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Abstract: Sedimentation management is one of the primary factors in achieving sustainable develop-
ment of water resources. However, due to difficulties in conducting in-situ tests, and the complex
nature of fine sediments, it remains a challenging task when dealing with issues related to settling
velocity. Hence, the machine learning model appears as a suitable tool to predict the settling velocity
of fine sediments in water bodies. In this study, three different machine learning-based models,
namely, the radial basis function neural network (RBFNN), back propagation neural network (BPNN),
and self-organizing feature map (SOFM), were developed with four hydraulic parameters, including
the inlet depth, particle size, and the relative x and y particle positions. The five distinct statistical
measures, consisting of the root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), mean
absolute error (MAE), mean value accounted for (MVAF), and total variance explained (TVE), were
used to assess the performance of the models. The SOFM with the 25 × 25 Kohonen map had shown
superior results with RMSE of 0.001307, NSE of 0.7170, MAE of 0.000647, MVAF of 101.25%, and TVE
of 71.71%.

Keywords: back propagation neural network (BPNN); fine sediments; radial basis function neural
network (RBFNN); self-organizing feature map (SOFM); settling velocity

1. Introduction
1.1. Background and Problem Statement

The movement characteristics of sediments (i.e., coarse and fine sediments) are consid-
ered as one of the most complex study areas in the field of hydrology. Shallow riverbeds
were one of the main causes of flood-related disasters reported worldwide, with an es-
timated financial loss of almost USD1800/s between 1990 and 2020 [1]. Sedimentation
issues have always been a deep concern for various parties due to the severe impacts that
are invited by sediments. Siltation, for instance, is a critical problem that is caused by the
resuspension of fine sediments deposited within the sediment bed in water [2,3]. Siltation
could also induce a large number of negative impacts on humans and the environment.
For example, changes in water flow patterns and bed structure, a reduced lifetime of reser-
voirs, aggravation of floods, deterioration of water quality leading to a shortage in water
supply, and destruction of natural habitats which threatens the aquatic biodiversity [4,5].
Economically, stakeholders would need to bear exorbitant costs on their projects, such as
carrying out landfilling and water treatment activities. Fine sediments are the root causes
of the siltation possess [6,7]. The transport mechanism of fine sediments is known to take
place in locations ranging from rivers, reservoirs, dams, lakes, to coastal areas, for which
the flow structures, bed morphology, as well as water quality are highly affected [8,9].

Understanding the seriousness and series of negative impacts from sedimentation
problems, many studies related to sedimentation have been conducted in the past few
decades. The transport mechanism of sediments could be fundamentally described by
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two main processes: the horizontal advection, and the vertical sedimentation that is
due to gravitational acceleration [10,11]. In the past, there were several commonly used
sediment-related parameters, such as water turbidity [12], salinity [13], suspended sed-
iment concentrations [14], and total suspended solids [15]. Although some of the basic
indications of the sediment loadings in the water could be presented, such parameters
were inadequate in describing the hydrodynamics of fine sediment since the vertical flux,
which is the essential component of sedimentation, was not considered [16,17].

Furthermore, the increase in complexity of fine sediment transport in water bodies
was also driven by various factors which influence the relationship between water flow
and fine sediment transport, including concentration, size, and surface electrostatic charge
distributions of particles, bed structures, and flow rates. However, it is practically not
feasible to determine precise measurements of these parameters on both temporal and
spatial scales, where in-situ experiments and tests are required to be conducted [14,18].

The settling velocity, also known as terminal velocity, plays an important role in terms
of interpreting hydrodynamic behaviors exhibited by fine sediments in water [9,19]. Specif-
ically, the settling velocity is the velocity attained by fine sediments resulting from the
balanced force between drag forces, gravitational pull, and other hydrodynamic forces [20].
For turbulent flows in particular, drag coefficients vary in accordance with the hydrody-
namic forces, such as shear lift, buoyancy, Magnus force, and torque [21]. In this regard,
the settling velocity accounts for the vertical flux in the process of sedimentation for dif-
ferent conditions. Thus, it is capable of providing a significant characterization of the
hydrodynamics of fine sediments [22].

1.2. Machine Learning Model

There are numerous machine learning algorithms that perform classification and
prediction tasks with different purposes, such as decision trees, random forests, long
short-term memory networks, etc. [23,24] Being one of the pioneers of the machine learn-
ing models, an artificial neural network (ANN), which also operates machine learning
algorithms, has been broadly employed in different contexts. This includes the field of
green energy [25], business/economics [26], and health care [27]. In hydrology, countless
studies have also taken advantage of ANN models, such as water quality predictions [28],
wastewater treatment [29], flow duration curves modelling [30], turbulent flow velocity
field prediction [31], adsorption water desalination system modelling [32], suspended
sediment and sediment yield [14,24,33], ocean bubbles [34], and wall slip [35,36].

Essentially, ANN is technologically advanced as a generalization of mathematical
models inspired by human cognition which depends on the biological neural system [13].
ANN, also often being referred to as black-box models, possesses flexibility in terms of
mathematical computations and topography, making them capable of performing predic-
tions, classifications, and modelling different types of complex and non-linear relationships
between data inputs and outputs without prior interpretation of the data behavior [37].
Subsequently, diverse network architectures allowed ANN models which are conceptually
semi-parametric regression estimators to be favored over other typical models. The basic
development of ANN is generally based on, but not limited to, the given rules, i.e., (i) input
information processed individually at multiple elements called neurons, also referred to
as units, cells, or nodes; (ii) processed signals transferred between the neurons through
the connective links; (iii) each of the connective links carries an associated weight, rep-
resenting its connection strength; (iv) each neuron which typically applies a non-linear
transformation to its net input to determine its output.

A typical ANN (see Figure 1) usually comprises three components, namely the input
layer, hidden layer, and output layer. The input layer commences the algorithm, where it
inputs one instance of the data into the network. The dimension of the instances determines
the number of inputs in the input layer. The hidden layer contains one or several layers
where it outputs intermediate data to the output layer, generating the final output of the
network. The output number is determined by the encoding of the classified or estimated
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results. Each layer of the ANN consists of a specified number of neurons which determines
the ANN network architecture.
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Apart from the network architecture, there are two kinds of network parameters,
weight, W, and bias, B, playing an important part in the learning and predicting process.
Essentially, the concept of computational procedure involving both network parameters
mimics the biological afferent and efferent neurons in transmitting signals [13]. At first,
the afferent response is initiated when all the input signals are channelled into a particular
neuron. As described in Equation (1), the net input value will be computed based on the
total weights contributed by each input observation, x, added with a constant bias. The
efferent response takes place once the net input is obtained. Based on the pre-defined
activation function within each neuron, a single value output will be computed. There are
different types of activation functions, but the most commonly implemented ones are the
linear activation function, sigmoid/logistic activation function, and hyperbolic tangent
activation function [38].

Net Input = ∑ Wx + B (1)

It should be noted that in the training phase, a basic ANN employs feed-forward to generate
an output, and then calculates the error between the output and the target output. In the
prediction phase, a basic ANN will only execute a feed-forward mechanism to achieve
the ultimate result. The approach of trial and error was implemented since there was no
generally proven theory or fixed rule on the decision of the network geometry (i.e., the
number of neurons and hidden layers) that ensures optimum prediction and classification
results [39,40].

1.3. Research Objective

Regarding the ability in handling tedious computational tasks, machine learning-
based models present an innovative alternative for the prediction of settling velocity of
fine sediments. The main objective of this study is to propose machine learning-based com-
putational models for the prediction of settling velocity of fine sediments. Three machine
learning-based models were employed, along with four hydraulic as input variables to esti-
mate a single output of the settling velocity of fine sediments. The relationship between the
settling velocity and the input variables was then investigated. In addition, a comparative
statistical analysis was carried out on the developed models based on their performance.

2. Methodology

The design of experimental procedures and data collection via advanced laboratory
equipment, known as particle image velocimetry (PIV), was based on the main source
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of reference in the work of Kashani et al. [18]. In general, the whole-flow-field technique
of the PIV records the position-over-time of the injected small tracer particles (seeds) in
the flow [41], providing instantaneous velocity fields and real-time movements of fine
sediments in the water.

This study emphasized the prediction of settling velocity of fine sediments by applying
three distinct machine learning-based models, namely the radial basis function neural
network (RBFNN), the backpropagation neural network (BPNN), and the self-organizing
feature map (SOFM). The prediction models were developed based on the four hydraulic
parameters as input variables, which consist of particle size (5 µm, 10 µm, 20 µm, 50 µm),
inlet depth (6 cm, 7 cm, 8 cm, 9 cm, 10 cm, 10.5 cm), the relative x-position ranged between
0 cm and 50 cm, and the relative y-position ranged between 0 cm and 20 cm in the water
column. The overall research methodology is shown in Figure 2.
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To ensure machine learning-based models are well-trained, and, at the same time,
achieve high performance with good generalization, the data set must be at least divided
into two sets, namely the training set and testing set. However, different proportion set-
tings on the division of training and testing data set were discovered in different studies,
as no fixed proportion could guarantee the best results. Nonetheless, a typical range
of 60% to 80% on the training set associated with 40% to 20% of the testing set were
implemented [42–44]. As an initial attempt to estimate the settling velocity of fine sed-
iments in this study, a stipulated proportion of 80%:20% (training set:testing set) was
defined such that sufficient learning instances were allocated for the model training while
reserving reasonable data size for model testing.
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For the data pre-processing step, the min-max normalization technique was applied
to the data before the training process was executed. The primary reason for the data nor-
malization was to geometrically nullify the weight effects imposed by the input variables
of incompatible scale units, range and interval values, and distributions into a desired com-
pact and specific range [45]. In other words, normalization simplifies interpretation tasks
in terms of the total variation contributed by the input variables, for which imbalanced
weights over-influencing the learning of instances were minimized [46].

2.1. Radial Basis Function Neural Network (RBFNN)

The RBFNN takes a simple and straightforward form, and has been notably employed
in different works, such as predicting suspended sediment load, and water turbidity in
rivers [38,47]. RBFNN often requires a shorter time to be trained because of its simplistic
structure of only three layers, namely the input layer, hidden layer, and output layer. The
incoming input variables from the input layer of the RBFNN were fed forwarded to its
hidden layer. The corresponding weights received by neurons in the hidden layer process
these weights by computing them using the activation function. The specialty of RBFNN
lies in the application of radial basis activation function (i.e., Gaussian) [48], as defined in
Equation (2).

f (z) = exp

(
‖ z− µ ‖2

2σ2

)
(2)

The parameters µ and σ2 represent the mean and variance of the received weights specifying
the central tendency and spread of the Gaussian curve [15,23]. The monotonic property
held by the radial basis activation function with a good local convergence rate is the merit of
the RBFNN. The network architecture of the proposed RBFNN was illustrated in Figure 3.
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2.2. Back Propagation Neural Network (BPNN)

The BPNN is a well-known network that has been extensively applied in hydrology
to predict and solve various problems, especially in water resources and management [49].
It shares the same network geometry as a basic ANN by having an input layer, an output
layer, and one or more hidden layers. Fundamentals of the backpropagation algorithm
in the case of control theory were discovered in the work of Kelley [50]. After training
the BPNN with the input instances, the backpropagation learning algorithm allows the
weights and biases parameters within the neurons to be tuned according to the Levenberg–
Marquardt approach. In the tuning process, the network parameters are updated based
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on the minimization of the error functions [51,52]. In this study, the logistic activation
function, as defined in Equation (3), was adapted, and the sum of squared error between
the estimated and observed settling velocity is minimized. The network architecture of the
proposed BPNN was illustrated in Figure 4.

f (z) =
1

1 + exp(−z)
(3)
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2.3. Self-Organizing Feature Map (SOFM)

The SOFM, with its unique network architecture, was initially proposed by Koho-
nen [53,54]. With the growing interest in the application of unsupervised learning algo-
rithms, SOFM has been widely used, mostly for data classification and estimation. Studies
that implement SOFM, relevant to the field of hydrology, include the characterization
and survey of groundwater chemistry and groundwater levels [55,56], sediment quality
assessment [4], and soil hydraulic properties [57]. However, there were hardly any re-
cent applications of the SOFM related to fine sediment studies, specifically in estimating
hydrodynamic characteristics of fine sediments. The SOFM consists of only an input
and a Kohonen map. The Kohonen map is a discrete lattice structure of usually two
dimensions, formed by the projection of multidimensional inputs through a non-linear
vector quantization-based learning attribute. Neurons in the Kohonen map are physically
arranged in a hexagonal fashion while the topological properties of the input space are
preserved. The network architecture of the proposed SOFM is illustrated in Figure 5.
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For each iteration step, s, the Euclidian distance was computed between the input
vector, z, and the neurons in the Kohonen map. Out of the M neurons in total, the best
matching unit (BMU), θ, served as the winning neuron after competing with other neurons.
Thus, the BMU possesses the minimum Euclidian distance towards the input vector, as
shown in Equation (4).

Dj
(θ) = argmin

1≤j≤M
‖ zi(s)− wij(s) ‖ (4)

Once the BMU is selected, the weight vectors of the neurons located within the pre-
defined neighborhood function (Gaussian) shown in Equation (5) were then updated
cooperatively. The Euclidean distance between a neuron and the BMU acts as the central
mean of the Gaussian neighborhood, whereas the learning rate, δ, as defined in Equation
(6), determines the corresponding spreadness. Both the learning rate, and neighborhood
radius, η, as defined in Equation (7), decreased accordingly when iterations were increased.
Consequently, Equation (8) shows the updating rule for the weights in each neuron within
the neighborhood of BMU.

Hθ(s) = exp

(
−‖ θ − θ∗ ‖2

2(δ(s))2

)
(5)

δ(s) = δ(0) exp
(
− s

T

)
(6)

η(s) =
η(0)

s
(7)

wij(s + 1) = wij(s) + δ(s)
[
zi(s)− wij(s)

]
(8)

Eventually, clusters of similar neurons can be identified as the training process matures.
Individual heat maps could be produced for visualization purposes to enhance the study
of the relationship between the input parameters with the settling velocity. As the neigh-
borhood function provides close density estimation in the Kohonen map, the prediction of
settling velocities was based on the asymptotic convergence to the mean value computed
from the values within the BMU, V (θ), as defined in Equation (9).

V̂ = V (θ) (9)
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2.4. Performance Measures

For N of the settling velocity observations, Vk, and their corresponding predicted
values, V̂k, the average value is represented by V. The following Equations (10)–(14) show
the five types of statistical measures applied to access the prediction performance of the
developed machine learning models.

(i) Root mean square error (RMSE):

RMSE =

√
∑N

k=1
(
V̂k −Vk

)2

N
(10)

(ii) Nash–Sutcliffe efficiency (NSE):

NSE = 1− ∑N
k=1

(
Vk − V̂k

)2

∑N
k=1

(
Vk −V

)2 (11)

(iii) Mean absolute error (MAE):

MAE =
∑N

k=1
∣∣Vk − V̂k

∣∣
N

(12)

(iv) Mean value accounted for (MVAF):

MVAF =

[
1− ∑N

k=1
(
Vk − V̂k

)
∑N

k=1 Vk

]
× 100% (13)

(v) Total variance explained (TVE):

TVE =

[
1−

var
(
Vk − V̂k

)
var(Vk)

]
× 100% (14)

3. Results and Discussion

Under the method of trial and error, the optimum network parameters and geometry
were decided based on the performance measures computer for each of the models. To
compare and contrast the three developed machine learning-based models, the most
appropriate model with the highest accuracy was determined once the best parameter
settings were finalized. Ideally, the RMSE and MAE should be close to zero, indicating the
minimum error obtained; the NSE should be close to 1, indicating the model is better than
applying the mean estimator; the MVAF should be close to 100%, indicating the accuracy
of the average estimating performance of the model; the TVE should be close to 100%,
indicating the overall dynamics and dispersion accounted by the model.

Due to the flexible settings of network architectures, numerous combinations of
network parameters and geometry could be generated. Consequently, only selected models
that provided appropriate results relevant to the performance measures were reported.

Table 1 shows the results of the RBFNN model. The lowest RMSE of 0.002495 and
MAE of 0.001409 were seen at the 4-17-1 setting, but the optimum values of NSE, MVAF,
and TVE were 0.1435%, 188.18%, and 20.43%, respectively, which was exhibited by the
4-16-1 setting. Thus, the 4-16-1 RBFNN model with 16 neurons in the hidden layer is the
best architecture obtained. In addition, the corresponding comparison plot of the predicted
and observed settling velocity output was illustrated in Figure 6. The majority of points
deviated far from the red line (i.e., predicted = observed) associated with the difference
in scales by a multiple of 10 between the axes, which indicated a poor prediction of the
RBFNN model. The illustration corresponds to the relatively low TVE, NSE, and MVAF
that significantly exceeded 100%.
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Table 1. Results of the RBFNN model with different network architectures.

Network Architecture * RMSE NSE MAE MVAF (%) TVE (%)

4-10-1 0.002739 0.1409 0.001616 195.21 20.37
4-11-1 0.002666 0.1469 0.001493 187.87 20.27
4-12-1 0.002798 0.1333 0.024785 200.47 19.94
4-13-1 0.002681 0.1442 0.001898 189.09 20.05
4-14-1 0.002800 0.1261 0.001477 199.34 18.73
4-15-1 0.002717 0.1400 0.001527 192.50 19.89
4-16-1 0.002667 0.1478 0.001409 188.18 20.43
4-17-1 0.002495 0.0966 0.001504 153.50 11.02
4-18-1 0.002711 0.1435 0.002134 192.51 20.38
4-19-1 0.002760 0.1370 0.001420 196.88 20.03
4-20-1 0.002502 0.1196 0.001483 160.03 14.08

* The RBFNN network architecture is defined based on the sequence of ‘input neurons-hidden neurons-output
neuron’.
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Table 2 shows the results of the BPNN model. Despite not achieving the optimum
value for the MAE and MVAF, the best network architecture was given by 4-7-1, with
the performance measures: RMSE of 0.001582; NSE of 0.5858; MAE of 0.000682; MVAF
of 97.09%; and TVE of 58.61%. On top of that, a better overall prediction performance of
the 4-7-1 BPNN model was shown in Figure 7. As compared to the RBFNN model, most
points were located closer along the red line, with minor points being scattered far away,
reflecting smaller RMSE and MAE, MVAF closer to 100%, and higher NSE and TVE.
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Table 2. Results of the BPNN model with different network architectures.

Network Architecture * RMSE NSE MAE MVAF (%) TVE (%)

4-1-1 0.001893 0.4069 0.000851 97.51 40.70
4-2-1 0.001860 0.4275 0.000813 97.02 42.76
4-3-1 0.001856 0.4230 0.000792 96.89 43.02
4-4-1 0.001798 0.4652 0.000759 97.24 46.54
4-5-1 0.001780 0.4755 0.000745 97.63 47.57
4-6-1 0.001767 0.4834 0.000703 97.28 48.36
4-7-1 0.001582 0.5858 0.000683 97.09 58.61
4-8-1 0.001704 0.5216 0.000722 97.28 51.98
4-9-1 0.001641 0.5542 0.000682 97.30 55.44

* The BPNN network architecture is defined based on the sequence of ‘input neurons-hidden neurons-output
neuron’.
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Figure 7. Comparison plot of predicted and observed settling velocity for the BPNN model with
network architecture 4-7-1.

Table 3 shows the results of the SOFM model. Among different map sizes, the 22 × 23
Kohonen map provided the optimum MVAF value, whereas the 26 × 27 Kohonen map
provided the minimum MAE value. However, the 25 × 25 Kohonen map was able to
produce a relatively small MAE of 0.000647, the lowest RMSE of 0.001307, the highest NSE
of 0.7170, and the highest TVE of 71.71%. Overall, the 25 × 25 Kohonen map performed
the best, since the MVAF has a slight difference by just 1.25% from 100%, and the MAE was
0.000647, with only 0.0005% difference from the minimum MAE. The estimation results
of the 25 × 25 Kohonen map was shown in Figure 8. On a close scale unit for both axes,
almost all points were located closely along the red line, although there exists a single
prediction point located right-most in the figure that appeared to be relatively lower than
the red line. The highest TVE was also indicated by the well-captured variation by the
SOFM model.
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Table 3. Results of the SOFM model with different network architectures.

Network Architecture * RMSE NSE MAE MVAF (%) TVE (%)

21 × 21 0.001611 0.5706 0.000731 98.85 57.06
22 × 23 0.001523 0.6160 0.000696 96.66 61.64
23 × 23 0.001519 0.6178 0.000702 99.83 61.78
23 × 24 0.001350 0.6984 0.000646 97.42 69.86
24 × 24 0.001437 0.6581 0.000656 98.11 65.82
25 × 24 0.001430 0.6640 0.000655 99.59 66.15
25 × 25 0.001307 0.7170 0.000647 101.25 71.71
26 × 27 0.001378 0.6859 0.000642 96.67 68.63

* The SOFM network architecture is defined based on the dimension of the Kohonen map (m neurons × n
neurons).
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Figure 8. Comparison plot of predicted and observed settling velocity for the SOFM model with a
25 × 25 Kohonen map.

For comparison purposes, the results among related studies were generally reviewed.
Similar error measures were adapted by Rushd et al., [52] and Cao et al., [22], where the
RMSE of 0.066 and 0.0428, and the MAE of 0.044 and 0.0242 were reported, respectively.
The SOFM in the current study outperformed other ANN models, and produced lower
RMSE and MAE. However, results from other studies cannot be directly compared due to
the difference in the study scope (e.g., coarse sediment, sphericity, fluid type, etc.).

Apart from performance measures, the SOFM model enabled visualizations of the
prediction space. The codes plot shown in Figure 9 presented a total of 19 clusters assigned
with distinct background colors, which were clearly separated by the thick black boundary
lines on the 25× 25 Kohonen map. In each neuron, there were five different colored sectors,
corresponding to the weights contributed by the particle size, inlet depth, x-position, y-
position, and settling velocity (i.e., input and output variables). As a result, the size of
a particular sector in the neurons was determined by the magnitude of the individual
variable that is projected on the Kohonen map. In other words, the larger the magnitude of
the variable, the larger the size of the sector.
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Figure 9. Codes plot of the 25 × 25 Kohonen map.

To provide an example, neurons from the top left cluster have very large red and olive-
green sectors, followed by moderately large lime-green sectors, small blue sectors, and
very small purple sectors. This indicates that the top left neurons cluster was characterized
by the higher magnitude of particle size and depth, with moderate x-position value and
low y-position value, together resulting in low settling velocity. The bottom left group of
neurons with a dark brownish-red background is another evident example of a different
cluster. The very large olive-green sectors were associated with large lime-green sectors,
followed by moderately large blue sectors, and extremely small and unclear red and purple
sectors. It is a clear characterization of very low settling velocity because of the very large
depth value, high x-position value, moderately high y-position value, and very small
particle size. In general, neurons under the same clusters were arranged physically close
together as they shared neighborhoods with similar characteristics.

In addition to the codes plot, the heat maps, as shown in Figure 10, enabled a comple-
mentary visualization for the trained 25 × 25 Kohonen map by providing the breakdown
of distribution for each variable. The color intensity filled in each of the neurons ranged
from dark blue to dark red, reflecting the color temperature from cool to hot. The heat map
for the settling velocity suggested that most of its projected patterns were extremely low,
for which only a single red-colored neuron was located (9th row, 25th column). A small
amount of green and light blue colored neurons were found at the borders from the top left
corner to the right bottom corner.
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Figure 10. Heat maps of the 25 × 25 Kohonen map.

By carefully inspecting the heat maps for the settling velocity, and the x and y-positions,
a correlated region with a triangular pattern was discovered at the right bottom corner.
The cool colors in this triangular region from the settling velocity heat map corresponded
with the warmer colors and the coolest dark blue colors in the x- and y-position heat maps,
respectively. In other words, this cluster of neurons was characterized by a moderately low
settling velocity value, resulting from a high x-position value, but a very low y-position
value. Based on this region, the effects of particle sizes and depth were not obvious, since
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the color intensities were not consistent. However, lower particle sizes and greater depth
were usually found in this region.

After each of the heat maps were examined and compared, it could be concluded that
the projected pattern distributions for each variable were rather distinct. Nevertheless, a
strong association between the heat maps of the y-position and the settling velocity was
discovered. Although both heat maps were not identical in patterns and colors, they were
observed to be highly correlated in terms of colors and the shaped patterns formed. The
outmost border from the top left extended to the right bottom triangular region, suggesting
that the projected patterns for this region have moderately low settling velocity when
the y-position was extremely low. Besides that, the warm-colored neurons in the center
region of the y-position heat map reflects cool-colored neurons in the same region from the
settling velocity heat map. This could be interpreted as the higher y-position resulting in
low settling velocity. For the other remaining dark blue neurons in the settling velocity heat
map, neurons either yellow or green could be found in the same region from the y-position
heat map.

To further summarize the prediction performance of the three machine learning-
based models, the residual plot for each model that had the best results were constructed
(see Figure 11). The residual plot is one of the most effective strategies to compare the
residuals, also known as the noise (i.e., error terms), and the predicted settling velocity
in a comprehensive manner. The prediction results have reported less than three extreme
residual values for each model. Thus, residuals exceeding 0.02 in value were not shown in
the residual plot to obtain a more meaningful analysis.

The residuals of the best RBFNN models (in red) formed a hook-shaped trend. The
residuals exhibited a decreasing trend as the predicted settling velocity increased, and
then deflected upwards. This is evidence of heteroscedasticity because the spread of the
residuals exhibited a non-random pattern. It could be observed that the overall prediction
performance of the RBFNN model was poor, since most points have highly deviated from
the black horizontal line (i.e., zero residual value).

From the residual plot of the best BPNN model, the prediction results highly improved
compared to the best RBFNN model. The residuals were now much closer to the zero-
residual line without any obvious patterns, suggesting a more consistent variation in
the scattered residuals (i.e., homoscedasticity). Despite the improved performance, there
remain several highly deviated residuals, particularly those residual points which exceeded
the value of 0.005.

Finally, the superior prediction performance could be discovered from the residual
plot of the best SOFM model. A stronger assumption of homoscedasticity can be made
based on the randomly scattered residuals. More specifically, the residuals that influenced
the relationship between the modelled input hydraulic parameters and the output settling
velocity were robust. Moreover, the residuals were highly concentrated around the zero-
residual line, with minimum deviation.
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4. Conclusions

As this research was directed on the application of machine learning models to predict
the settling velocity of fine sediments, three machine learning-based models with distinct
network designs and abilities were developed. Based on the performance of the prediction
of settling velocity of fine sediments, the SOFM provided superior results, followed by
the BPNN, and the RBFNN. In terms of the appropriateness of the model, the RBFNN has
not achieved satisfactory results, as reflected in the poor performance measures that were
produced. The BPNN could still be considered to estimate the settling velocity, although it
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achieved limited performance. In particular, the BPNN was capable of capturing at least
50% of the total dynamics of the settling velocities with reasonable accuracy as compared
to the RBFNN model. Ultimately, the SOFM appeared to be the ideal model, as it had
successfully accounted for at least 71.7% of the total variation of settling velocities (NSE of
0.7170, and TVE of 71.71%), associated with the lowest overall prediction error (RMSE of
0.001307, MAE of 0.000647, and MVAF of 101.25%).

Aside from being the best estimation model in this study, SOFM is privileged in exam-
ining the hydrodynamics behavior of fine particles. The codes plot and heat maps were
excellent tools for visualization of the projected patterns based on the studied hydraulic
parameters, even though the relationship between the hydraulic parameters in influencing
the settling velocity of fine sediments in water bodies was highly complex. From the
various patterns and clusters discovered from the codes plot and heat maps of the SOFM, it
can be seen that each hydraulic parameter plays an important role in affecting the settling
velocity. After careful investigation, it can be concluded that the y-position of fine particles
had the most apparent and dominant influence on the settling velocity.

In conclusion, the main objective was achieved by having the SOFM and BPNN as ap-
propriate machine learning computational models for the prediction of settling velocity of
fine sediments. A comparative analysis was performed among the developed models, and
it can be said that, as the first attempt for fine sediment settling velocity predictions based
on the incorporated hydraulic variables, the SOFM model showed superior performance.
The SOFM model also succeeded in enhancing the understanding of the relationship among
the hydraulic parameters and fine sediment settling velocity with the help of the codes plot
and heat maps as visualization tools. Although there were several ANN models applied in
related sediment studies, the models typically do not provide direct insight on how the
inputs and output were related due to their black-box properties. Additional experiments
and other efforts were required to investigate the influence of the input variables on the pre-
dicted output. Hence, the outcomes of this study offer a useful approach in understanding
the importance and relationship between the input and output variables.

Although the SOFM model has achieved reliable prediction results, the gaps in terms
of accuracy are still required to be filled. It is recommended that a wider range of data of
relevant input variables is considered to improve the prediction accuracy. Also, further
enhancement of results could be made by extending the current work. The existing ANN
models can be improved by implementing metaheuristic algorithms for the decision of the
optimal network parameters and architectures. Furthermore, advanced and new machine
learning models can be applied to replace the existing ANN models, such as the RBFNN
and BPNN models in this study. Nevertheless, the successful results have also opened
doors for other types of applications not limited to sedimentation studies, such as the
transport mechanism of solids in biogeochemical cycles, pollutants in urban wastewater
and sewage sludge, etc.
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