be steered with a positive or negative sign.

Hence, to consider the sign, the positioning error e is to be taken as a vector
→
e . The

vector
→
N is the one that represents in which direction the AGV will follow the path. Finally,

α is the angle formed between these two vectors, as illustrated in Figure 3.
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Figure 3 also shows in which region the positioning error is considered positive and
in which negative. Due to that consideration, the direction of

→
e is conditioned by that sign,

representing the course the AGV needs to take to reduce the positioning error. Like so, if
the AGV is on the right side of the path, the value of ϕ needs to be increased. If the AGV is
on the left side, the value of the alignment error has to be reduced, supporting negative

values. To resolve it, the vector product of
→
e and

→
N must be performed.
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If
∣∣∣∣→N∣∣∣∣ and

∣∣∣→e ∣∣∣ take the value 1, an analysis can be performed as a function of α. In

case α is positive, the positioning error has to be positive as well. In the opposite case, that
is when α is negative, the positioning error has to bear a negative sign. Knowing the path
is defined, it is possible to acquire the values of the points P1(x, y) and P2(x, y).

P1 refers to the point on the path most adjacent to the AGV. The position of the
autonomous vehicle is noted as p(x, y). In the case of P2, it refers to the nearest next point

from the AGV after P1. Thus, the values of the vectors
→
e and

→
N can be determined as

presented in Equations (6) and (7).

→
N =

→
P2−

→
P1

‖
→
P2−

→
P1‖

(6)

→
e =

→
P1−→p (7)

With this knowledge, in the line of code that calculates the positioning error, it is
necessary to apply the approximation of Equation (8) to consider the sign of e.

e sin ∝= T = N(1)e(2)− N(2)e(1) (8)

Considering the path form and the previous equations, the positioning error is defined
in Equation (9).

e =
|Ax + By + C|√

A2 + B2
= (sign(e))distmin.

(→
p , path

)
(9)

3. Proposal Explanation

A combination of neural networks and hardware devices, such as the AGV itself, is
employed. Regarding the hardware, the use of a Beckhoff PLC (C6925) and its automation
software allows the drivers to be managed on a real-time industrial platform. This plat-
form is highly robust and widely used therein type of industrial applications. In addition,
the employment of Matlab R2019b provides the advantage of utilizing a platform that
allows very rapid development of control engineering algorithms. From a sensor point
of view, and in the present case, the use of a vision-based navigation system that recog-
nises lanes, the advantage resides in the fact that it is a very rapid way of implementing
path-following systems.

3.1. Necessary Data Acquisition

To obtain the trajectory, the example of the study by Teso-Fz-Betoño et al. [42] is
followed. A convolutional neural network (CNN) is managed to perform semantic seg-
mentation of an image. It is classified into several masks, generating a vector of the interest
points from the mask corresponding to the navigation area. This vector with the position of
the path in pixels x and y represents the information provided to the navigation algorithm.
The scenario comprises a room with a yellow line representing the trajectory. The neural
network has to detect this line, which will be followed by the AGV. This is concluded by
employing a camera. The processing of the image is represented in Figure 4.

Figure 4a shows the image captured by the AGV, with the yellow line to be followed.
After obtaining the image, the convolutional neural network performs semantic segmen-
tation, obtaining two independent masks. The shaded mask constitutes the part that is
not of interest to the autonomous vehicle, so the shinier one attends the important one, as
illustrated in Figure 4b. In addition, the image is cropped at the lower part to remove the
portion of the AGV that is captured by the camera.

From the clearest mask, the midpoints represented by red crosses are gained, as shown
in Figure 4c. Thus, the trajectory to be followed by the AGV is obtained. Conclusively,
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the points approached with the semantic segmentation are connected to forge the path as
represented in light blue in Figure 4d. Due to the pronounced curves generated in this
path, an interpolation is performed to acquire a smoother trajectory, coloured with dark
blue. The AGV follows that final trajectory.
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With the image taken of the path, the AGV can acquire the information of the position-
ing error and the angle of the trajectory as graphed in Figure 5. Note that the measurement
is produced considering the location of the AGV as the position of the camera. The camera
is placed at the leading centre of the autonomous vehicle.
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This approach provides all the data necessary for the navigation resolution.

3.2. Concurrency in the Approach

The designed algorithm has fast dynamics. This implies that regardless of the initial
position of the AGV as a function of e, it is necessary to obtain an θoptimun (rad) for the
autonomous vehicle. This value is not the same as θ, and this is where K1 comes in. θoptimun
refers to the sum between ϕpath and ϕsetpoint(e). Accordingly, because of the fast dynamic,
the AGV orients itself on the way of the trajectory rapidly, being able to consider that
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the path has no inclination. This is depicted in Figure 6. In the case of the positioning
error, it is not possible to make an approximation, and the path will be considered to be
angled. In conclusion, it can be declared that the time constants of the orientation loop are
smaller than those of the displacement. Ergo, two situations are envisaged as represented
in Figure 6a,b.
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With this approach, it is possible to analyse the stability of the system and to get the
K1 and K2 values.

4. Value of K1

4.1. System Stability Study

Lyapunov stability analysis is performed as mentioned above. Conventional tech-
niques, for instance “frecuency” methods, are generally carried out on cases where the
dynamical model of the system is linear. In the present study, the dynamical model is
non-linear and the use of Lyapunov provides a generalist manner of assuring the stability
of a dynamical system.

The first scenario is where can be assumed that the angle of the trajectory is zero,
as illustrated in Figure 6a. Considering that assumption, the terms A and C of the path
equation disappear, the path being By = 0. Hence, the study is simplified.

The initial consideration is when the AGV is away from the trajectory, so the position-
ing error value is obtained directly as indicated in Equation (10).

e = −y (10)

The objective is to guarantee that the system is stable, being L consistently positive.
Therefore, considering the previous equation, it can be formulated in Equation (11).

L = e2 = y2 (11)

As the value of y is squared, it is confirmed that L is always positive, so the difficulty
now lies in the second expression of Equation (5). In this manner, the derivate must be
considered taking into account the Equation (12).

dL
dt

= 2·e· .e = 2·y· .y (12)

Additionally, Equation (1) can be restated considering ϕpath = 0, as shown in Equation (13).

.
θ = K1

(
ϕsetpoint(e)− θ

)
(13)

As mentioned, assuming that the dynamic of Equation (13) is extremely fast, it is
possible to obtain the value of the angle θ, because of the rapid tendency of the AGV will
have, positioning with the orientation of Figure 6a. Then θ is defined in Equation (14).

θ = ϕsetpoint(e) = arctg(K2·e) (14)
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Equation (4) can directly be raised anew, bearing in mind Equations (10) and (14).

.
y = V sin(−arctg(K2·y)) = −V sin(arctg(K2·y)) (15)

To obtain the value of
.
L, the Equation (12) can be complemented with that seen in

Equation (15).
.
L = 2y(−V sin(arctg(K2·y))) (16)

By the way, Equation (2) is designed knowing that K2 will always be positive, so the
following remarks can be made.

sign(arctg(K2·y) ) = sign(y) (17)

sign(sin(arctg(K2·y))) = sign(arctg(K2·y)) (18)

This leads to the following conclusion.

sign(y) = sign(sin(arctg(K2·y))) (19)

With this information, analysing Equation (19) and knowing the positioning error
is negative as stated in Equation (10), it can be guaranteed that the Lyapunov function
is fulfilled.

4.2. Procurement of Value of K1

For the system to be stable when the AGV is distant from the trajectory, it has been
assumed that the dynamics are so fast. Accordingly, the AGV is oriented perpendicular to
the path. In addition, it will approach rapidly, producing a minor positioning error, which
is considered to be zero. Carrying on with that consideration, therein case, only the angle
of the AGV can be taken into account, reformulating Equation (13).

.
θ = K1(0− θ) = −K1θ (20)

In this situation, it is necessary to study again the stability of the system. Recalling the
Lyapunov system of Equations (11) and (12), it will not be a problem to confirm that L is by
squaring. The problem is again in the derivative of the energy. The study examines the
case where the AGV is under the trajectory, so it is recognized that in that area θ will allow
positive values. So, if e is null, it is also comprehensible that θ tends to be equal to ϕpath.
Therefore, one can formulate the integral of Equation (20), which remains a linear system.

θ =
π

2
exp−K1·τ (21)

Equation (12) requires the value of y and
.
y, which can be obtained from Equation (4)

by substituting Equation (21).

.
y = V sin

(π

2
exp−K1τ

)
(22)

y = V
∫ t

0
sin
(π

2
exp−K1τ

)
dτ + y(0) (23)

From Equation (22) it can be deduced that the value is always negative because the
function sin is always between 0 and π. In the case of Equation (23), the initial condition
is also always negative, so it is necessary to ensure that the integral never obtains a value
greater than y(0), to confirm the stability. So it is necessary to guarantee that the positioning
error never changes sing, whereby the value of K1 can be known. In Equations (24) and (25)
the integral is noted as I.

y = VI(K1, t) + y(0) < 0 (24)
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VI(K1, t) < −y(0) (25)

Thus, the linear velocity and K1 are related. Analysing Equations (23) and (25), the
following conclusions can be drawn. If the value of K1 is very aggressive, the exponential
tends to 0 quickly obtaining a sinusoidal function with value 0 and making the expres-
sion vanish very briefly. This makes it independent of the value V that is set. On the
contrary, if K1 is small, the velocity is limited. Otherwise, an undesired oscillation system
would appear.

This system is implemented in Matlab Ver. R2019b (The Matworks Inc., Madrid, Spain),
obtaining the plots revealed in Figure 7. In Figure 7a the values of V = 100 m/s and
K1 = 1 s−1 are set for plotting. It can be visualized how the value of the integral (red
line) takes time to fade out, in the order of seconds. In this case, the value of y admits
an extremely significant positive value which does not ensure stability as it cannot be
guaranteed to be lower than y(0). In the plot of Figure 7b, V = 10 m/s and K1 = 1000 s−1

are set. The value of the integral disappears instantly, ensuring the stability of the system
and regardless of the velocity value set.
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With this analysis, the need for longitudinal control is acknowledged to ensure that the
system is always stable. As 10 m/s is a reasonable speed value for the AGV used, the value
of K1 is set to 1000 s−1. This value refers to the gain of the alignment error control loop.

5. Value of K2

5.1. System Stability Study

As previously indicated in the stability analysis of the K1 value, once again a non-linear
system is observed, so Lyapunov is employed in order to ensure stability.

The second scenario to be investigated is when the angle of the trajectory needs to be
taken into account, as shown in Figure 6b. As already known, the system has highly fast
dynamics so Equation (1) is adapted because the AGV assumes the desired direction very
quickly. As K1 is already defined, it can be ignored.

.
θ = ϕsetpoint(e) + ϕpath(e) (26)

Therein situation, ϕpath must also attend a function that depends on the positioning
error, due to the position (x, y) of the AGV. Depending on this, the most adjacent point of the
path will vary. In this case, the positioning error is calculated as in Equations (27) and (28).

(xnear, ynear) = Argmin
(
‖(x, y)−

(
xpath, ypath

)
‖
)

(27)
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ϕpath(e) = ϕpath(xnear, ynear) (28)

Resolving this analytically can be complex. Remembering the Lyapunov system of
Equation (5), the e can be defined as in Equation (9). However, this time it is necessary to
calculate the parameters A, B and C, considering the position of the AGV because the sign
of e depends on that. {

(A, B, C) = f
(
(xnear, ynear),

→
p
)

(29)

Due to the added difficulty, the systems must be expounded in a discrete form. An
optimization algorithm is proposed in which e is calculated for every point in a bounded
area. With this information and fixing θ, K2 is varied, allowing its value to be dictated. The
following system is considered at instant t.

θ(x, y, K2) = f (e, K2) + ϕpath(e) (30)

e(x(t), y(t)) = e(t) (31)

Knowing that e and θ depend on the position of the AGV and K2, it is possible to
determine some expression at t + dt, taking into account Equations (3) and (4).

x(t + dt) = x + V cos θ (32)

y(t + dt) = y + V sin θ (33)

e(x(t + dt), y(t + dt)) = e(t + dt) (34)

∆e = e(t + dt)− e(t) (35)

Equation (35) has to be negative to ensure stability. The problem is discontinuities
can be generated. This issue occurs when the closest point of the path at t is not the same
at t + dt or does not continue in the corresponding direction. Instead of considering the
whole e (from AGV to the path), it is analysed in sections, guaranteeing that Equation (35)
is negative. Hence, the value of ∆e is to be taken in absolute values to demonstrate the
system is stable. A simulation is performed on all

→
p of a bounded area to visualize this

phenomenon. It is affected by a sinusoidal trajectory as it is more in line with reality (curves
and straight lines).

Figure 8a shows that the Lyapunov energy function is consistently positive over the
whole space. L represents a (m2) value. The derivative of L in Figure 8b is negative through-
out the space considered, coinciding with the value of the variation of the positioning error.
Therefore, the stability of the system is confirmed.
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5.2. Optimization of Value of K2

Once it is comprehended that the system is stable, a code has been generated that
tests all the values of K2 in a range for the whole amount

→
p . By setting a value of K2 it

is possible to visualize the evolution of ∆e, and the optimal value can be acquired. In
Equations (36) and (37), a cost function is proposed that depends on the mean square error,
denoted as J.

‖ e ‖=
√
(x− xnear)

2 + (y− ynear)
2 (36)

J =
1
t

(∫ t

0
‖ e
(

K2,
→
p , path

)
‖ dt

)
=

1
N

k=N

∑
k=0

e2(k) (37)

This provides the average of J, as a function of the initial position of the AGV.

E→
p

(
K2,
→
p , path

)
= J
(

K2,
→
p , path

)
(38)

The path persists in attending to a non-variable parameter, just like
→
p , so to vary J the

entirely dependent value is K2, formulated in Equation (39).

K2 = Argmin
(

J
)

(39)

The optimization strategy in this test is to perform an exhaustive analysis of all
possible combinations of the space in order to get the most optimal result. This approach is
simulated, resulting in the K2 values presented in Figure 9.
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This figure also shows that there is an optimal value that minimizes J. Note that K2
attends the parameter that acts on the rate of evolution of the ϕsetpoint. Accordingly, this
value is set as K2 = 1.21 (1/m).

6. Longitudinal Control Algorithm

As already noted, the trajectory represents an acknowledged fact, so it is possible to
identify the state of a point at t + 1. It is equally recognized that there are curves in the path
so each point must provide a tangential acceleration, denoted as aT (m/s2) and a normal
acceleration, denoted as aN (m/s2). The latter can be defined as in Equation (40), from
which ρ (m) can be known.

aN =
V2

ρ
= ω2ρ = Vω (40)
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In the same way, it is decided that aN needs to be under maximum speeding up, called
aNmax (m/s2), as in Equation (41).

‖ aN ‖≤ aNmax (41)

Due to Equation (41), it is possible to achieve the linear velocity from Equation (40).

V =
aN
ω

(42)

Keep in mind that the angular velocity is given by K1 and K2, so a maximum velocity
can be fixed as well, as in Equation (43).

Vmax
′ =

aNmax
ω

(43)

Therefore, by taking Equation (43) it is possible to enhance the value of the linear
velocity of the AGV, allowing it to be determined by the positioning error.

V = min
( aNmax

ω
, Vmax = f (e)

)
(44)

Equation (44) contemplates the velocity policy designed in a previous section. De-
pending on e the AGV adjusts the speed, but it will also be subject to the curvature of the
trajectory. It is substantial to know the angle that the path will occupy at the continuous
instant, being able to predict the V at t + 1. In that manner, the AGV will have knowledge
of if it is close to a curve, allowing it to reduce the velocity. Therefore, with this idea of
prediction, the vectors that compose the acceleration are proposed, perceiving the relation
of Equation (45), where a represents the acceleration (m/s2).

a2 = aN
2 + aT

2 → aT =
√

a2 − aN2 (45)

With this information, it is possible to propose the velocity at t + 1 for the AGV.

V(t + 1) = V(t) + ∆t·aT (46)

In Equation (46) it is viable to substitute aT, as seen in Equation (40).

V(t + 1) = V(t) + ∆t
√

a2 −V(t)2ω(t)2 (47)

Knowing all the variables of Equation (47), it is possible to obtain the value of the
maximum speed at t + 1, denoted as Vmax”. Taking into account Equation (44), Equation (48)
is defined.

V(t + 1) = min
(
Vmax

′′ , Vmax
′ = f (e)

)
(48)

To such a degree, if the AGV maintains a significantly high angular velocity, the linear
speed is reduced. The parameter Vmax

′ is provided by the AGV, representing the maximum
nominal velocity.

V(t + 1) = f (e, ω(t), V(t), a) (49)

Ultimately, e is contemplated, attaching importance to the trajectory execution speed.

7. Results

Beforehand, the algorithm is proved in simulation, analysing the compliance drop
the various objectives. As designed, the lateral control and the longitudinal control work
together to allow proper trajectory tracking. In the simulations, it is observed that regardless
of the values of the

→
pose, the autonomous vehicle redirects and reaches the path. As the

AGV approaches, it adjusts itself to be able to develop over the trajectory and not overshoot
it, obtaining correct trajectory tracking.
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At the beginning of the simulation, the algorithm can determine the closest position of
the trajectory based on the AGV. Therefore, the first objective is to attain that point. In this
situation, the value of the positioning error is considerable. Regardless of the initial θ, the
AGV is required to take an angle of π

2 (rad) to correct the value of e and reach the trajectory
quickly. When the AGV assumes θ = π

2 rad, the forward motion begins. With the decrease
in the positioning error, the value of the vehicle angle starts adapting, adjusting to fit the
trajectory angle and generating a curve. The linear velocity also starts increasing. As the
AGV approaches the path, the closest point is necessarily unmaintained.

While the positioning error decreases, the alignment error has to do so as well. Because
of that, and as the closest point is changing, the value of ϕ is adapting.

When the AGV is on a straight trajectory, both error values are approximately null,
making accurate tracking of the trajectory achievable. In this case, the speed of the move-
ment is limited by the Vnom of the AGV. In the case of a curve in the path, it can be observed
that the autonomous vehicle reduces its speed to prevent deviating from the predetermined
path. Simultaneously, it is making a constant redirection to adhere to the reduced value of
alignment error.

In this way, it is proved that the designed algorithm produces a satisfactory result due
to the good following of any type of trajectory as can be seen in Figure 10. It exhibits diverse
types of paths and

→
poses of the AGV. The red line represents the established trajectory. The

black crosses are the nearest point calculated by the algorithm. The coloured line represents
the route followed by the AGV. It can be perceived that irrespective of the positioning error,
the navigation algorithm performs well in all cases. In Figure 10a,b, the established path
is sinusoidal where it can be seen how the AGV can reach the trajectory and adapt to it
in both cases. In Figure 10c,d a purely linear trajectory is considered where the AGV also
tracks the path well. At long last, a fully curved trajectory is presented in Figure 10e,f.
Once more, the following is performed accurately.

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 21 
 

 

that the autonomous vehicle reduces its speed to prevent deviating from the predeter-
mined path. Simultaneously, it is making a constant redirection to adhere to the reduced 
value of alignment error. 

In this way, it is proved that the designed algorithm produces a satisfactory result 
due to the good following of any type of trajectory as can be seen in Figure 10. It exhibits 
diverse types of paths and 𝑝𝑜𝑠𝑒ሬሬሬሬሬሬሬሬሬ⃗ s of the AGV. The red line represents the established tra-
jectory. The black crosses are the nearest point calculated by the algorithm. The coloured 
line represents the route followed by the AGV. It can be perceived that irrespective of the 
positioning error, the navigation algorithm performs well in all cases. In Figure 10a,b, the 
established path is sinusoidal where it can be seen how the AGV can reach the trajectory 
and adapt to it in both cases. In Figure 10c,d a purely linear trajectory is considered where 
the AGV also tracks the path well. At long last, a fully curved trajectory is presented in 
Figure 10e,f. Once more, the following is performed accurately. 

Additionally, it can be marked from all the graphs in Figure 10 that the tracking of 
the trajectory is correct independently of the positioning of the AGV and therefore, of the 
sign of e. 

 

  

(a) (b) 

  
(c) (d) 

Figure 10. Cont.



Mathematics 2021, 9, 3139 16 of 20
Mathematics 2021, 9, x FOR PEER REVIEW 17 of 21 
 

 

  
(e) (f) 

Figure 10. Different path simulation: (a) Sinusoidal with AGV at the right side; (b) Sinusoidal with AGV at the left side; 
(c) Linear with AGV at the right side; (d) Linear with AGV at the left side; (e) Circular with AGV outside; (f) Circular with 
AGV inside. 

It is equally necessary to test whether the algorithm as a whole is suitable for the real 
AGV. To perform this, two instances are created in MATLAB. One of them processes the 
image, and the other one executes the navigation algorithm. These are communicated by 
ROS nodes, to give concurrency to the execution. The movement of the AGV is achieved 
with a PLC. It is observed that the AGV can follow the whole route correctly. 

In the interest of clarifying the execution times of the algorithm, it should be marked 
that the processor employed is Intel® Core™ i9-9880H CPU @ 2.30 GHz 3.30 GHz. The 
RAM memory of the computer on which the algorithm is executed is 16 GB and it has an 
NVIDIA Quadro T1000 graphics card. 

Under these conditions, the neural network execution time is 144ms. This time is in-
corporated into the total period of the ROS publishing node, which is the one that man-
ages the images and takes 186 ms to send the trajectory data vector, measured as an aver-
age of 1550 executions. 

Regarding the subscriber node, that is the one that executes the control and sends the 
commands to the PLC, it takes 136 ms on average in 5510 iterations. 

8. Discussion 
In considering the advantages of this study, comparisons with other techniques com-

monly used in the control of AGVs are mentioned. 
On the one hand, one of the most frequently used sensor techniques in this type of 

vehicles is LiDAR. These devices are highly effective when it comes to localizing ad re-
ceiving data related to the environment in which the AGV is located. In studies such as 
the one performed by Quan and Chen [46], these devices are employed in conjunction 
with the odometry of the wheels in order to localize an autonomous guided vehicle. De-
spite their extensive use, these sensors do not provide the necessary robustness for this 
type of systems. In the present paper, this robustness is consistently achieved. 

On the other hand, in the industrial field, it has been frequent to employ philo-guided 
vehicles (see Chet et al. [47]). These vehicles use electromagnetism to perform navigation, 
providing the necessary robustness and accuracy. However, it is not a flexible solution. 
The AGV and navigation system presented in this work have the benefit of achieving 
minimum cost when implementing a fixed trajectory. By the use of tape of a determined 
color, any type of path can be established without the need for expensive and specific 
infrastructure. Furthermore, with the re-training of the neural network the path can be 
adapted to any color or operating area. 

To conclude, it is possible to get the positioning error committed with this navigation 
algorithm in a specific trajectory, as graphited in Figure 11. The figure, therefore, shows 

Figure 10. Different path simulation: (a) Sinusoidal with AGV at the right side; (b) Sinusoidal with
AGV at the left side; (c) Linear with AGV at the right side; (d) Linear with AGV at the left side; (e)
Circular with AGV outside; (f) Circular with AGV inside.

Additionally, it can be marked from all the graphs in Figure 10 that the tracking of
the trajectory is correct independently of the positioning of the AGV and therefore, of the
sign of e.

It is equally necessary to test whether the algorithm as a whole is suitable for the real
AGV. To perform this, two instances are created in MATLAB. One of them processes the
image, and the other one executes the navigation algorithm. These are communicated by
ROS nodes, to give concurrency to the execution. The movement of the AGV is achieved
with a PLC. It is observed that the AGV can follow the whole route correctly.

In the interest of clarifying the execution times of the algorithm, it should be marked
that the processor employed is Intel® Core™ i9-9880H CPU @ 2.30 GHz 3.30 GHz. The
RAM memory of the computer on which the algorithm is executed is 16 GB and it has an
NVIDIA Quadro T1000 graphics card.

Under these conditions, the neural network execution time is 144ms. This time is
incorporated into the total period of the ROS publishing node, which is the one that
manages the images and takes 186 ms to send the trajectory data vector, measured as an
average of 1550 executions.

Regarding the subscriber node, that is the one that executes the control and sends the
commands to the PLC, it takes 136 ms on average in 5510 iterations.

8. Discussion

In considering the advantages of this study, comparisons with other techniques com-
monly used in the control of AGVs are mentioned.

On the one hand, one of the most frequently used sensor techniques in this type
of vehicles is LiDAR. These devices are highly effective when it comes to localizing ad
receiving data related to the environment in which the AGV is located. In studies such as
the one performed by Quan and Chen [46], these devices are employed in conjunction with
the odometry of the wheels in order to localize an autonomous guided vehicle. Despite
their extensive use, these sensors do not provide the necessary robustness for this type of
systems. In the present paper, this robustness is consistently achieved.

On the other hand, in the industrial field, it has been frequent to employ philo-guided
vehicles (see Chet et al. [47]). These vehicles use electromagnetism to perform navigation,
providing the necessary robustness and accuracy. However, it is not a flexible solution. The
AGV and navigation system presented in this work have the benefit of achieving minimum
cost when implementing a fixed trajectory. By the use of tape of a determined color, any
type of path can be established without the need for expensive and specific infrastructure.
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Furthermore, with the re-training of the neural network the path can be adapted to any
color or operating area.

To conclude, it is possible to get the positioning error committed with this navigation
algorithm in a specific trajectory, as graphited in Figure 11. The figure, therefore, shows
that in curved areas, like in the beginning and the end iterations, the positioning error
increases, because of the location of the wheels and the camera in the AGV itself. However,
in the central iterations, it can be appreciated that in straight areas the positioning error is
close to zero.
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As demonstrated by Hoffmann et al. [45] in the Stanley algorithm, a typical RMS
cross-track error of less than 0.1 m is obtained. In the case of this modification of the
algorithm, the RMS of the positioning error is around 0.02 m.

9. Conclusions

The present work focuses on the search for solutions for the navigation and localization
of an AGV, because of the need to discover robust techniques, achieving greater precision
and reliability.

Fundamentally, it is demonstrated that the proposed algorithm modification is stable.
As mentioned in the previous section, the advantages over conventional techniques can
be recognized. This algorithm is remarkably simple, requiring no previous training to
perform properly. When changing path, no retraining is necessary, it merely requires the
colour of the trajectory to match.

In terms of navigation, starting from a base such as the Stanley algorithm and present-
ing it another perspective comprehends its complexity. In addition, demonstrating stability
and ensuring the given solution is adequate is uneasy. For this, other alternatives have to
be tested until a solution is obtained that proves its robustness. Therein way, the values of
the constants can be demonstrated and a sense for them, as well. This issue has been one of
the most arduous tasks of this work.

The main objective set in this work represents the stability analysis of the modification
of a navigation algorithm capable of performing lateral control and longitudinal control.
This has been achieved, obtaining satisfactory results. As mentioned, the difficulty was in
the stability analysis, but due to the results, its proper performance has been demonstrated.

Continuing with localization, instead of designing a new algorithm, some data derived
from the other algorithms are employed. In this case, the necessary parameters can be
obtained from the navigation and path planning codes, without using sensors.

Sensors remain the conventional method for calculating the trajectory. In this work, it
is completed with artificial vision and a neural network, a less common method but with
remarkably pleasing results as well. The latter algorithm was considered with Hough trans-
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forms, for example, but concluded that the use of a neural network was more appropriate.
Nevertheless, in some areas, further study is required to achieve more accuracy. These
areas are related to light shimmers generated in the image that create indistinctness.

Furthermore, it has been possible to decouple the problem of data acquisition from the
problem of navigation. Consequently, until a new image is received, predictions are used.

Overall, the work accomplishes the objective of ensuring stability of an algorithm for
the free navigation of an industrial autonomous vehicle.

As a prolongation of this research, attempts will be made to enhance the architecture
of the convolutional neural network with the aim of achieving higher speed rates.

For future work, the execution of the algorithm in real-time but with more excessive
speed may reveal a lack in the concurrency of the ROS nodes. An analysis of resource
consumption can in addition be effected.

On the other hand, numerous tests can be done with the neural network, changing the
configuration or performing different learning, to improve the accuracy of the navigable
path. This can give an idea of the characteristics that the CNN may need for this application.

An explicability analysis using the LIME technique can clarify whether the semantic
segmentation errors are related to the similarities between the images. In all images, the
trajectory is mostly linear and close to the centre of the image. This analysis provides
insight into what the neural network relies on to classify the parts of the image. It will also
be interesting to investigate the interpretation of deep learning.

In addition, if the semantic segmentation has mask discontinuities to compute the
trajectory, it is necessary to consider alternatives in the algorithm to finalize the navigation.

As for the algorithm used, it is necessary to incorporate the case where there is no
trajectory and how to stop the AGV’s movement. In the simulation, the AGV attains the
final of the trajectory and turns π (rad), following the path in reverse. In the real AGV,
when it does not visualize any more trajectory, it starts to turn on its own to detect the
yellow line again. Therefore, there exists an understandable need for a stopping policy that
contemplates different situations.
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