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Abstract: The hub location problem (HLP) basically consists of selecting nodes from a network to act
as hubs to be used for flow traffic directioning, i.e., flow collection from some origin nodes, probably
transfer it to other hubs, and distributing it to destination nodes. A potential expansion on the hub
building and capacitated modules increasing along a time horizon is also considered. So, uncertainty
is inherent to the problem. Two types of time scaling are dealt with; specifically, a long one (viz.,
semesters, years), where the strategic decisions are made, and another whose timing is much shorter
for the operational decisions. Thus, two types of uncertain parameters are also considered; namely,
strategic and operational ones. This work focuses on the development of a stochastic mixed integer
linear optimization modeling framework and a matheuristic approach for solving the multistage
multiscale allocation hub location network expansion planning problem under uncertainty. Given
the intrinsic difficulty of the problem and the huge dimensions of the instances (due to the network
size of realistic instances as well as the cardinality of the strategic scenario tree and operational ones),
it is unrealistic to seek an optimal solution. A matheuristic algorithm, so-called SFR3, is introduced,
which stands for scenario variables fixing and iteratively randomizing the relaxation reduction of the
constraints and variables’ integrality. It obtains a (hopefully, good) feasible solution in reasonable
time and a lower bound of the optimal solution value to assess the solution quality. The performance
of the overall approach is computationally assessed by using stochastic-based perturbed well-known
CAB data.

Keywords: optimization under uncertainty; multistage multiscale time horizon; capacitated hub
location network and expansion; strategic and tactical uncertainties; mixture of multistage and
two-stage scenario trees; mixed integer linear optimization; randomized matheuristic methodology

1. Introduction and Motivation

The hub location problem (HLP) basically consists of selecting nodes from a network to
be used for flow traffic directioning, i.e., flow collection from some origin nodes, probably
transfer it to other hubs, and distributing it to destination nodes. Examples can be found in
product distribution, telecommunications, land and air transportation, etc. As a matter of
fact, an HLP can be considered in any flow supplying problem where, instead of directly
delivering from origin to destination, there is an opportunity (due to capacity limitations
and economic reasons, among others) for performing hub transfer to delivering flow
from different pairs of origin-destination. See, for instance, the multiperiod deterministic
problem presented in [1], where a case study of humanitarian aid distribution in Lebanon is
considered. The hub building and operational overall cost are the functions to be minimized
in most of the problems. Real-life multiperiod problems are frequently encountered in
industry where the hub capacity needs to be expanded and/or additional hubs are required
to satisfy the flow demand from one node to another; see [2,3]. The stochasticity on the
main parameters is inherent to multiperiod problems; see [4,5]. The hubs can be capacitated
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or uncapacitated, and the problem can be deterministic or stochastic, and static (i.e., single
period) or dynamic along a time horizon. Let the dynamic HLP be named as a multiperiod
one for the deterministic and two-stage multiperiod settings, and a multistage one for the
other stochastic settings, where the uncertainty is either a stage-dependent, stagewise one,
or even both types in a multiscale setting. The NP-hardness of HLP is proven in [6], even
for the single-allocation uncapacitated p-hub location deterministic version, where p hubs
must be located and non-hub nodes are allocated to the hub ones. This type of problems is
a particular case of the one that is addressed in this work.

There is broad literature on the subject, see [2,7,8]; recent reviews and some perspec-
tives on modelling are presented in [9,10]. However, the literature is scarce on the inherent
stochasticity of HLP, to the best of our knowledge, there are no works on multistage
stochastic HLP.

This work deals with the multistage multiscale stochastic capacitated HLP with
network expansion along a time horizon. The uncertainty of the strategic parameters is
assumed to be stagewise-dependent and the one of the operational parameters is assumed
to be stage-dependent. So, a multiscale setting is addressed, as it frequently happens in
reality. Given the network size of realistic instances as well as the cardinality of the strategic
scenario tree and operational ones, it is a challenge to deal with the intrinsic difficulty of
the problem and the huge dimensions of the instances. It is therefore unrealistic to seek
an optimal solution for the deterministic equivalent model (DEM) of the tight stochastic
mixed integer linear optimization one (traditionally, named MILP) that is presented. In
contrast, a matheuristic algorithm, so-called SFR3, is introduced for achieving (hopefully,
good) feasible solutions jointly, with a lower bound of the optimal solution value to assess
the solution quality.

The rest of the work is organized as follows: Section 2 presents the problem’s assump-
tions. For completeness purposes and setting some notation to be used throughout the
work, Section 2.1 also recalls the main concepts of the strategic multistage scenario tree
with embedded operational two-stage ones. Section 3 is devoted to a literature review on
the subject, and outlines the main contributions of the work. Section 4 presents the model
for MS-Hub-NEP. Section 5 introduces the matheuristic algorithm SFR3. Section 6 reports
the main results of the computational experiment. Section 7 draws the main conclusions,
and its Section 7.1 outlines the perspectives of model MS-Hub-NEP and maheuristic SFR3,
as well as a future research agenda. An example is presented in Appendix A to illustrate the
main decisions to be made in MS-Hub-NEP and the role of the scenario trees. Appendix B
reports the results of the computational comparison between SFR3 strategies.

2. MS-Hub-NEP Problem Description

The section has two parts; first, the problem is presented jointly with the related sets.
Secondly, Section 2.1 recalls the main elements of the strategic multistage scenario tree and
related operational two-stage ones, also introducing the location-allocation elements for
the strategic and operational scenarios.

The features of the Multistage Stochastic-Hub Network Expansion Planning problem
(MS-Hub-NEP) are presented. The time horizon is finite and divided into time units, so-
called stages. All nodes in the network (even the hubs) can have flow outbound, inbound or
both. Without loss of generality, the set of potential hub locations is assumed to be a subset
of the nodes in the network. A hub can have outbound and inbound flows. Hub building
(a strategic decision) is performed at the beginning of the stages. The hubs are capacitated,
so, the number of initial capacity modules should be decided, in the case of building. An
expansion on the number of modules (another strategic decision) could be decided at later
stages. A maximum number of capacity modules is imposed for each hub; all modules
have the same capacity (i.e., they are assumed to be technically identical). The number
of available hubs at the stages is bounded. The flow from origin node, say i, destined
to another one, say j, can be transported (an operational decision) by using the so-called
non-stop service mode or, alternatively, the transportation can be done through the hub
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network. The unit transportation cost is a function of the distance between the nodes.
The assumption of two hubs to be used, at most, to transfer a given origin-destination
flow through the hub network, is not always realistic. However, it is one of the main
assumptions of the work and, even in this case, the problem is still very difficult to solve.
By using the notation k and l for the hubs involved, the route can be i → j, i → k → j or
i→ k→ l → j. If the non-stop service mode between any two network nodes is decided,
then one of those nodes, at most, could be hub available. The allocation of nodes to hubs
can be changed from a stage to another. In stochastic optimization parlance, it means that
the allocation can be changed from a strategic node to each of its immediate successors.
The number of origin nodes to allocate to any hub could be bounded.

As an illustrative example, let us assume that the strategic decisions have already been
made, based on the hub building and capacity module strategic costs, the transportation
costs, and the flow demand. So, let hubs 1 and 3 be available at, say, stage 1 with a given
capacity; see Figure 1. The figure also shows the operational decisions that have been
assumed for a given operational scenario. Those decisions are related to transporting the
flow demand from origin i to destination j, perhaps through hubs k and l. That is, it shows
the routes i → j, i → k→ j or i → k→ l → j, for the flow of each network node pair (ij).
Suppose that the operational decisions are made as follows: Flow demand in the non-stop
service mode, 7 → 6, 7 → 8 and 2 → 7; 8 → 3, collection at hub 3 of flow demand from
node 8; 8→ 3→ 4, collection at hub 3 of flow demand from node 8 with destination node 4;
8→ 3→ 1→ 5, collection at hub 3 of flow demand from node 8 that is transferred to hub
1 with destination node 5; 6→ 1→ 4 and 6→ 1→ 5, collection at hub 1 of flow demand
from node 6 with destination nodes 4 and 5, resp.; and 2→ 1→ 3→ 9, collection at hub 1
of flow demand from node 2 that is transferred to hub 3 with destination node 9. Observe
that hub 3 is inbound under the assumed operational scenario, being the destination of a
portion of the flow demand from origin node 8. Note that the hub edge kl is used in both
senses for hubs 1 and 3 since, on one hand, it transfers the flow demand from node 2 to
node 9 and, on the other hand, it transfers it from node 8 to node 5.

1

2

3

4
5

6

7

8

9

Strategic decisions:

Hub building with capacity modules

Operational decisions:

Flow transfer from a hub to another one

Flow distributed from a hub to a destination node

Flow from an original node collected at a hub

Flow directly transported from origin to destination in the non-service mode

(7 → 6); (7 → 8); (2 → 7); (8 → 3 → 4); (8 → 3); (6 → 1 → 4); (6 → 1 → 5); (8 → 3 → 1 → 5); (2 → 1 → 3 → 9)

Figure 1. Origin and destination network nodes and hubs representation. Operational decisions.
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Sets for the Hub Network

Let the following notation, where capital letters represent data, calligraphic symbols
do it for sets, and i, j, k, l, are indices.

V , network nodes.
H ⊆ V , candidate hubs.
E ⊂ V × V , pairs of origin node i and destination node j, each one denoted as ij. Note that
hub k can also be any of those nodes, for k ∈ H.
Dij, ’distance’ between nodes i and j, for i, j ∈ V .Recall that the edge types in the hub
network are as follows: origin node to hub, hub to hub, and hub to destination node.
D, maximum ’distance’ that is allowed for any hub edge in the network. It is worth
pointing out that link (ij) is not allowed forDij > D.

For the purpose of reducing the number of variables and constraints related to the
operational scenarios in the model below, the strengthening sets K, K→i , K←i , Hi, Hij are
as follows:

K = {kl ∈ H ×H : k < l|Dkl ≤ D ∨ Dlk ≤ D}, hub pair set for flow transfer in the
directions from k to l and l to k) in case of their availability.
K→i = {kl ∈ K : Dik ≤ D ∧ Dkl ≤ D}, hub pair set for flow transfer from origin node i in
the direction k to l, for i ∈ V .
K←i = {kl ∈ K : Dil ≤ D ∧ Dlk ≤ D}, hub pair set for flow transfer from origin node i in
the direction l to k, for i ∈ V .
Hij = {l ∈ H : Dil ≤ D ∧ Dl j ≤ D}, hub set for flow collecting from origin node i, where
it is directly distributed to destination node j, for ij ∈ E , such that Hij ⊆ Hi. Any of the
hubs i and j can be in Hij (but not both), such that i = k if hub i is outbound and j = l if
hub j is inbound.
Hi = {k ∈ H : either ∃l|kl ∈ K→i or k ∈ Hij}, hub set for flow collecting from origin node
i, for i ∈ V , such that either the collected flow at a hub is transferred to another, or it is
directly distributed to the appropriate nodes. Note: Hub i can be inHi.

Remark 1. K→i = K←i = K, Hij = Hi = H for D = ∞.

2.1. Strategic Multistage Operational Two-Stage Stochastic Trees

The notation of multistage and two-stage scenario trees to be used in this work is
recalled from [11].

Strategic Multistage Stochastic Tree

Let a strategic scenario be the realization of the uncertain strategic parameters (i.e.,
hub-related building and capacity module installation costs) along the time horizon. A
strategic node for a given stage has one-to-one correspondence with the group of strategic
scenarios that have the same realization of the uncertain parameters up to the stage. This
information structure can be visualized as the tree depicted in Figure 2, where each root-
to-leaf path represents a specific scenario and, then, it corresponds to a realization of the
whole set of the uncertain parameters. Let us point out that it is beyond the scope of this
work to present a methodology for multistage scenario tree generation and reduction; see
e.g., [12,13] and references therein.
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t = 1 t = 2 t = 3 t = 4 t = 5

T = {1, . . . , 5}
Ω = Ω0 = {15, 16, . . . , 30}
A12 = {12, 5, 2, 0}
t6 = 3

σ6 = 2

S6 = {13, 14, 27, 28, 29, 30}
S6
1 = {13, 14}

N = {0, . . . , 30}
N4 = {7 . . . , 14}
Ω5 = {23, . . . , 26}0
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Figure 2. Strategic multistage scenario tree.

The notation for the lexicographically ordered sets in the strategic tree is as follows:

T , stages, and T = |T |.
N , nodes in the scenario tree, such that N = {0, · · ·, N − 1}, and N = |N |.
Nt, nodes in stage t, where Nt ⊂ N , for t ∈ T . Note: By construction, |N1|=1.
Ω, scenarios. Each one is included by the nodes in the Hamiltonian path from the root
node 0 to a node, say, ω in the last stage, through the ones in set T ; so, ω ∈ NT .
Note: For convenience, a scenario has traditionally been denoted by its last node in
the path.
Ωn ⊆ Ω, scenarios having one-to-one correspondence with node n.
An, node n and its ancestors, for n ∈ N . Note that A0 is only included by node 0, where
0 ∈ N1.
Sn, successors nodes of node n, for n ∈ N . Note: Sω = ∅, for ω ∈ NT .
Sn

1 ⊆ Sn, immediate successors of node n, for n ∈ N .

Let the following other elements in the strategic scenario tree:

wn, weight factor representing the likelihood that is associated with node n, for n ∈ N .
Note: wn = ∑ω∈Ωn wω , where wω ≥ 0 gives the modeler-driven likelihood associated with
scenario ω, such that ∑ω∈Ω wω = 1.
tn, stage to which node n belongs to, so, n ∈ Ntn .
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An
1 , immediate ancestor node of node n, for n ∈ N . Note: It is assumed that A0

1 is not
necessarily null, since it is allowed that the hub network already exists before the beginning
of the time horizon; so, in that case, the aim of the proposal is the hub expansion along the
time horizon.

As an illustration, let the instance with T = 5 stages and a scenario tree where the
number of strategic immediate successor nodes of node n is |Sn

1 | = 2 for tn = 1, 2, 3, 4. So,
the cardinality of the strategic scenario tree is |N | = ∑t∈T |Nt| = 1 + 2 + 4 + 8 + 16 =
25 − 1 = 31 nodes, see Figure 2.

Operational Two-Stage Trees Rooted at Strategic Nodes

The operational uncertainty is represented in a finite set of stage-dependent scenarios.
It is structured in a two-stage tree rooted at any strategic node in set N . So, the operational
realizations (i.e., scenarios) are visualized in the nodes of the second stage. Let us introduce
the following additional notation:

Πt, set of operational scenarios in stage t, for t ∈ T .
wπ , weight factor or probability of operational scenario π, for π ∈ Πt, such that ∑π∈Πt wπ =
1, for t ∈ T .

So, it is assumed that the operational uncertainty in MS-Hub-NEP (e.g., flow demand)
is independent of the strategic one.

Following on from the illustration of the strategic tree dimensions considered above,
let us assume that there are |Πt| = 4 operational scenarios in the two-stage tree rooted at any
strategic node that belongs to stage t in the scenario tree with |N | = 31 strategic ones. So,
in total, there are 124 uncertain operational situations to be dealt with, being partitioned into
31 groups. It means that there are 124 hub operational (static deterministic) interconnected
submodels, see next. Thus, the submodels related to the nodes in set Sn

1 , for n ∈ N \ {NT},
have the same initial infrastructure topology (i.e., initial set of available hubs). Figure 3
depicts the illustrative strategic and operational trees, where, e.g., Π3 = {a, b, c, d}, for any
strategic node in set N3. For |Πt| = 8 ∀t ∈ T it results that there are 248 hub operational
submodels. See, in Section 6, a broad computational experience.

Remark 2. For the unlikely case where the strategic nodes in MS-Hub-NEP are also stagewise-
dependent on the operational ones then, instead of the tree depicted in Figure 3, the full combination
of strategic and operational scenarios results in a gigantic multistage scenario tree. For ease
of presenting, let us assume the frequent case where the multistage scenario tree is symmetric.
Additionally, let us consider the two following alternative decision making frameworks at stage
t. The first one is a two-step framework, where the strategic decisions are carried out at step 1 by
considering all the potential operational scenarios that can occur at step 2 of the stage as above. In
the second framework, it is assumed that the strategic decisions are delayed until the operational
uncertainty is unveiled and, then, both types of decisions are made simultaneously, so, only one
step is considered. Thus, let the new 0–1 parameter ρt take the value 1 for the first framework
in stage t, and otherwise, 0. So, for ρt = 1, there are two types of nodes in each stage: strategic
and operational. The operational nodes are the leaf ones in the stage. Let Lt and, for this purpose,
Nt denote the leaf node subset and the node set in stage t, resp, for t ∈ T , being expressed as
|L1| = |Π1|, |N1| = 1 + |L1|, and |Lt| = |Lt−1| · bt · |Πt| and |Nt| = |Lt−1| · bt · ρt + |Lt|,
where bt gives the number of strategic nodes in stage t for the immediate ancestor, ∀t ∈ T \ {1}.
As an example, for T = 5, bt = 2 and ρt = 1, the dimensions of the scenario tree are ∑t∈T |Nt|
= 23,405 nodes and |Ω| = LT = 16,384 scenarios for |Πt| = 4, and 629,145 nodes and 524,288
scenarios for |Πt| = 8 ∀t ∈ T . Observe that each scenario has a one-to-one correspondence with
a hub strategic-operational multiperiod deterministic submodel. So, it is useful to consider the
proposed approximation type in order to have an affordable structure.
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t = 1 t = 2 t = 3 t = 4 t = 5

Π3 = {a, b, c, d}
N = {0, · · · , 30}
N2 = {1, 2}
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Figure 3. Strategic multistage scenario tree with operational two-stage scenario trees

Location-Allocation Parameters for Strategic and Operational Scenarios

γt, maximum number of hubs that can be available at any strategic node n that belongs to
stage t, for n ∈ Nt, t ∈ T .
λt, maximum number of origin nodes that can be allocated to a hub (i.e., whose flow can
be collected) in any strategic node that belongs to set Nt, for t ∈ T .
qk„maximum number of capacity modules that can be available at hub k, for k ∈ H.
K, flow capacity of a module in any hub. Note: The modules are assumed to be identical.

Costs Related to Hub k in Strategic Node n, for n ∈ N
Fn

k , hub building cost.
Gn

k , installation cost of an initial capacity module at the hub.
Hn

k , installation cost of an additional capacity module at the hub.
Mk,t, maintenance cost of a capacity module at hub k in stage t, for k ∈ H, t ∈ T . Note:
It is the expected cost in the operational scenarios in stage t that also depends on the
hub location.
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Costs Related to Operational Scenario π in Stage t, for Πt, t ∈ T
Aπ

ik, flow allocation setup cost of origin node i to hub k, for k ∈ Hi, i ∈ V .
Bπ

kl , flow transfer setup cost through hub edge kl, for kl ∈ K.
Cπ

ij , flow transportation setup cost from origin node i to destination node j in case the
non-stop service mode is chosen, for ij ∈ E .
Pπ

ij , unit cost of flow (a) collection from origin node i at hub j, for j ∈ Hi, i ∈ V , (b) transfer
through hub edge ij, for ij ∈ K, and (c) distribution from hub i to destination node j,
for i ∈ H, j ∈ V . Note: Pπ

ik (resp., Pπ
l j ) is zero for hub outbound (resp., inbound) flow,

where i = k (resp., l = j).

Note: All costs should be computed by considering the net present value.

Flow from Origin to Destination under Operational Scenario π in Stage t, for Πt, t ∈ T
Fπ

ij , flow demand from origin node i to destination node j under scenario π, for ij ∈ E .

Oπ
i , overall flow originated in node i under scenario π, computed as ∑j:ij∈E Fπ

ij , for i ∈ V .

Problem Decisions

• At the strategic nodes of the multistage scenario tree: location of the new hubs and
number of initial capacity modules to be installed as well as the additional ones to be
installed in the successor strategic nodes, if any.

• Under the operational scenarios in the two-stage trees, being rooted at the strategic
nodes: flow from origin nodes to be collected in the hubs, flow transferred from one
hub to another one, if any, flow distributed from the hubs to the destination nodes,
and flow directly transported from origin to destination in the non-stop service mode.

The objective is to minimize the expected hub building cost, the expected cost of initial
and additional capacity modules installation, and the expected cost of hub maintenance,
operation and routing flow along the time horizon.

3. HLP Literature Review

Let us look at the following HLP categories:

3.1. Static Deterministic Hub Location

Most of the works in the literature on hub location and operation (up to 2016, at least)
are usually related to a single period. Its key elements are assumed to be known with
certainty, such the origin-destination flow demand, the hub availability, and the strategic
and operational costs, among others. The hubs are frequently assumed to be uncapacitated
ones, and different types of MILP models are introduced, as well as a few nonlinear ones.
See the seminal works [14–16], and a survey of HLPs up to the early 1990s in [17]. An integer
model for the Euclidean uncapacitated HLP is presented in [18], jointly with an algorithm
to consider the set of valid inequalities that, in a Lagrangean relaxation framework, seem
to be tighter to reduce the branch-and-bound (B&B) burden. Several MILP models are
presented in [19] for the capacitated HLP, and tight valid inequalities are identified in a
B&B algorithm. A survey of HLPs is presented in [20], where some real-world applications,
models and decomposition algorithms for problem solving are reviewed by considering
works in the literature from 2013 to 2016. A further comprehensive review is presented
in [21] for the classical HLP.

The design of intermodal HLPs is reviewed in [10], where most of the 100 works that
are considered were published between 2014 and 2020. Most of those works are static
deterministic MILP models, very few are multiperiod ones, and the literature dealing with
uncertainty is very scarce, mainly devoted to dealing with disruptive events at the hubs and
the links. A capacitated intermodal transportation hub network model is presented in [22],
where spoke-to-hub and hub-to-spoke transportation is allowed. A real-life problem
of a Turkish public institution is considered for validating the proposed approach for
problem solving. A MILP model for a capacitated multimodal, multicommodity HLP is
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presented in [23], where a non-stop service mode (i.e., a direct transportation from origin
to destination) is considered as the hub network alternative.

A profit maximization is presented in [24] for a multicommodity multiple node
allocation to hubs in a singular HLP, where the design (here, so-called strategic) decisions
are as follows: nodes where hubs are located (satisfying the triangular inequality); node
selection as origin or destination of commodity, at least, to serve; and hub edges selection
to be used for transferring a commodity, at least. All of them are represented by binary
variables. Operational decisions for the commodities, in case of being serviced, are those
related to traffic through the network. All of them are represented by binary variables and,
since, the problem is uncapacitated, the integrality is relaxed, due to the fact that an optimal
solution guarantees that feature. A sophisticated Lagrangan relaxation is considered, where
the optimality of the solution is guaranteed.

Two formulations are presented in [25] for the uncapacitated HLP, where the flow
transfer between more than two hubs is allowed. Mixed integer-based approaches for
dealing with discrete multiple location-allocation hub-centroid problems are presented
in [26] and references therein. In that work, two non-cooperative agents, the leader and the
follower, are considered for locating hubs to compete for the same market in a static setting.

A mixed integer nonlinear optimization (traditionally, named MINLP) model for a
single period single allocation CHL problem is presented in [27], where the capacity is
represented by a set of exclusive modules of different size, and two hubs are allowed,
at most for flow transfers. The flow congestion in the hubs, see [28], is key in the approach,
being introduced with non-linearities in the objective function. It is partially linearized
by converting it into alternate partial linearizations, so that several mixed integer second
order conic program-based reformulations are also proposed.

The HLP-Ordered Median Tree problem (HLP-OMTP) is presented in [29] in its single-
allocation unconstrained version, where each network node is only allocated to one hub,
and a given number of hubs should be located. The objective function to minimize is the
weighted average cost of the ordered flow collection and distribution, as well as the hub
edges flow. Several Minimum Spanning Tree and OMTP-based binary linear optimization
models are introduced. A unified approach of the single-allocation OMTP is presented
in [30], where a MILP model is considered.

3.2. Multiperiod Deterministic Hub Location

Multiperiod models are very scarce given the problem’s difficulty; however, as noted
in [31], ‘ignoring the multiperiod nature of the problem might considerable formulations
affect costs’. A good review of multiperiod hub network expansion planning (NEP)
modeling and algorithmic approaches is presented in [2]. Among the very few works in the
literature dealing with the multiperiod NEP problem, A MILP model for the uncapacitated
hub NEP (MUNEP) is presented in [32]. A B&B approach is proposed for problem solving,
where a Lagrangean relaxation is considered for decomposing the model into smaller
submodels, by exploiting the NEP structure, and some reduction procedures are also
presented. Another MILP model is presented in [3] for MUNEP, where the leasing of
the hubs is performed along the time horizon, as well as the termination of the existing
contracts. Two approaches for problem solving are proposed; namely, an extension of the
Benders algorithm and a metaheuristic one. The latter is based on neighborhood structures,
so that the algorithm moves from one feasible solution (given by a set of hubs and hub
edges) to another one within the neighborhood of the former.

A MILP model is presented in [31] for the multiperiod capacitated NEP, where single
and multiple allocation variants are considered, and tight valid inequalities are generated
and appended to the model. Some MILPs for multiperiod multimodal NEP with hub
and hub edge capacity degradations due to disruptive events are presented in [33,34].
A problem with serial demands is presented in [1], where a set of valid inequalities are
identified and appended to the original MILP model. A Benders cut algorithm is introduced,
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and the approach is validated by considering a case study of humanitarian aid distribution
in Lebanon.

3.3. Static Stochastic Hub Location

Most of the works in the literature on static stochastic location are usually related to
network infrastructure stochastic disruptions, due to natural disasters and terrorist attacks.
See in [35] a comprehensive review on the subject. Additionally, a MINLP model pre-
sented for the single-allocation capacitated HLP with stochastic complete and partial hub
disruptions and stochastic partial hub edges (i.e., hub network links). A bi-objective frame-
work is considered for the minimization of the total cost and the maximum transportation
time, in order to get lower bounds for the Pareto-frontier. By appropriate approximations,
the nonlinear chance constraints are converted into linear ones, and then a MILP model
is considered. Near optimal Pareto solutions are obtained by two metaheuristics, namely,
a genetic algorithm and a variable neighborhood search-based algorithm.

3.4. Two-Stage Stochastic Hub Location

The key parameters in HLP are frequently uncertain in the decision making process in
real-life problems; however, the literature on stochastic hub NEP is very scarce. The real-
ization of the uncertain parameters in mathematical optimization can usually be structured
in a representative finite set of scenarios along the periods in a time horizon. Traditionally,
special attention has been paid to optimize the DEM of the stochastic model by, in this case,
minimizing the expected hub network location and operation in the scenarios. Obviously,
that optimization is subject to the satisfaction of the problem constraints for each of the
realizations (i.e., scenarios) that have been considered for representing the uncertainty of
the main parameters. Thereafter, it will be referred to as the risk neutral (RN) problem.
The parameters’ uncertainty in HLP has been studied since the 1960s, see, recently, [5,36].
Most of the works in the literature deal with two-stage static stochastic models, and related
algorithms for problem solving.

The capacitated/uncapacitated hub location decisions (referred to in this work as
strategic ones) under uncertainty are considered as first stage variables in the models.
No subordination is made to a single scenario, but all of them are considered as a whole
for decision making. On the other hand, the (referred to in this work as operational)
decisions on allocation of origin-destination flow demands from one hub to another are
considered as second stage variables in the scenarios. A typical static two-stage MILP
model is presented in [37], where the first stage variables represent the decisions about
the air freight hub location, and the second stage variables are the flight routes to allocate.
A two-stage pure binary model is presented in [38] for the uncapacitated HLP, where the
uncertainty is associated to the flow demand and transportation costs. It is shown that the
stochastic problem can be replaced with the equivalent expected value one for the demand-
dependent transportation costs. Additionally, a Monte Carlo simulation-based algorithm
is introduced for problem solving in case of independent transportation costs, where a
sample average approximation (SAA) scheme is integrated with a Benders decomposition.
Simulated annealing and imperialistic competitive metaheuristic algorithms are presented
in [39] to address a static sustainable fuzzy multiobjective HLP under uncertainty, based on
chance constrained optimization. Another HLP and a genetic metaheuristic are presented
in [40], where the overall transportation cost is minimized with a reliable constraint based
on the flow maximization through the network. One of its new features is that the hub
edge capacity is subject to stochastic degradation, as in a form of daily traffic, earthquake,
flood, etc. A version of the capacitated HLP under uncertainty is presented in [41], where
a robust static MILP model is introduced. A particle swarm metaheuristic algorithm is
introduced in [42] to address a static capacitated HLP under uncertainty, where a fuzzy
bi-objective model is also considered. A heuristic procedure for solving a static two-stage
MILP model is proposed in [43] for the uncapacitated HLP. Its scheme for dealing with
the non-stop service mode on the origin-destination flow servicing has partially inspired
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the current work. A two-stage model is presented in [44] for designing and maintaining a
reliable and efficient transportation network, whose infrastructure protection is considered
in an endogenous uncertainty-based scheme. An accelerated L-shaped algorithm (i.e.,
a specialization of the Benders algorithm for the two-stage stochastic optimization) is
introduced for problem solving. A two-stage stochastic MILP model for the capacitated
HLP is presented in [45], where the uncertainty in the demand is simulated by a Monte
Carlo-based SAA scheme. Another accelerated L-shaped algorithm, jointly with a variable
fixing approach, is presented for problem solving. A mixed integer quadratic model is
presented in [46] for the capacitated two-stage stochastic HLP under demand uncertainty,
where the location is performed at the first stage and the allocation of nodes to hubs is
done in the second one; an ad-hoc B&C algorithm is introduced.

A robust optimization approach for dealing with the uncapacitated HLP is presented
in [47], where the interval uncertainty is considered for the demand and transportation
cost; the MILP model is solved by a B&C algorithm. Robust binary models have been
presented in [48] for minimizing a distribution-free worst case scenario hub set-up cost, as
well as the flow transportation cost for single and multiple allocation versions in a static
(i.e., a single stage) setting.

To the best of our knowledge, the first work on a two-stage multiperiod stochastic
MILP model is presented in [4] for the capacitated hub NEP, where the definition of the
problem subject of the current work and some modeling schemes have been taken from.
It is implicitly assumed that the uncertainty is not periodwise-dependent. In contrast,
the value of the uncertain parameters, except for the first period, determines, with 100%
certainty, the value of the parameters in later periods. The hub building and initial capacity
modules installation are modelled by period-related ’here and now’ (i.e., first stage) binary
variables. The hub capacity modules expansion is modeled by scenario-related ’wait-and-
see’ (i.e., second stage) binary variables. There are no differences in the modeling treatment
between the strategic and operational uncertainties. The modeling object of the binary
decision variables is the so-called impulse one, instead of the tighter so-called step variable
type. Note that the value 1 for a step binary variable in a given stage means, in this case,
that the hub building occurred by that stage (i.e., at the same one or earlier). The value 1
for its impulse counterpart means that the hub building occurred at that stage.

3.5. Decomposition Matheuristics

Given the dimensions of the HLP large-scale instances, the straightforward use of
state-of-the-art solvers requires a very high computational effort. There are numerous
types of exact and inexact decomposition algorithms for stochastic MILP problem solving;
see [49] for a recent literature overview. However, the model solving up to optimality even
for a single scenario along a time horizon also requires a very high computational effort.
So, Lagrangean-based approaches for solving inter-connected scenario-based submodels
are excluded. To the best of our knowledge, the stochastic nested decomposition (SND)
methodology, see [50,51], among others, could be an interesting one to consider, where
the use of single strategic nodes-based submodels should not be discarded. However,
the computing time could be expensive even in that case.

Matheuristics, see [52–54], are the methodologies of choice for providing (hopefully,
good) feasible solutions for model (1)–(30), in affordable computing time. Very few even
provide the solution’s quality by obtaining lower bounds of the optimal solution value.
Fix-and-relax (FR) is a matheuristic, as far as we know, introduced in [55] for solving
dynamic deterministic 0-1 MILP problems; see also [56]. The solution value obtained at
the first FR level is a lower bound of the solution value of the problem. The approach has
given good results while solving large-scale dynamic deterministic and stochastic MILP
problems, see [57–60], among others.

The so-named restrict-relax (RR) variant was introduced in [61] where, besides fixing
variables and relaxing integrality, those fixings can be, iteratively, un-fixed at the B&C
nodes. That approach was considered in [62] for constructing a feasible solution of the
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optimal maintenance and refueling scheduling nuclear power plant in the first stage of
the multiperiod (5 years) two-stage 0–1 MILP model that is presented; the second stage is
composed by the power production optimization in the scenarios. A multi-neighborhood
search and other local procedures are devised for improving the RR solution. It allows one
to consider multi-objective functions. On the other hand, it provides a lower bound of the
optimal solution value. A hybridization MILP with dual heuristics and machine learning
techniques for the scheduling power as above are presented in [63].

3.6. On Multistage Strategic and Operational Stochastic Scenarios in Hub NEP. The Subject of
This Work

As can be observed in the stochastic HLPs considered above, the uncertainty is as-
sumed to be revealed at a single moment, being the case of the two-stage single-period
stochastic scenario tree setting, as well as the case of the two-stage multiperiod one. How-
ever, as pointed out in [5], there are many cases where the uncertainty is being revealed
along a time horizon, being frequently the case where the realization of the uncertainty is
stagewise-dependent. On the other hand, it is well documented in the stochastic literature
that a two-stage multiperiod stochastic tree is usually a relaxation of its most difficult mul-
tistage stochastic counterpart. Observe that the nonanticipativity constraints are violated
in the nodes of all stages but the first one, provided that the uncertainty is stagewise-
dependent. So, in that case, the two-stage approach would be inappropriate. However,
the proposed scheme in this work benefits from the HLP categories briefly reviewed above.

In real-life hub NEP problems, two types of time scaling could be considered, namely,
a long one (say, semesters, years) and another one where the timing is much shorter. So,
strategic decisions (in the long time scale) and operational ones (in the shorter time scale)
have to be considered. As it is pointed out in [9], point out that ’There is also a need to better
integrate hub location models with service network design research to bridge the strategic
and tactical [here, operational] decision models,. . . to bridge long- and short term decisions,
requiring managing the time scale differences between the different decisions’. The hub
location decisions, as well as the initial capacity dimensioning and extensions, are strategic
decisions to be made along a time horizon. The flow transportation through the hub
network, as well as a direct one for the pairs origin-destination, is an operational decision.

Two types of uncertain parameters are also considered in this work; namely, strategic
and operational ones. Examples of strategic parameters are the costs of hub building, as
well as the initial and additional capacity modules installation along the time horizon. The
uncertainty of that type of parameters is usually stagewise-dependent, i.e., its realization
varies depending on the realization of the uncertainty in the previous stages. In fact,
the parameters in a given stage may have different realizations for each set of parameters in
the previous stages. On other hand, the uncertainty of the so-called operational parameters
is only stage-dependent. It is represented in a two-stage scenario tree, where the nodes in
the second stage give the realizations of the set of those uncertain parameters (so-called
operational scenarios). Examples of this type of parameters are the origin-destination flow
demand, costs of flow hub collection, transfer and distribution, and the cost of the non-stop
service mode. This work deals with handling those difficult schemes.

See in [11] the rationale behind the partition of uncertain parameters into strategic
and operational ones and, as the case may be, tactical parameters. Basically, it consists of
considering that the strategic decisions should not be based on occasional operational ones
at the stages, nor on occasional realizations of other operational parameters. That is, it is
assumed that the strategic decisions should not depend on single operational scenarios in
the previous stages. By contrast, strategic decisions should depend on the realizations of
the strategic uncertain parameters in the stage, which depend on the previous ones, as well
as on the set of realizations as a whole of the operational parameters in the next stages. So,
while dealing with uncertainty in multistage scenario trees, that observation is translated
into considering that the strategic nodes in the tree should not be successors of occasional
operational nodes. An additional reason is the gigantic stochastic model that would result
in the unlikely case, where strategic and operational features are not being taken into
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independent consideration. Note that the operational uncertainty can be represented in
a two-stage tree, where the second stage nodes have one-to-one correspondence with
the operational scenarios in the stage. The root nodes of those trees are precisely the
strategic nodes in the stage, where the strategic uncertainty is realized and the related hub
availability is represented.

The multistage multiscale approach is considered in different industrial sectors, such
as production energy planning, see [11,64,65], and rapid transit network design, see [66].
None of those works present any algorithmic approach for empirically validating the
proposals, but an ad hoc one is considered in the latter. The multiscale approach is
also considered in multistage forest stand harvesting selection planning, see [67], where
multiperiod ’tactical’ activity replaces two-stage operational’ one. Note that it is related
to storable good production (as opposed to service production as in this work). Then,
it does influence, as an expected scenario set, the decisions to be made in the successor
strategic nodes.

While dealing with large time horizon problems as in this work, those two frequent
types of uncertainty imply two types of variables, precisely, strategic and operational. The
strategic variables are related to the decisions on the NEP infrastructure elements, such
as location, capacity, and availability timing. The operational variables are related to the
operational decisions of the available elements in the network at the stages along the time
horizon. So, there are two types of optimization models: strategic and operational, being
very different in all aspects and intrinsically inter-related in a usually large-scale model for
real-life problem solving.

3.7. Contribution of the Work

To the best of our knowledge, no work in the literature considers multiple-allocation
stochastic hub location in a time horizon setting where strategic uncertainty is represented
in a multistage finite scenario tree, and the operational one is represented in a finite set of
stage-dependent scenarios.

The main features of the contribution are as follows:

• A tight MILP model is introduced, where the investment on hub network availability
and expansion (i.e., number of hubs and the additional number of capacity modules
for the already available hubs) is assumed to be made at the strategic nodes of the
stages along the time horizon. The operation (i.e., origin node flow collection, transfer
and distribution to destination nodes) of the available hubs in the network is carried
out at the operational scenarios in the stages. The objective function to minimize is
the expected hub investment cost in the strategic nodes plus the expected cost related
to the operational scenarios. It is well-known that the step modeling object is tighter
than its impulse counterpart, since it produces higher lower bounds in the instances’
minimization. It also allows state variables to only link pairs of consecutive stages; in
fact, a variable of that type links a strategic node with each of its immediate successors
in a multistage stochastic setting.

• The large-scale of the problem’s realistic instances is due to the hub network size and
the number of capacity modules, as well as the cardinality of the strategic and opera-
tional scenario trees. It makes it unrealistic to seek a problem solving up to optimality
by the straightforward use of MILP solvers and, probably, any other current means.
Based on the type of network expansion modeling that is considered, the so-called
SFR3 decomposition matheuristic algorithm is introduced for problem solving. It
stands for scenario variables fixing and iteratively randomizing the relaxation reduc-
tion of the constraints and variables’ integrality. The aim is to obtain (hopefully, good)
feasible solutions whose overall cost optimality gap is also provided. The step variable
modeling object is key for achieving a good performance of the matheuristic. The
validity of the approach is computationally assessed, by considering a broad testbed
from medium- and large-scale instances up to very large-scale ones. The quality of
the results obtained by using a set of SFR3 strategies versus the straightforward use of
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a state-of-the-art MILP solver is also studied. Some of the results when using SFR3
are coherent with other works applying the matheuristic to solve very large scale
instances of optimization problems, possibly highly constrained ones, see [68]. An
approach with similar ideas as in SFR3 has been presented in [62] for a two-stage
multiperiod MILP model, to deal with the optimal maintenance and refuelling nuclear
power plants.

4. Strategic Multistage Operational Two-Stage Stochastic MILP Model for MS-Hub-NEP

Let the following notation, where binary and continuous variables are represented by
Greek and small letters, resp., and q, q′, n, n′, n1, n2, n3, t, t′ are indices.

Strategic Variables for Hub k in Strategic Node n, for k ∈ H, n ∈ N
The strategic variables represent the hub availability, the number of initial capacity

modules and the number of additional ones as an expansion. They are as follows:

γn
k , step binary variable whose value 1 means that hub k has been made available for flow

servicing by strategic node n and otherwise, 0.

Note 1: γn
k − γ

An
1

k = 1 means that hub k has been made available (i.e., built) in strategic

node n. On the other hand, γn
k − γ

An
1

k = 0 means that hub k has been made available by

strategic nodeAn
1 for γ

An
1

k = 1, and it has not yet been made available for γn
k = 0. Note 2: It

is assumed that hub k is already available at the beginning of the time horizon for γ
A0

1
k = 1.

δn
kq, step binary variable whose value 1 means that q capacity modules have been initially

installed at hub k by strategic node n and otherwise, 0, for all q = 1, · · ·, qk. Note 1: it is
assumed that q capacity modules are already available at the beginning of the time horizon

for δ
A0

1
kq = 1. In that case, γ

A0
1

k = 1 as well. Note 2: the initial capacity modules must be
installed in the same strategic node where the hub is made available, if any. So, γn

k = 0
implies δn

kq = 0, and vice versa, for all q = 1, · · ·, qk. Note 3: δn
kq = 1 implies δn

kq′ = 0 for
q, q′ = 1, · · ·, qk : q 6= q′.
ηn

kq, step binary variable whose value 1 means that q additional capacity modules have
been installed at hub k by strategic node n and, otherwise, 0, for all q = 1, · · ·, qk. Note 1:

ηn
kq − η

An
1

kq = 1 means that q additional capacity modules have been installed in strategic

node n. On the other hand, ηn
kq − η

An
1

kq = 0 means that those q modules have been installed

at hub k by strategic node An
1 for η

An
1

kq = 1, and they have not yet been installed for ηn
kq = 0.

Note 2: ηn
kq − η

An
1

kq = 1 implies ηn
kq′ − η

An
1

kq′ = 0 for q, q′ = 1, · · ·, qk : q 6= q′. Note 3:
the additional capacity modules can only be installed, if any, in the successor strategic

nodes to the one where the hub was made available, so, γn
k = 0 implies η

An
1

kq = 0 for any
admissible q.

The (kq)-based scheme is taken from [4], where the two-stage multiperiod stochastic
framework is presented. However, the step-variable based version considered here for the
multistage framework is tighter than the classical counterpart integer variable δn

k -based one.
Let the following notation to be used throughout the rest of the work when considering

the operational variables, see below:

Πn := Πtn∀ n ∈ N . It means the situation that results from the joint realization of the
uncertain strategic parameters represented in set An (recall that it is composed by node n
and its ancestors) and the operational scenario set Πtn for stage tn.

Operational Variables under Scenario π, for π ∈ Πn, n ∈ N
The operational variables represent the hub collection, transfer and distribution of the

flow demand. They are as follows:
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xπ
ik, flow originated in node i that is collected at hub k (i.e., transported from node i to hub k)

under scenario π, for k ∈ Hi, i ∈ V . The flow collected a hub can be transferred to another
one, and that flow can also be directly distributed to the appropriate network nodes.
λπ

ik, binary variable whose value 1 means that origin node i is allocated to hub k (i.e.,
xπ

ik > 0) under scenario π and otherwise, 0, for k ∈ Hi, i ∈ V . Note: λπ
ik = 0 implies xπ

ik = 0
and xπ

ik > 0 implies λπ
ik = 1.

yπ
ikl , flow originated in node i, which is collected at hub k to be transferred to hub l (as

the second one), and from there, it is distributed to the appropriate network nodes under
scenario π, for kl ∈ K→i , i ∈ V .
yπ

ilk, flow originated in node i that is collected at hub l to be transferred to hub k (as the
second one), and from there, it is distributed to the appropriate network nodes under
scenario π, for kl ∈ K←i , i ∈ V . Note: The variables yπ

ikl and yπ
ilk are mutually exclusive.

µπ
kl , binary variable whose value 1 means that there is flow that is transferred through hub

edge kl under scenario π (i.e., ∃i ∈ V : (yπ
ikl > 0 or yπ

ilk > 0)) and otherwise, 0, for kl ∈ K.
Note: µπ

kl = 0 implies yπ
ikl = 0 and yπ

ilk = 0, and yπ
ikl > 0 or yπ

ilk > 0 imply µπ
kl = 1 ∀i ∈ V .

zπ
il j, flow originated in node i destined to node j that is distributed from hub l; either as

the second one (in which case, the flow has been transferred from another hub) or as the
unique one (in which case, the flow has been collected at the same hub) under scenario π,
for l ∈ Hij, ij ∈ E .

Operational Variables for the Non-Stop Service Mode between Network Nodes under Scenario π,
for π ∈ Πn, n ∈ N
νπ

ij , binary variable whose value 1 means that flow Fπ
ij from origin node i to destination node

j is transported as a whole in a non-stop service mode under scenario π and otherwise, 0.

Appendix A presents an example to illustrate the joint role of the strategic nodes and
operational scenarios and the meaning of the variables in the model.

DEM for MS-Hub-NEP

The objective function C (1) is the minimization of the expected cost of the network
expansion planning in the scenarios, subject to the constraint system (5)–(30).

C = min f 1 + f 2 + f 3, (1)

where

f 1 = ∑
n∈N

wn ∑
k∈H

[
Fn

k (γ
n
k − γ

An
1

k ) +
( qk

∑
q=1

Gn
k .q.(δn

kq − δ
An

1
kq )
)
+
( qk

∑
q=1

Hn
k .q.(ηn

kq − η
An

1
kq )
)]

(2)

f 2 = ∑
n∈N

wn ∑
k∈H

Mk,tn
[ qk

∑
q=1

q.δn
kq +

qk

∑
q=1

q.ηn
kq
]

(3)

f 3 = ∑
n∈N

wn ∑
π∈Πn

wπ
[

∑
i∈V

∑
k∈Hi

Aπ
ikλπ

ik + ∑
kl∈K

Bπ
klµ

π
kl + ∑

ij∈E
Cπ

ij Fπ
ij νπ

ij +

∑
i∈V

[
∑

k∈Hi

Pπ
ik xπ

ik + ∑
kl∈K→i

Pπ
kl y

π
ikl + ∑

kl∈K←i
Pπ

kl y
π
ilk
]
+ ∑

i,j∈V :i 6=j
∑

l∈Hij

Pπ
l j zπ

il j
]

(4)

subject to

γ
An

1
k ≤ γn

k ∀k ∈ H, n ∈ N (5)

∑
k∈H

γn
k ≤ γtn ∀n ∈ N (6)

δ
An

1
kq ≤ δn

kq ∀q = 1, · · ·, qk, k ∈ H, n ∈ N (7)

qk

∑
q=1

(δn
kq − δ

An
1

kq ) = γn
k − γ

An
1

k ∀k ∈ H, n ∈ N (8)
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η
An

1
kq ≤ ηn

kq, ηn
kq ≤ γ

An
1

k ∀q = 1, · · ·, qk, k ∈ H, n ∈ N (9)

qk

∑
q=1

(ηn
kq − η

An
1

kq ) ≤ γ
An

1
k ∀k ∈ H, n ∈ N (10)

qk

∑
q=1

q.δn
kq +

qk

∑
q=1

q.ηn
kq ≤ qkγn

k ∀k ∈ H, n ∈ N (11)

λπ
ik ≤ γn

k ∀k ∈ Hi, i ∈ V , π ∈ Πn, n ∈ N (12)

0 ≤ xπ
ik ≤ Oπ

i λπ
ik ∀k ∈ Hi, i ∈ V , π ∈ Πn, n ∈ N (13)

∑
i∈V :k∈Hi

λπ
ik ≤ λtn ∀k ∈ H, π ∈ Πn, n ∈ N (14)

µπ
kl ≤ γn

k , µπ
kl ≤ γn

l ∀kl ∈ K, π ∈ Πn, n ∈ N (15)

(0 ≤ yπ
ikl):kl∈K→i , (0 ≤ yπ

ilk):kl∈K←i
(yπ

ikl):kl∈K→i + (yπ
ilk):kl∈K←i ≤ Oπ

i µπ
kl ∀kl ∈ K, i ∈ V , π ∈ Πn, n ∈ N (16)

xπ
ik + ∑

l:kl∈K←i
yπ

ilk = ∑
j:ij∈E :k∈Hij

zπ
ikj + ∑

l:kl∈K→i
yπ

ikl ∀k ∈ Hi, i ∈ V , π ∈ Πn, n ∈ N (17)

∑
i∈V :k∈Hi

xπ
ik + ∑

i∈V
∑

l:kl∈K←i
yπ

ilk ≤ K(
qk

∑
q=1

q.δn
kq +

qk

∑
q=1

q.ηn
kq) ∀k ∈ H, π ∈ Πn, n ∈ N (18)

∑
ij∈E

Fπ
ij (1− νπ

ij ) ≤ K ∑
k∈H

( qk

∑
q=1

q.δn
kq +

qk

∑
q=1

q.ηn
kq
)

∀π ∈ Πn, n ∈ N (19)

γn
i + γn

j + νπ
ij ≤ 2 ∀ij ∈ E , π ∈ Πn, n ∈ N (20)

∑
k∈Hi

xπ
ik + ∑

j:ij∈E
Fπ

ij νπ
ij = Oπ

i ∀i ∈ V , π ∈ Πn, n ∈ N (21)

0 ≤ zπ
il j ≤ Fπ

ij γn
l ∀l ∈ Hij ∀ij ∈ E , π ∈ Πn, n ∈ N (22)

∑
l∈Hij

zπ
il j = Fπ

ij (1− νπ
ij ) ∀ij ∈ E , π ∈ Πn, n ∈ N (23)

∑
k∈Hi :k 6=i

xπ
ik ≤ Oπ

i (1− γn
i ) ∀i ∈ H, π ∈ Πn, n ∈ N (24)

∑
l∈Hij :l 6=j

zπ
il j ≤ Fπ

ij (1− γn
j ) ∀i ∈ V , j ∈ H, π ∈ Πn, n ∈ N (25)

γn
k ∈ {0, 1} ∀k ∈ H, n ∈ N (26)

δn
kq ∈ {0, 1}, ηn

kq ∈ {0, 1} ∀q = 1, · · ·, qk, k ∈ H, n ∈ N (27)

λπ
ik ∈ {0, 1} ∀k ∈ Hi, i ∈ V , π ∈ Πn, n ∈ N (28)

µπ
kl ∈ {0, 1} ∀kl ∈ K, π ∈ Πn, n ∈ N (29)

νπ
ij ∈ {0, 1} ∀ij ∈ E , π ∈ Πn, n ∈ N . (30)

Function (2) expresses the hub network expected investment cost due to hub building,
initial capacity module installation, and additional ones along the time horizon. Function (3)
expresses the hub capacity modules expected maintenance cost under the operational sce-
narios. Function (4) expresses the overall expected cost to setup the origin node allocation
to hubs and hub edge transfer, as well as the expected cost for the non-stop service flow
from origin to destination and for the collecting, transfer and distributing the flow from
origin to destination in the operational scenarios. Note that the hub transfer link for flow
originated in a given node can be performed from hub k to hub l and from l to k. Note that
the elements {kl} in sets K→i and K←i are, by construction, such that k < l.

Constraints system (5)–(11) imposes restrictions on the hub building and the initial
and additional capacity modules. Constraint (5) defines the step character of the γ-binary

variables. Recall that γ
A0

1
k = 1 means that hub k is already available before starting the time
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horizon. Constraint (6) upper bounds the number of available hubs in the strategic nodes.
Constraint (7) defines the step character of the δ-binary variables.

Constraint (8) upper bounds the number of the initial capacity modules to be installed
in the hubs. Note that its installation is performed in the same strategic node (and, then,
at the same stage), where the related hub is made available. Additionally, the hub building
and its initial capacity module installation can only be performed once. So, given its one-

to-one correspondence with the term
qk

∑
q=1

δn
kq, the variable γn

k can be replaced. In that case,

the constraint system (5)–(11) should be reformulated. The drawback of this alternative is
that the model’s constraint matrix density is strongly increased, and there is no guarantee
that the resulting model will be a tighter one.

Constraint (9) defines the step character of the η-binary variables. It also prevents
additional capacity modules expansion in a strategic node n (i.e., ηn

kq = 1), in case the

related hub was not made available in any of its ancestor nodes (i.e., γ
An

1
k = 0).

Constraint (10) prevents the capacity module expansion at any hub in a strategic
node in case the hub has not previously been made available in an ancestor node. Note
that the constraint system (9) and (10) prevents the same number of additional capacity

modules to be expanded in a hub in any successor to node n, where ηn
kq − η

An
1

kq = 1. This
apparent shortcoming is arguably offset since, given the realistic instances’ dimensions—
see Section 6, seeking optimal solutions is not a high priority and, on the other hand, it is
convenient due to its mathematical strength.

Constraint (11) upper bounds the number of capacity modules that can be available at
the hubs. Observe also that the RHS is strengthened by considering the related γ-variables.
Let us point out that this type of constraints could be reinforced by cuts expressed as

∑
qk
q=1:q+q′>qk

δn
kq + ηn

kq′ ≤ γn
k ∀q′ = 1, · · ·, qk, k ∈ H, n ∈ N in order to prevent a number

of capacity modules that violate the given maximum that is allowed at the hubs. However,
provisional experience does not detect the computational effects of that model’s tightness.

Constraint system (12)–(25) imposes restrictions on the hub network under the op-
erational scenarios that belong to the two-stage trees rooted at the strategic nodes in the
multistage scenario tree. Constraint systems (12) and (13) define the variable upper bound
of the λ-binary variables in the hub network, and it prevents the allocation of origin nodes
to hubs that have not yet been made available.

Constraint (14) upper bounds the number of origin nodes to be allocated at any hub.
Constraint (15) forces a hub edge, say kl, to not be in operation (i.e., µπ

kl = 0), provided
that one of the two hubs, at least, has not yet been made available (i.e., γn

k γn
l = 0) by the

strategic node n where operational scenario π belongs to (i.e., π ∈ Πn). Constraint (16)
prevents the flow originated in node i, represented by the non-negative y-variables, could
be transferred from k to l or viceversa in case the hub edge kl is not available.

For a given origin node, the constraint (17) ensures the flow conservation balance in
a hub. Note that the flow that arrives to a hub, say k, as collected from the node plus the
flow that is transferred to it from other hubs, must be equal to the flow that is distributed
from that hub (as a unique one or a second hub), plus the flow that is transferred to the
other hubs. Observe that the y-variables in system (16) and (17) belong to the sets K→i and
K←i for flow transfer from hub k to l and from l to k, respectively.

Note also that the sets K→i and K←i are restricted to the hub edge set {kl} in the
directions from k to l and l to k, respectively.

Constraint systems (18) and (19) prevent the violation of the hub capacity by the
overall flow collected and transferred.

Constraint (20) prevents the service mode between nodes i and j under an operational
scenario, provided that both nodes were made hub available by the strategic node which
the operational scenario belongs to. Note that the classical tight modeling object νπ

ij ∈
{0, 1}, νπ

ij ≤ 1− γn
i , νπ

ij ≤ 1− γn
j cannot replace constraints (20) since, in this case, it
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should only restrict the non-stop service mode to the situation where neither of the two
related network nodes is a hub.

Constraint (21) ensures that the overall flow originated in a node is transported by
using the hub network as well as the non-stop service mode, if needed.

Constraint (22) defines the flow distribution z-variable. It also ensures that if a desti-
nation node receives flow from some hub (i.e., it is distributing it to the node), then the hub
is available.

Constraint (23) guarantees that an origin-destination flow is either delivered by using
the hub network or the non-stop service mode.

Constraint (24) prevents the flow originated at a hub (i.e., it is an outbound) from also
being collected at another. Constraint (25) prevents the flow destined to a hub (i.e., it is an
inbound) from being distributed by another.

The binary character of the γ-, δ-, η-, λ-, µ- and ν-variables is defined in (26)–(30).
The main limitations of model (1)–(30) are as follows: (a) no hub closing along the time

horizon, see [3] for hub leasing and contract cancellation in an uncapacitated deterministic
environment; (b) no degradation on the hub and hub edge capacities, due to disruptive
events, see [33,34] for multiperiod deterministic, [35] for static stochastic, and [40] for
two-stage stochastic with capacity degradation; and (c) no more than the classic two
hub paradigm, at most, for each origin-destination flow, see [25] for uncapacitated static
deterministic, where more than two hubs are allowed. See in Section 7.1 the outline of the
future research agenda.

For the ease of presenting of the submodels that result from the decomposition of
the original model to be presented next, allow the following additional notation for the
variables’ vectors:

Γn, state step binary variables in strategic scenario node n, for n ∈ N , such that

Γn = (γn
k , (δn

kq)
qk
q=1, (ηn

kq)
qk
q=1 ∀k ∈ H)

Xπ , continuous variables in operational scenario π, for π ∈ Πn, n ∈ N , such that

Xπ = (xπ
ik ∀k ∈ Hi, yπ

ikl ∀kl ∈ K→i , yπ
ilk ∀kl ∈ K←i , i ∈ V ; zπ

il j ∀l ∈ Hij, ij ∈ E)

∆π , binary variables under operational scenario π, for π ∈ Πn, n ∈ N , such that

∆π = (λπ
ik ∀k ∈ Hi, i ∈ V ; µπ

kl ∀kl ∈ K; νπ
ij ∀ij ∈ E)

Additionally, let variable q̃n
k denote the overall number of available capacity modules

(i.e., the initial and additional ones) at hub k in strategic node n, for k ∈ H, n ∈ N . It is
expressed as

qk

∑
q=1

q.δn
kq +

qk

∑
q=1

q.ηn
kq

5. SFR3, a Decomposition Matheuristic Algorithm

Fix-and-relax (FR) is a matheuristic algorithm that, to the best of our knowledge, was
introduced in [55] for solving dynamic deterministic 0–1 MILP problems. See the same
idea described in [56]. It consists of solving a sequential series of subproblems, such that
the variables in each one are partitioned into three subsets. The variables in the first subset
are fixed, the binary variables in the second one are kept integer, and the integrality of
the binary variables in the third subset is relaxed. The partition of the variables results
from an ordering which is established a priori, and the variables declared integer in each
subproblem define the so-called FR level. In particular, the variables that are fixed at
level ` are the variables fixed at level ` − 2 plus the variables declared integer in level
`− 1. However, as a matter of fact, the relaxation of the integrality in a sizable subset
of binary variables in the original problem (1)–(30) prevents taking advantage of that



Mathematics 2021, 9, 3177 19 of 39

integrality feature when solving the submodels in classical FR. Note that the knowledge of
the variables’ integrality by any solver strongly helps to model’s tightening by performing
probing, fixing variables, eliminating redundant constraints, and appending new cuts. So,
the computing effort could be very high for problem solving by straightforward use of
the optimizer as well as by using classical FR in the presence of a high number of binary
variables in the instance.

Algorithm 1, SFR3, stands for scenario variables fixing and iteratively randomizing the
relaxation reduction of the constraints and variables’ integrality. It is a specialization of the
FR methodology for partially preventing the drawbacks outlined above. At any iteration
but the last one, a given subset of constraints and variables’ integrality is relaxed. After
fixing some variables at any iteration, the main idea consists of reducing those relaxations
in a set of randomized executions. The rationale behind that scheme in a FR framework
consists of keeping the submodels’ dimensions within affordable limits until obtaining a
(hopefully, good) feasible solution.

Let the following input parameters and related new sets in SFR3, see Figure 4 and,
in particular, the relaxation so-called n-submodel of the original model (1)–(30), for n ∈ Nt.
(A version of that submodel is to be optimized at each modeler-driven execution in the
algorithm’s iterations, being related to a subset of the stages {t} in set T ):

Input parameters

e, number of executions of n-submodel in each iteration of algorithm SFR3.
t, number of consecutive stages (starting with stage t) where no constraints and no variables’
integrality are relaxed while solving the submodels at iteration t.
tR, number of the latest consecutive stages {t′}, where the relaxation of the variables’

integrality is performed in the n-submodel, say, t′ = {T, T− 1, · · ·, T− tR
+ 1}, provided

that relaxation is not performed for stage t′ : t ≤ t′ < t + t.
t∗, additional number of consecutive stages (starting with stage t + t) where no constraints
are relaxed while solving the submodels at iteration t. Note: 0 ≤ t∗ ≤ T − t.
αt′ , βt′ , probabilities that are allowed for the non-relaxation of operational scenario and
strategic nodes, resp., that belong to stage t′ in a execution of n-submodel, see next.

New sets at each execution of n-submodel

Ñ n
t′ ⊆ Sn ∩Nt′ , strategic node subset that belongs to stage t′ whose elements are successors

of strategic node n that are not relaxed for solving n-submodel at an execution, for t′ ∈
T : t′ ≥ t + (t + t∗), n ∈ Nt, t ∈ T : t ≤ T − (t + t∗). The nodes in set Ñ n

t′ are selected
at random with probability βt′ , but with the caveat on keeping a Hamiltonian path from
node n to a leaf node in the scenario tree.
Ln, leaf node set in the strategic subtree rooted at node n up to stage t + (t + t∗)− 1 for a
given execution of n-submodel. So, Ln = Sn ∩Nt+(t+t∗)−1. For the purpose of preserving
the caveat mentioned above, let the assumption: ∃` ∈ Ln, such that all nodes, say, {n3},
in the Hamiltonian path from a node, say, n1 to a node, say, n2 in the strategic scenario

tree, do satisfy the condition n3 ∈ (SA
n3
1

1 ∩ Ñ n
tn3), for n1 ∈ S`1 ∩ Ñ n

tn1 and n2 ∈ S` ∩ Ñ n
T .

Note that, by construction, node n1 satisfies that condition.
Π̃n′ ⊆ Πt′ , operational scenario subset in the two-stage tree rooted at strategic node n′

whose elements are not relaxed for solving n-submodel at an execution, for n′ ∈ Ñ n
t′ and

t, n as above. The scenarios in set Π̃n′ are selected at random with probability αt′ .
Sn

, subset of successor nodes of strategic node n that are not a subject for constraints
relaxation. It can be expressed as (31).
S̃n ⊆ Sn

, subset of the successor nodes {n′} of strategic node n, where the solution of the
strategic and related operational variables, jointly with the solutions of the variables in
node n and its related operational ones, are retrieved from solving the submodel. Those
solutions are partial of the solution for the original model (1)–(30). It can be expressed
as (32).
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S
n
, subset of the successor nodes in set Sn \ Sn

that have been chosen not to be relaxed
in the current execution of the algorithm, for n ∈ Nt, t ∈ T : t ≤ T − (t + t∗). It can be
expressed as (33).

Sn
= {n′ ∈ Sn : tn′ < t + (t + t∗)} (31)

S̃n = {n′ ∈ Sn : tn′ < t + t} (32)

S
n
=
⋃

t′∈T |t+(t+t∗)≤t′ Ñt′ . (33)

t = 1 t = 2 t = 3 t = 4 t = 5
t = 2 t

∗
= 1

t
R
= 3

n = 0

S0
= {1, 2, 3, 4, 5, 6}

S
0
= {7, 10, 11, 13, 15, 21, 23, 28}

Π̃7 = {c, d}
w′c = wc

wc+wd , c ∈ Π̃7

Variables’ integrality is not relaxed

Variables’ integrality is relaxed

Strategic and operational nodes
are relaxed
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Figure 4. Strategic multistage scenario tree with operational two-stage scenario trees. SFR3 strategic
and operational nodes’ relaxation.
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The solution of n-submodel at a given execution of any iteration is denoted as vector

(∆̂π , X̂π ∀π ∈ Π̃n′ , Γ̂n′ ∀n′ ∈ {n} ∪ Sn ∪ S
n
). The cost can be expressed

Cn = ∑
n′∈{n}∪Sn∪Sn

[
aΓn′

Γn′ + ∑
k∈H

Mk,tn′ q̃n′
k + ∑

π∈Π̃n′
wπ(a∆π

∆π + aXπ
Xπ)

]
. (34)

Let Cn denote the smallest cost in the executions of an iteration, and note that C0 is
the lower bound of the optimal solution of the original model (1)–(30). Additionally, let Ĉn

be the cost in Cn related to the variables in vector {n} ∪ S̃n, as a part of the full cost, viz., Ĉ
of the SFR3 solution of the original model to be expressed as

Ĉ := ∑
t∈{1,t+1,2t+1,···,T−t+1}

∑
n∈Nt

wnĈn. (35)

Let B = {L, U} denote the input option label, such that B = L means that the aim of
the algorithm’s execution is restricted to obtaining a lower bound of the solution value
of the original model (1)–(30). On the other hand, B = U means that the aim consists of
obtaining a (hopefully, good) feasible solution for the original model, where its solution
value is an upper bound of the solution value of the original model.

So, for B = U, the aim of the e executions of n-submodel (36), for n ∈ Nt, t ∈ T :
t ≤ T − (t + t∗), consists of providing a (hopefully, good) partial feasible solution, for the
original model (1)–(30), at the related iteration, whose cost is Cn (34). That solution is related
to the strategic node subset {n}∪ S̃n and the set of the operational scenarios

⋃
n′∈{n}∪S̃n Πn′ .

Additionally, the submodel is also included by the constraints and variables supported

by the non-relaxed strategic node subset (Sn \ S̃n) ∪ S
n

and the non-relaxed set of the
operational scenarios

⋃
n′∈(Sn\S̃n)∪Sn Π̃n′ . The submodel can be expressed as

min cost Cn(34) subject to the cons system : (36a)

Retrieved soln ΓA
n
1 := Γ̂A

n
1 (36b)

As cons system (5)–(11) where ∀n ∈ N
is replaced with ∀n′ ∈ {n} ∪ Sn ∪ S

n
(36c)

As cons system (12)–(25) where ∀π ∈ Πn, n ∈ N
is replaced with ∀π ∈ Π̃n′ , n′ ∈ {n} ∪ Sn ∪ S

n
(36d)

Binary variables’ integrality is not relaxed in vectors

∆π ∀π ∈ Π̃n′ and Γn′ ∀n′ ∈ {n} ∪ S̃n ∪ S
n

: tn′ ≤ T − tR. (36e)

Remarks on n-submodel (36): Given the step variable type of the modeling object that
is considered for the Γ-variables, only the strategic nodes An

1 and n link the submodel (36).
Node An

1 is such that tA
n
1 = t− 1. So, the solution Γ̂A

n
1 is retrieved from the An

1 -submodel.
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Algorithm 1: SFR3. On obtaining lower and upper bounds on MS-Hub-NEP model (1)–(30).

1 Step 0: Initialization ;

2 Input data: B ∈ {L, U}, t, t∗, tR, e, αt′ , βt′ ∀t′ ∈ T : t′ ≥ (t + t∗) ;
3 Set t := 1 and ê := 1 ;
4 Step 1: (Solving node n-submodel (36), for lexicographically ordered ∀n ∈ Nt)
5 repeat
6 Reset Ĉn := ∞ for ê := 1;
7 repeat
8 Updating Subsets Relaxation Reduction and Weights:
9 if t + (t + t∗)− 1 < T then

10 Generate Ñ n
t′ at random from set Sn ∩Nt′ , ∀t′ ∈ T : t′ ≥ t + (t + t∗);

11 Update Sn
(31), S̃n (32) and S

n
(33);

12 Reset strategic weights w′n
′

:= wn′/ ∑
n′′∈Ñ n

t′

wn′′ , ∀n′ ∈ Ñ n
t′ t′ ∈ T : t′ ≥ (t + t∗);

13 Reset Π̃n′ := Πtn′ ∀n′ ∈ {n} ∪ Sn
;

14 Generate Π̃n′ at random from set Πtn′ ;

15 Reset operational weights w′π := wπ/ ∑
π′∈Π̃n′

wπ′ , ∀π ∈ Π̃n′ , n′ ∈ S
n
;

16 if t + t = T − tR
+ 1 then tR := tR − 1;

17 else
18 Reset Sn

:= Sn, S
n

:= ∅ ∀n ∈ Nt; tR := 0;
19 and w′π := wπ ∀π ∈ Πtn′ , Π̃n′ := Πtn′ , w′n

′
:= wn′ ∀n′ ∈ {n} ∪ Sn

;

20 Solving n-submodel (36)
21 Output: Variables vector (∆̂π , X̂π ∀π ∈ Πn′ , Γ̂n′ ∀n′ ∈ {n} ∪ S̃n), and related cost Cn (34).
22 if B = U and Cn < Cn then Cn := Cn;

23 if B = L and C0 > C0 then C0 := C0;
24 Update ê := ê + 1;
25 until ê > e;
26 if B=L then
27 SFR3 lower bound is C0 and STOP;

28 Reset ê := 1;
29 Update t := t + t;
30 if t > T − t + 1 then t := T − t + 1;
31 until t > 0;
32 Step 2: (Compute the SFR3 solution value Ĉ (35) and report solution vector)
33 (∆̂π , X̂π ∀π ∈ Πn, Γ̂n) ∀n ∈ N , and STOP;

Additional Details

• For B = L, C0 is computed as the highest cost C0 (34) in the e executions of n-submodel
(36) for stage t = 1 (lines 20 and 23 of the Algorithm 1: SFR3), where n = 0. (Recall
that, without loss of generality, it is assumed that |N1| = 1 and 0 ∈ N1). C0 is
a lower bound of the solution value of the original model (1)–(30). Note that the
objective function and constraints for node 0 in the n-submodel, jointly with those
of its successor nodes in sets (31) and (33) and related operational scenarios, gives a
lower bound for each execution.
Additionally, observe that the algorithm running is interrupted after obtaining that
bound (lines 26–27), so, the input parameters t, t∗, tR, e, αt′ and βt′ , ∀t′ ∈ T : t′ >
(t + t∗) could be more restricted than the related values for option B = U.
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• For B = U, Cn is computed as the smallest cost Cn in the e executions (lines 20–21) of
the original model (1)–(30), so that the partial incumbent solution value (line 22) is
updated. For that purpose, the scheme in lines 7–25 is used, where n-submodel (36) is
solved for all n ∈ Nt until the updated stage t (line 30) is zero. The rationale behind it
is that, once the updated stage t (line 29) is such that t > T − t + 1, then the stages
{t′} involved in the next iteration are t′ = t, t + 1, · · ·, T. So, the execution of its Step 1
requires the resetting t := T − t + 1, and note that it is to be the last iteration of the
algorithm. Observe that t is reset to zero at the end of its execution.
Note 1: The submodel (36) for the full scenario tree rooted at node 0, (i.e., t = 1) is a
relaxation of the original model (1)–(30). It is solved for each of the e executions.
Note 2: The variables related to the ancestor strategic scenario nodes in set An \ {n}
are fixed to the values retrieved from the appropriate submodels. In any case, observe
that retaining the solution related to the stages t to t + t− 1 (that is, fixing it) implies
the independence of the submodels supported by the subtrees rooted at the nodes in
set Nt+t.

• The parameters αt′ and βt′ can have a value of 1. It could be the case where neither
strategic, nor operational constraints are relaxed. Observe that the relaxation of the
variables’ integrality is allowed for the last tR stages, so that it is the FR classical
algorithm for tR

= T − (t + t) + 1.
• The weights, say, w′n

′
and w′π (lines 12,15 and 19) to be used in n-submodel (36) for

obtaining the SFR3 solution are such that ∑n′∈Ñ n
t′

wn′ = 1 and ∑π′∈Π̃n′ wπ = 1.

• The strategic node set Ñ n
t′ for t′ ∈ T : t′ ≥ t + (t + t∗) and the operational scenario

set |Π̃n′ |, for n′ ∈ S
n

in n-submodel (36), are generated anew in any of the executions,
for n ∈ Nt, t ∈ T : t ≤ T − (t + t∗) (lines 10–14). Note: the best solution is retrieved
among the e executions.

• At Step 1, for a given stage t, such that t + (t + t∗)− 1 < T (line 9), the parameter tR

is reduced to tR := tR − 1 for t + t = T − tR
+ 1 (line 16). Recall that the parameter

tR is used for deciding the stages where the relaxation of the variables’ integrality is
carried out. Moreover, as above, but for t + (t + t∗)− 1 = T, the resetting in lines
18 and 19 is performed, including tR := 0 (i.e., no integer relaxation) and the related
weights. Note: in this case, it is assumed that the n-submodels (36) can be solved
without further relaxations in an affordable computing time.

• At Step 2, the SFR3 solution value Ĉ (35) is computed for the original model
model (1)–(30).

6. Computational Experience

This section reports the main computational results that have been obtained while
experimenting with a broad testbed composed of a variety of instances from medium MS-
Hub-NEP ones up to large-sized instances and very large-sized ones. Section 6.1 presents
the instance dimensions and the main parameters used in the experiment. It also gives
the structure of the multistage scenario tree under consideration. Section 6.2 presents
the dimensions of the related model (1)–(30) and reports the main results that have been
obtained by considering CPLEX straightforward use. Section 6.3 presents the strategies
that are used by matheuristic SFR3, as well as a comparison of the results.

The computational experiment was conducted on a PC with a 2.9 gigahertz dual-
core Intel Core i5 processor, 8 gigabyte of RAM and operating system OS X 10.12.1. The
modeling approach, as well as the proposed matheuristic, have been implemented in a C++
experimental code. The default options of CPLEX v20.1.0 are used for the full model (1)–(30)
solving, as well as for the n-submodels (36) to be optimized in SFR3. However, given the
difficulty of the problem, the optimality tolerance has been set to 1%.
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6.1. Testbed Instances

Table 1 shows the dimensions of the instances, under the assumption that the param-
eter D is large enough to allow K→i = K←i = K, Hij = Hi = H. The headings for the
instances and the structure of the scenario tree are as follows: inst, instance code; network
dimensions: |V| = |H|, number of network nodes, it is also the number of candidates hubs
in this experiment; |E | = |K|, number of network edges, it is also the number of candidate
hub links in this experiment; γ, maximum number of hubs that can be available at any
strategic node, so, γt := γ ∀t ∈ T ; |Π|, number of operational scenarios at any stage, so,
|Πt| := |Π| ∀t ∈ T . The other parameters are as follows: q = 5, maximum number of
capacity modules that can be installed at any hub, so, qk := q ∀k ∈ H; λ = 5, maximum
number of origin nodes that can be allocated to a hub in any strategic node at any stage,
so, λt := λ ∀t ∈ T ; T = 5, number of stages in the time horizon. The dimensions of the
strategic scenario tree are as follows, see Figure 3: b = 2, number of immediate successor
nodes for any strategic node (i.e., b = |Sn

1 | ∀n ∈ N \ NT); N = 31, number of strategic
nodes in the multistage scenario tree; and |Ω| = 16, number of strategic scenarios (i.e.,
|NT |). Assumption: The weights wn and wπ are equiprobable, so, wn = 1

|Nt | ∀t ∈ T and

wπ = 1
|Π| ∀π = 1, · · ·, |Π|.

The number of static stage deterministic hub network expansion planning submodels
within the (deterministically equivalent) stochastic full model (1)–(30) is N × |Π| = 31×
4 = 124 for |Π| = 4 and 31× 8 = 248 for |Π| = 8. Those submodels are inter-related by
initially sharing hub-network designing γ-binary variables in the strategic nodes from their
immediate ancestor in the scenario tree.

CAB-Inspired Data Generation

The testbed has been partially generated based on the well-known CAB data for
deterministic network problems, see [69]. For the experiment with MS-Hub-NEP, a data
pattern has been inspired on the two-stage multiperiod data considered in [4]. Accordingly,
the hub building setup cost, F0

i , has been computed as 7× 15× log(Ri), where Ri is an
’overall’ flow demand in origin node i.

By taking a 2% increase in the hub building cost from one stage to the next one
in the deterministic case, it has been considered in this experiment that Fn′

i = pn′Fn
i ,

for n′ ∈ Sn
1 , n ∈ N : tn < T, where pn′ = 1.02 and 1.04 for the even and odd nodes n′, resp.

Recall that node i is a potential hub, since V = H in this experiment.
The flow demand Fπ

ij is computed as the perturbed CAB-based expression

Fπ
ij = Rij(1 + 0.6(π − 1))× t ∀π ∈ Πt, t ∈ T ,

where Rij is the static stage deterministic flow demand for node pair ij ∈ E as taken from
the CAB data. So, Fπ

ij = Rij for the operational scenario π = 1 in the strategic node n = 0
(i.e., stage t = 1).

The flow capacity K of the modules can be expressed

K =
∑t∈T ∑π∈Πt ∑ij∈E Fπ

ij

2× γ× T × |Π| .

The installation setup costs of any initial or additional capacity module can be ex-
pressed Gn

k = 0.2× Fn
k and Hn

k = 1.2× Gn
k , resp., ∀k ∈ H, n ∈ N . The other cost types are

available upon request from the authors.
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Table 1. S-Hub-NEP problem. Dimensions.

inst V E γ aΠ inst V E γ Π

i1 4 12 2 4 i17 13 156 4 4
i2 5 20 2 4 i18 14 182 4 4
i3 4 12 2 8 i19 11 110 4 8
i4 6 30 2 4 i20 15 210 4 4
i5 5 20 2 8 i21 12 132 4 8
i6 7 42 2 4 i22 16 240 4 4
i7 6 30 2 8 i23 13 156 4 8
i8 8 56 2 4 i24 17 272 4 4
i9 9 72 2 4 i25 14 182 4 8

i10 7 42 2 8 i26 18 306 4 4
i11 10 90 2 4 i27 19 342 4 4
i12 8 56 2 8 i28 15 210 4 8
i13 11 110 4 4 i29 20 380 4 4
i14 9 72 2 8 i30 16 240 4 8
i15 12 132 4 4 i31 17 272 4 8
i16 10 90 2 8 i32 18 306 4 8

q = 5, λ = 5, T = 5, b = 2, N = 31, |Ω| = 16

6.2. CPLEX Straightforward Use. Results

Table 2 shows the model’s dimensions and CPLEX results. The headings for the
dimensions are as follows: m, n01 and nc, number of constraints, binary variables and
continuous variables, respectively, and nel and dens%, constraint matrix nonzero elements
and density, respectively. The headings for the results are as follows: zCPX , lower bound
of the solution value (i.e., value of the best node in the B&B tree up to the optimization’s
interruption); zCPX and tCPX, incumbent MILP solution value, and its computing time
(in seconds, as for all experiments), respectively; and GAPCPX, optimality gap of the
incumbent solution, being computed as 100. zCPX−zCPX

zCPX
.

Based on the computational results shown in Table 2, the testbed in Table 1 can be
classified into three categories: Cat 1 is included by the middle-scale instances from i1 to
i7, whose dimensions are up to m = 175,983 constraints, n01 = 27,156 binary variables and
nc = 134,292 continuous variables; Cat 2 is included by the large-scale instances from i8
to i19, whose dimensions are up to m = 881,643, n01 = 90,706 and nc = 750,882; and Cat 3
is included by the very large-scale instances from i20 to i32, whose dimensions are up to
m = 3,473,631, n01 = 242,172 and nc = 3,134,844. The computing time limit has been set to
2h for the instances in the categories Cat 1 and Cat 2. Moreover, given the high dimensions
of the instances in category Cat 3, the time limit has been set to 15 h.

The solution’s 1% quasi-optimality can not be proved in 4 out of the 7 instances in Cat
1, even considering the model’s tightness (based on the step type of the γ-,δ- and η-binary
variables). Observe that the optimization was interrupted due to the 2 h and 15 h time
limitation in all of the instances in Cat 2 and Cat 3, resp. As a matter of fact, that limit
was reached while obtaining the lower bound zCPX at the B&B root node. The incumbent
solution value zCPX has been provided by the CPLEX preprocessing heuristic algorithms.
Both values contribute to the very high GAPCPX , showing that CPLEX straightforward use
is useless. The situation worsens for Cat 3, where usually even no lower bound is obtained
at the root node in some instances, since CPLEX is running out of memory in most of them.
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Table 2. S-Hub-NEP model (1)–(30). Dimensions and CPLEX results.

inst m n01 nc nel dens% zCPX zCPX tCPX GAPCPX

i1 32971 6696 22568 121612 0.0126 327569 330875 464 1.00
i2 56675 10230 41230 220835 0.0076 332807 336167 3598 1.00
i3 63847 12152 43896 236188 0.0066 339726 353439 7200 3.88
i4 89555 14508 68076 363954 0.0049 387808 392613 7200 1.22
i5 110739 18910 80910 432875 0.0039 315954 323460 7200 2.32
i6 133099 19530 104594 559153 0.0034 532911 536941 3963 0.75
i7 175983 27156 134292 717354 0.0025 362215 375084 7200 3.43

i8 188795 25296 152272 814616 0.0024 801124 822825 7200 2.64
i9 258131 31806 212598 1138527 0.0018 930203 4841703 7200 80.79
i10 262555 36890 207018 1105993 0.0017 472112 2266526 7200 79.17
i11 342595 39060 287060 1539070 0.0014 1144090 1627930 7200 29.72
i12 373431 48112 302064 1615160 0.0012 706668 21683792 7200 96.74
i13 443675 47058 377146 2024429 0.0011 1172163 47319944 7200 97.52
i14 511587 60822 422406 2261223 0.0009 795665 42524520 7200 98.13
i15 562859 55800 484344 2602788 0.0009 3195294 77251399 7200 95.86
i16 679999 75020 571020 3060550 0.0007 – 52435248 7200 –
i17 701635 65286 610142 3282331 0.0007 3314880 85008481 7200 96.10
i18 861491 75516 756028 4071242 0.0006 4106601 104840641 7200 96.08
i19 881643 90706 750882 4029509 0.0005 1042866 61164636 7200 98.29

i20 1043915 86490 923490 4977705 0.0005 4367020 117037166 54000 96.27
i21 1119495 107880 964968 5184468 0.0004 3319747 106809226 54000 96.89
i22 1250395 98208 1114016 6009904 0.0004 4691711 128722145 54000 96.36
i23 1396531 126542 1216254 6541795 0.0003 3512539 115933184 54000 97.19
i24 1482419 110670 1329094 7176023 0.0003
i25 1715727 146692 1507716 8117858 0.0003 3978370 144521693 54000 97.25
i26 1741475 123876 1570212 8484246 0.0003
i27 2029051 137826 1838858 9942757 0.0002
i28 2080059 168330 1842330 9929025 0.0002 – 160339358 54000 –
i29 2346635 152520 2136520 11559740 0.0002
i30 2492503 191456 2223072 11991664 0.0002
i31 2956035 216070 2652918 14322143 0.0002
i32 3473631 242172 3134844 16936830 0.0001

No results: Out of memory.

6.3. SFR3 Matheuristic. Results

Besides the input parameters t, t∗, tR and e presented in Section 5, the elements of the
SFR3 strategies for solving the n-submodel (36), supported for a scenario tree rooted at
strategic node n, for each of its executions at the iteration coded as stage t, for n ∈ N , t ∈ T ,
are as follows:

α, probability of a scenario not to be relaxed in any operational set Πtn′ for non-relaxed
strategic node n′, where stage tn′ starts with t + (t + t∗) along the time horizon, so that αtn′

is fixed to α.
β, probability of a strategic node n′ not to be relaxed, where stage tn′ starts with t + (t + t∗)
along the time horizon, so that βtn′ is fixed to β.

The following four SFR3 strategies are considered in decreasing relaxation order:
stra = 1: Strong myopic. It consists of a myopic one stage-based rolling horizon approach,
where the submodel supported by a subtree rooted at strategic node n, is included by the
constraints and variables that only belong to that node as well as the related scenarios in
operational set Πn. Its components are t = 1, t∗ = 0, α = β = 0, tR

= − and e = 1, Note
that the scheme for the latest consecutive stages for variables’ integrality relaxation does not
apply here. Once the solution is fixed, the algorithm proceeds to update t := t + t = t + 1.
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stra = 2: Weaker myopic. It consists of a myopic two stage-based rolling horizon approach,
where (a) The model, supported by a subtree rooted at strategic node n, is included by the
constraints and variables that belong to that node n and its immediate successors n′ (i.e.,
set Sn

1 ) as well as the related scenarios in the operational sets Πn′ , for n′ ∈ {n} ∪ Sn
1 ; and

(b) The variables’ integrality is relaxed in the node sets Sn
1 and Πn′ , n′ ∈ Sn

1 . Its
components are t = 1, t∗ = 1, α = β = 0, tR

= (∗) and e = 1. By convention, tR
= (∗)

means that the variables’ integrality relaxation is restricted to the number t∗ = 1 of
consecutive stages starting at stage t + t, and in this case finishing at it, (i.e., the next one to
stage t in this experiment). Once the solution is fixed, the algorithm proceeds to update
t := t + t = t + 1.
stra = 3: Scenario variables Fixing and variables’ integrality iteratively Relaxation Reduc-
tion in the given latest consecutive stages T− tR

+ 1, · · ·, T. By construction, no constraints
are relaxed. Its components are t = 1, t∗ = 4, α = β = 1.00, tR

= 4 and e = 1, since T = 5
in this experiment. Note: t∗ = tR

= T − t.
stra = 4: Scenario variables Fixing and iteratively Randomizing the Relaxation Reduction
of the constraints and variables’ integrality, for chosen t, t∗, α, β, tR, e.

The computing time limit has been set to 2 h for each execution of submodel (36) in
any iteration of the strategies.

For assessing the performance of the SFR3 strategies, Table 3 reports the aggregation
by categories Cat 1, Cat 2 and Cat 3 of the instances’ results. The new headings are as
follows: zFR3, SD(zFR3), GAPFR3, tFR3, GRFR3, average and standard deviation of the cost
of the SFR3 incumbent solution zFR3, average of the optimality gap GAPFR3, average of
the computing time tFR3, and average of the goodness ratio GRFR3, resp. All the instances’
results are taken from Table A1, but GAPFR3 that is computed as 100. zFR3−zFR3

zFR3
, where the

lower bound zFR3 is taken from Table 4. For comparative purposes, it is also shown zCPX
for each category. It stands for the average cost of the CPLEX incumbent solution zCPX in
the instances as taken from Table 2.

It can be observed in Table 3 that strategy stra = 4 obtains an incumbent solution value
very similar for category Cat 1 to the one obtained by CPLEX straightforward. On the
other hand, it is the champion for medium- and large-scale instances (i.e., categories Cat 1
and Cat 2, resp.). Note that the higher the pair (α, β), the smaller the expected cost of the
incumbent solution in the scenarios. An important observation is that SFR3 provides a
lower bound, such that the optimality gap for the best pair (α, β) is around 6%.

Table 4 shows the results obtained for the best of the four strategies (i.e., the one
with the smaller solution value), whose computational comparison is shown in Table A1,
see Appendix B. The headings are as follows: inst-stra, instance code-strategy, where
stra goes from 1 to 4; zFR3 and tFR3, lower bound of the solution value of model (1)–(30)
obtained by SFR3 in an independent run to that based on the chosen strategy (see below),
and computing time, resp.; zB

FR3, z̃B
FR3 and tB

FR3, incumbent solution value (i.e., smallest
’expected’ cost (35) in the scenarios), median obtained by SFR3 in the set of e executions
that have been carried out for each n-submodel (36), and overall computing time that is
required, resp., for the whole set of the e executions; GAPFR3, optimality gap of the best

SFR3 incumbent solution zB
FR3, being computed as 100. zB

FR3−zFR3
zB

FR3
; and GRFR3, goodness

ratio of the SFR3 best incumbent solution zB
FR3 over the CPLEX one, being computed as

zB
FR3

zCPX
. Note: the smaller the goodness ratio GRFR3 < 1, the better performance of SFR3

versus CPLEX straightforward use.
Remark. The lower bound provided by SFR3 stra = 4 can be very weak for small

values of pair (α, β). So, zFR3 is the related lower bound of stra = 3 (i.e., the classical
fix-and-relax approach), independently of its ability for obtaining a feasible solution for the
original model (1)–(30). It is the lower bound of the solution value of the model attached to
strategic node n = 0 (i.e., at its iteration t = 1). For that purpose, 2 h time limit has been
imposed for instances in Cap 1 and Cap 2, and 4 h is the time limit for the instances in Cap 3.
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Note: zFR3 = − means that no solution has been obtained in the B&B root node within the
time allowed, as in instances i26, i27, i29 and i32.

Table 3. S-HUB-NEP model (1)–(30). SFR3 matheuristic strategies. Aggregated results.

stra α β zFR3 SD(zFR3) GAPFR3 tFR3 GRFR3

Cat 1 (inst 1–7) 1 0.00 0.00 581249 184058 33.3 11 1.471
2 0.00 0.00 464767 95525 19.7 11 1.249
3 1.00 1.00 383471 73930 5.4 69 1.010
4 0.50 0.50 382209 69933 5.2 306 1.010
4 0.33 0.33 391666 66684 7.6 160 1.039
4 0.25 0.25 409911 77080 10.7 113 1.090

Cat 2 (inst 8–19) 1 0.00 0.00 2170539 1693572 24.9 219 0.252
2 0.00 0.00 1796967 1377151 11.9 148 0.213
3 1.00 1.00 1699126 1340425 6.2 2897 0.201
4 0.25 0.25 1748194 1237701 6.6 2428 0.127

Cat 3 (inst 20–32) 1 0.00 0.00 8028490 2703307 — 3482 0.043
2 0.00 0.00 7422304 2688109 — 4506 0.038
4 0.25–0.16 0.25 - 0.16 7204197 2906017 — 31767 0.033

Cat 1: zCPX = 378368, Cat 2: zCPX = 41815637, Cat 3: zCPX = —.

Table 4. S-HUB-NEP model (1)–(30). SFR3 matheuristic. Best strategy results.

inst-stra t t∗ α β tR e zFR3 tFR3 zB
FR3 z̃B

FR3 tB
FR3 GAPFR3 GRFR3

i1.4 1 1 0.50 0.50 4 10 319858 9 331183 396499 31 3.42 1.00
i2.4 1 1 0.25 0.25 4 10 321304 10 326391 328097 29 1.56 0.97
i3.3 1 4 1.00 1.00 4 1 332855 56 354955 – 55 6.23 1.00
i4.4 1 1 0.50 0.50 4 10 377196 28 395607 403383 64 4.65 1.01
i5.4 1 1 0.50 0.50 4 10 309657 45 325288 326905 397 4.81 1.01
i6.4 1 1 0.50 0.50 4 10 519169 50 543769 544002 481 4.52 1.01
i7.4 1 1 0.50 0.50 4 10 356021 193 379276 381240 840 6.13 1.01

i8.3 1 4 1.00 1.00 4 1 788115 49 816346 – 65 3.46 0.99
i9.3 1 4 1.00 1.00 4 1 932002 505 967824 – 394 3.70 0.20

i10.4 1 1 0.50 0.50 4 10 472683 395 493947 495048 1776 4.30 0.22
i11.4 1 1 0.50 0.50 4 10 1142895 249 1211605 1221856 4680 5.67 0.74
i12.4 1 1 0.50 0.50 4 10 709831 577 742986 743665 2750 4.46 0.03
i13.3 1 4 1.00 1.00 4 1 1186540 3648 1262833 – 4953 6.04 0.03
i14.4 1 1 0.50 0.50 4 10 817481 1583 868283 874675 8534 5.85 0.02
i15.3 1 4 1.00 1.00 4 1 3220694 2848 3299658 – 2961 2.39 0.04
i16.3 1 4 1.00 1.00 4 1 1006187 2965 1105696 – 3056 9.00 0.02
i17.4 1 1 0.25 0.25 4 5 3348086 2701 3470274 3634862 1790 3.52 0.04
i18.4 1 1 0.25 0.25 4 5 4162110 4312 4376836 4703839 5665 4.91 0.04
i19.3 1 4 1.00 1.00 4 1 1084689 3356 1192122 – 7513 9.01 0.02

i20.4 1 1 0.25 0.25 4 5 4392699 14400 4677596 5117283 8211 6.09 0.04
i21.4 1 1 0.25 0.25 4 5 3320291 14400 3460527 3713737 3814 4.05 0.03
i22.4 1 1 0.25 0.25 4 5 4703126 14400 5647473 5885361 12152 16.72 0.04
i23.3 1 4 1.00 1.00 4 1 3569318 14400 3868223 – 7643 7.73 0.03
i24.4 1 1 0.25 0.25 4 5 7846036 14400 9766088 10115514 19097 19.66 –
i25.4 1 1 0.25 0.25 4 5 3980938 14400 4842158 4973660 11256 17.79 0.03
i26.4 1 1 0.25 0.25 4 5 – 14400 10634810 11670300 54606 – –
i27.4 1 1 0.25 0.25 4 5 – 14000 10515986 11979699 44680 – –
i28.4 1 1 0.25 0.25 4 5 4198601 14400 4848022 5141084 16810 13.40 0.03
i29.1 1 0 0.00 0.00 – 5 – 14000 11586305 – 5483 – –
i30.4 1 1 0.25 0.25 4 5 4419841 14400 5199642 5568422 30977 15.00 –
i31.4 1 1 0.16 0.16 4 5 7447912 14400 8228076 9286897 61123 9.48 –
i32.2 1 1 0.00 0.00 (*) 1 – 14400 8607805 – 17326 – –

(*) See definition of stra 2.
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Observe that the optimality gap allowed 1% is also satisfied by SFR3 for the instances
i1, i2 and i3. Additionally, the solutions obtained by SFR3 are very close to the CPLEX
ones for the other members of Cat 1. Probably, it is an indication of the quality of SFR3
as a solution provider. On the other hand, note that all of the 32 instances in the testbed
have been solved by matheuristic SFR3, where the strategies stra = 3, 4, usually, provide
comparable solutions with the CPLEX ones for the instances in Cat 1, see the goodness ratio
GRFR3, requiring very little computing time. On the other hand, SFR3 consistently provides
much better solutions for the instances with higher dimensions. It can also be observed that
strategy stra = 4 provides the best solution for most of the instances. However, strategy
stra = 3 gives the best solution value of 9 out of the 32 instances in the testbed within a
reasonable computing time. Additionally, note that the myopic strategies stra = 1, 2 were
needed for two of the most difficult instances, stra = 2 for i32 and even stra = 1 for i29.
Observe also the weakness of the lower bound for the instances in Cat 3, if any, reaching
the time allowed in all of them. Moreover, note also that the goodness ratio GRFR3 is very
small for the instances where CPLEX straightforward use provides a feasible solution; it
is below 0.04 for most of the instances in Cat 2 and Cat 3, which is an impressive result
obtained by SFR3 versus CPLEX straightforward use; the problem is so difficult that it is
hopeless, except for Cat 1.

It can be observed in Appendix B that the median cost z̃FR3 in the e =10 and 5
executions is very close to the incumbent one zFR3 in most of the instances when strategy
SFR3 stra = 4 is considered. Obviously, it means that at least 50% of the e executions give
very close costs to the incumbent one. So, besides those statistics, it is also important to
consider the cost distribution in the set of the e executions, instead of just considering the
expected one for some values of pair (α, β). For that purpose, Figure 5 depicts the boxplot
for the ’expected’ cost (35) distribution as well as the median in the e executions for instance
i6; all of those costs are generally named zcost. By construction, strategies stra = 1, 2, 3
only have e = 1 execution, so, the median is the same cost. On the other hand, e = 10
executions have been carried out for strategy stra = 4. Note the impact of considering
the two-stage myopic strategy stra = 2 versus the one-stage stra = 1. The randomized
relaxation reduction related strategy stra = 4 (where α = β = 0.50) provides a solution
with the smallest median.
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Figure 5. Instance i6. SFR3 strategies comparison. Cost distribution and median in e executions.
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7. Conclusions

In this work, a mixed integer linear optimization model is presented for the capaci-
tated hub network expansion planning problem, MS-Hub-NEP, in a multistage multiscale
framework under uncertainty. Two types of uncertainties are considered. Both are repre-
sented in finite sets of scenarios. The first type is related to the costs of the hub building
and initial capacity modules and extensions at the strategic nodes of a multistage scenario
tree; it is assumed to be stagewise-dependent and, then, it is attached to each strategic node
and influences its successors. The strategic variables have been modeled by considering
the step modeling object a tighter approach than its impulse counterpart. Additionally, it is
very appropriate for the decomposition matheuristic algorithm SFR3 that is also introduced
in this work. In contrast, the second type of uncertainty is related to the hub network
operation and, then, it is only stage-dependent. It represents the stage flow demand and
cost of flow hub allocation, collection, transfer and non-stop service from origin to desti-
nation. A two-stage tree rooted at the strategic nodes is considered for representing the
operational scenarios.

MS-Hub-NEP is very difficult to solve, even for medium-scale instances. CPLEX
straightforward use could only guarantee the solution’s 1% quasi-optimality in the three
smallest instances in the experiment that has been carried out, being composed by 32 in-
stances. As a matter of fact, its straightforward use is hopeless for large- and very large-scale
instances, where the execution is interrupted when reaching the computing time limit, 2 h
and 15 h, resp. The number of hubs, hub edges, stages and strategic nodes for each instance
go from 4, 12, 5, 31 to 20, 380, 5, 31, resp., the operational scenarios are 4 and 8 per stage
depending on the instance, and the number of constraints, binary variables and continuous
variables are 3,473,631, 242,172 and 3,134,844, resp.

The matheuristic SFR3 provides a solution for all of the 32 instances in the testbed. Two
of the four strategies that have been experimented with are one-stage and two-stage myopic
rolling time horizon-based approaches. They are a benchmark for the other two strategies
as well as for solving 2 out of the 13 very large-scale instances; the computing time is
affordable. The third strategy is the well-known Fix-and-Relax approach. Its usefulness for
solving MS-Hub-NEP has been empirically proven in this experiment, provided that the
hardware/software resources allow to solve the n-submodel (36) at the first iteration t = 1.
The fourth strategy deals with the scheme for iteratively Randomizing the Relaxation
Reduction of constraints and variables’ integrality for solving MS-Hub-NEP; it could
be expanded without much difficulty to solving other stochastic multistage multiscale
problems. The α- and β-mechanisms for selecting operational scenarios and strategic nodes,
resp., not to be relaxed in each execution of the submodel to be solved at each iteration
of the decomposition approach, have shown to be very efficient for solving this very
challenging HLP. The strategy is very flexible and its roots go back to the third strategy; on
the other hand, the optimality gap of the attained incumbent solution is reasonable. The
strategy usually provides the best results, within affordable computational resources. It
outperforms CPLEX straightforward use for large and very large instances (i.e., categories
Cat 2 and Cat 3). Note that the solution values of CPLEX and SFR3 are very similar for the
medium scale instances Cat 1.

Anyway SFR3 provides the lower bound of the solution value by considering the third
strategy for stage t = 1. Its optimality gap is around 6% for most of the instances.

7.1. Outline of Perspectives and Future Research Agenda

The structure of the model MS-Hub-NEP (1)–(30) can be considered on other types
of system or network expansion problems as the facility location and expansion plan-
ning [68] and, in a more general setting, the distributional robust optimization multistage
multiscale stochastic problems [70]. The proposed matheuristic methodology, including its
scheme for obtaining lower bounds and the potentiality for considering multi-objective
functions, could be extrapolated to solve other multistage multiscale MILP as those ones,
among others, in a similar way as in [62].
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The features of the strategic nodes and the operational scenario submodels that would
extend the proposed model as items in a research agenda are as follows: In the strategic
node submodel: (a) a moderate additional number of hubs to the two, at most, that right
now are considered for any origin-destination flow, (b) strategic uncertainty on the (total
or full) unavailability of hub edges and hubs themselves, due to disfunction interruptions;
and (c) allowing the possibility of hub leasing for given stages. In the operational scenario
submodels: operational uncertainty on the (total or full) unavailability of hub edges
and hubs themselves, due to temporal interruptions in the stages. Those features may
substantially increase the model’s high dimensions, due to the higher cardinality of the
operational scenario sets and additional strategic constraints. However, it seems that those
modifications can be accepted by the algorithm SFR3 as it is, given its generality.

In any case, note that the computing time that is required by strategies stra = 3, 4 is
relatively high for solving the n-submodel (36) for the set included by the first t stages,
even for t = 1. So, that difficulty precludes the exclusion of decomposition algorithms that
require the optimal solution of even one single scenario submodel as e.g., those approaches
based on scenario Lagrangean decomposition, see [49]. Probably, given the character of
the state step variables, the Stochastic Nested Decomposition (SND) research would take
benefit from the splitting variable scheme introduced in [51] for state binary variables, see
also [50]. As a matter of fact, it does not require solving any full scenario submodel. So,
it could be interesting to computationally compare the performance of SND against the
proposed matheuristic SFR3 alone, as well as considering it in the Front-to-Back step of the
first SND iteration.
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Appendix A. Illustrative Example

Figure A1 depicts an example to illustrate the main decisions to made in MS-Hub-NEP
and the role of the scenario strategic nodes and operational scenarios in a network whose
infrastructure is new for three-stages in a time horizon. It is assumed that 1, · · ·, 9 are the
network nodes.

Appendix A.1. Strategic and Operational Decisions

The strategic nodes under consideration are n = 0 at stage t = 1, n = 2 ∈ S0
1 at stage

tn = 2, and n = 5 ∈ S2
1 at stage tn = 3 in the scenario tree depicted in Figure 3. Based

on the hub building and capacity module costs in the strategic nodes as well as the flow
demand and transportation costs under the operational scenarios, the strategic decisions
are assumed to be made as follows: for n = 0, hubs 1 and 3 building with given initial
capacity modules; for n = 2, hub 1 capacity expansion with given additional modules,
and hub 2 building with given initial capacity modules; and for n = 5, hub 2 capacity
expansion with given additional modules.

The figure also shows the operational decisions that have been assumed for each of
those strategic nodes under given scenarios in the operational set Πn, for n = {0, 2, 5}.
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Those decisions are related to transporting the flow demand from origin to destination.
That is, it shows the routes i → j, i → k → j or i → k → l → j, for the flow of each
network node pair (ij) under the operational scenario in Πn assumed in the example for
the strategic node set under consideration. Recall that i→ j denotes the non-stop service
mode for node pair (ij), so that in case of occurring then the other routes are prevented.
For saving space purposes, let us assume that the operational decisions that have been
made for strategic node n = 0 are as the ones considered in Figure 1, so that they have
been brought to Figure A1. The operational decisions for the strategic nodes n = 2 and
n = 5 in the example are also depicted in the figure. Observe that it is assumed that hub 1
is outbound under the given operational scenario related to strategic node n = 5, being the
origin of a portion of the flow demand to destination node 5.

Strategic variables for hub k in strategic nodes n = 0, 2, 5

• For node n = 0:

– γ0
1 = γ0

3 = 1.
– δ0

1,q = 1, where e.g., q = 1 initial capacity module, and δ0
3,q = 1, where e.g., q = 4.

• For node n = 2:

– γ2
1 = γ2

3 = 1.
– γ2

2 = 1, and δ2
2,q = 1, where e.g., q = 1 initial capacity module.

– η2
1,q = 1, where e.g., q = 2 additional capacity modules.

• For node n = 5:

– γ5
1 = γ5

2 = γ5
3 = 1.

– η5
2,q = 1, where e.g., q = 3 additional capacity modules.

Operational variables for a given scenario π ∈ Πn in each strategic node n = 0, 2, 5

• For node n = 0:

– νπ
7,6 = νπ

7,8 = νπ
2,7 = 1.

– xπ
8,3 > 0, λπ

8,3 = 1, xπ
6,1 > 0, λπ

6,1 = 1, xπ
2,1 > 0, λπ

2,1 = 1.
– yπ

8,3,1 > 0, yπ
2,1,3 > 0, µπ

1,3 = 1.
– zπ

8,3,4 > 0, zπ
8,3,3 > 0, zπ

6,1,4 > 0, zπ
6,1,5 > 0, zπ

8,1,5 > 0, zπ
2,3,9 > 0.

Note: Hub 3 is a flow inbound from origin node 8.
• For node n = 2:

– xπ
7,2 > 0, λπ

7,2 = 1, xπ
8,2 > 0, λπ

8,2 = 1, xπ
6,1 > 0, λπ

6,1 = 1, xπ
4,3 > 0, λπ

4,3 = 1, xπ
8,3 > 0,

λπ
8,3 = 1.

– yπ
7,2,3 > 0, µπ

2,3 = 1, yπ
6,1,2 > 0, yπ

8,2,1 > 0, µπ
1,2 = 1, yπ

6,1,3 > 0, µπ
1,3 = 1.

– zπ
7,3,9 > 0, zπ

8,2,7 > 0, zπ
6,2,7 > 0, zπ

6,1,4 > 0, zπ
6,1,5 > 0, zπ

6,3,9 > 0, zπ
7,2,8 > 0, zπ

4,3,8 > 0,
zπ

8,3,9 > 0.

• For node n = 5:

– xπ
7,2 > 0, λπ

7,2 = 1, xπ
9,3 > 0, λπ

9,3 = 1, xπ
1,1 > 0, λπ

1,1 = 1, xπ
6,1 > 0, λπ

6,1 = 1, xπ
1,1 > 0,

λπ
1,1 = 1.

– yπ
7,2,3 > 0, µπ

2,3 = 1, yπ
7,2,1 > 0, yπ

5,1,2 > 0, µπ
2,1 = 1, yπ

6,1,3 > 0, µπ
1,3 = 1.

– zπ
7,3,9 > 0, zπ

7,3,4 > 0, zπ
7,1,5 > 0, zπ

7,2,8 > 0, zπ
9,3,8 > 0, zπ

1,1,5 > 0, zπ
6,3,9 > 0, zπ

5,2,8 > 0.
– νπ

9,4 = 1.

Note: Hub 1 is a flow outbound to destination node 5.
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Strategic decisions:

Hub building with initial capacity modules

Hub with additional modules

Operational decisions:

Flow transfer from a hub to another one

Flow distributed from a hub to a destination node

Flow from an original node collected at a hub

Flow directly transported from origin to destination in the non-service mode

n = 0 : (7 → 6); (7 → 8); (2 → 7); (8 → 3 → 4); (8 → 3); (6 → 1 → 4); (6 → 1 → 5); (8 → 3 → 1 → 5); (2 → 1 → 3 → 9)

n = 2 : (7 → 2 → 3 → 9); (8 → 2 → 7); (8 → 2 → 1 → 4); (6 → 1 → 2 → 7); (6 → 1 → 4); (6 → 1 → 5); (6 → 1 → 3 → 9); (7 → 2 → 8); (4 → 3 → 8); (8 → 3 → 9)

n = 5 : (7 → 2 → 3 → 9); (7 → 2 → 3 → 4); (7 → 2 → 1 → 5); (7 → 2 → 8); (9 → 3 → 8); (1 → 5); (6 → 1 → 3 → 9); (5 → 1 → 2 → 8); (9 → 4)

Figure A1. Origin and destination network nodes and hubs representation. Strategic and operational decisions.

Appendix B. Computational Comparison of the SFR3 Strategies stra = 1, 2, 3, 4

Table A1 reports information about the behavior of different values for pair (α, β) in
strategy stra = 4. In particular, the values are (0.50, 0.50), (0.33, 033) and (0.25, 0.25). The
additional headings are as follows: inst-stra, instance code - strategy, where stra goes from
1 to 4; zFR3, z̃FR3 and tFR3, incumbent solution value (i.e., the smallest ’expected’ cost (31)
in the scenarios), median obtained by SFR3 in the set of e executions that have been carried
out for the probability pair (α, β) in each n-submodel (36), and overall computing time that
is required by the whole set of executions, resp.; and GRFR3, goodness ratio of the SFR3
incumbent solution zFR3 over the CPLEX one, being computed as zFR3

zCPX
, where the smaller

GRFR3 < 1, the better performance of SFR3 versus CPLEX straightforward use.
It is worth to point out that it is required to increase the randomized relaxation fraction

up to (1− α) = (1− β) = 0.84 for some of the most difficult instances, say i31 and i32.
Observe also that the SFR3 strategies stra = 3, 4 usually provide comparable solutions

with the CPLEX straightforward use for the instances in Cat 1, see the goodness ratio GRFR3,
requiring very small computing time. On the other hand, SFR3 consistently provides much
better solutions for the instances with higher dimensions. Note that in most of the instances
the goodness ratio GFR3 is below 0.04, which is an impressive result for SFR3 versus CPLEX
straightforward use. On the other hand, it requires an affordable computing time up to
instance i22, being usually smaller than the one allowed for CPLEX straightforward use.
No solution is provided by the latter for most of the difficult problems in Cat 3. However,
the strategies stra = 3, 4 do provide the best solution value, but for instances i29 and i32
where stra = 1, 2 give a better solution in a much smaller computing time.

As a reminder, SFR3 strategy stra = 3 is the classical Fix-and-Relax, which does
not provide any solution for instances i25, i31 and i32, see Table A1. The main reason
is that CPLEX cannot solve n-submodel (36) at iteration t = 1; note that the variables’
integrality is relaxed for some of the submodels. On the other hand, note that it could
happen that CPLEX straightforward use (for the full model) does provide a solution for
the same instance. The main reason in large-scale instances is that CPLEX -as well as other
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state-of-the-art solvers- use the available information on the variables’ integrality. For the
straightforward use of the solver, it is the information on all of the binary variables from
the first stage to the last. By contrast, CPLEX in SFR3 strategy stra = 3 does only use the
information on the variables’ integrality of the strategic nodes where the solution is sought
for (i.e., set n′ ∈ {n} ∪ S̃n and related sets Πn′ ), while the variables’ integrality for the
other successor nodes has been relaxed. However, observe that the model dimensions for
CPLEX straightforward use could be increased by appending the additional cuts generated
by the integrality implications detected in the preprocessing phase. Thus, that increase
in the model could prevent attaining solutions at the B&B root node when the computer
memory and time requirements are up to the imposed limitations, as it is the case for the
testbed in the experiment. As an example, SFR3 stra = 3 gives the incumbent solution
value zFR3 = 494,044 for instance i10, requiring tFR3 = 412 seconds. CPLEX straightforward
use could not provide a solution at the B&B root node in the 2h time limit, but the lower
bound zCPX = 472,112 and, on the other hand, zCPX = 2,266,526 is the very bad solution
obtained by the CPLEX preprocessing heuristics; see Table 2 in the main body of the paper.
Thus, GRFR3 = 0.22.

It can be observed for SFR3 stra = 4 that the median cost z̃FR3 in the e =5 and 10
executions is very close to the incumbent zFR3 in most of the instances. Obviously, it
means that at least 50% of the e executions give very close costs to the incumbent one. So,
besides those statistics, it is also important to consider the cost distribution in the set of the
e executions, instead of just the expected one for some values of pair (α, β). For clarification
purposes, see Figure A1 above.

Table A1. S-HUB-NEP model (1)–(30). SFR3 matheuristic. Strategies’ results.

inst-stra t t∗ α β tR e zFR3 z̃FR3 tFR3 GRFR3

i1.1 1 0 0.00 0.00 – 1 566419 – 2 1.71
i1.2 1 1 0.00 0.00 (*) 1 568971 – 1 1.72
i1.3 1 4 1.00 1.00 4 1 332254 – 9 1.00
i1.4 1 1 0.50 0.50 4 10 331183 396499 31 1.00
i1.4 1 1 0.33 0.33 4 10 395593 433559 17 1.20
i1.4 1 1 0.25 0.25 4 10 395497 434082 16 1.20

i2.1 1 0 0.00 0.00 – 1 354618 – 2 1.05
i2.2 1 1 0.00 0.00 (*) 1 339152 – 3 1.01
i2.3 1 4 1.00 1.00 4 1 337364 – 14 1.00
i2.4 1 1 0.50 0.50 4 10 345266 345685 52 1.03
i2.4 1 1 0.33 0.33 4 10 345300 352808 32 1.03
i2.4 1 1 0.25 0.25 4 10 326391 328097 29 0.97

i3.1 1 0 0.00 0.00 – 1 913829 – 6 2.59
i3.2 1 1 0.00 0.00 (*) 1 588399 – 4 1.66
i3.3 1 4 1.00 1.00 4 1 354955 – 55 1.00
i3.4 1 1 0.50 0.50 4 10 355073 355132 212 1.00
i3.4 1 1 0.33 0.33 4 10 355073 552572 116 1.00
i3.4 1 1 0.25 0.25 4 10 501339 501339 5 1.42

i4.1 1 0 0.00 0.00 – 1 589659 – 8 1.01
i4.2 1 1 0.00 0.00 (*) 1 403383 – 5 1.01
i4.3 1 4 1.00 1.00 4 1 397350 – 34 1.01
i4.4 1 1 0.50 0.50 4 10 395607 396156 130 1.01
i4.4 1 1 0.33 0.33 4 10 395607 403383 72 1.01
i4.4 1 1 0.25 0.25 4 10 395607 403383 64 1.01
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Table A1. Cont.

inst-stra t t∗ α β tR e zFR3 z̃FR3 tFR3 GRFR3

i5.1 1 0 0.00 0.00 – 1 407646 – 34 1.26
i5.2 1 1 0.00 0.00 (*) 1 409952 – 35 1.27
i5.3 1 4 1.00 1.00 4 1 326541 – 52 1.01
i5.4 1 1 0.50 0.50 4 10 325288 326905 397 1.01
i5.4 1 1 0.33 0.33 4 10 325711 328035 263 1.01
i5.4 1 1 0.25 0.25 4 10 326391 328097 210 1.01

i6.1 1 0 0.00 0.00 – 1 763196 – 6 1.42
i6.2 1 1 0.00 0.00 (*) 1 558594 – 7 1.04
i6.3 1 4 1.00 1.00 4 1 554524 – 73 1.03
i6.4 1 1 0.50 0.50 4 10 543769 544002 481 1.01
i6.4 1 1 0.33 0.33 4 10 543770 545249 197 1.01
i6.4 1 1 0.25 0.25 4 10 544002 557659 169 1.01

i7.1 1 0 0.00 0.00 – 1 473378 – 22 1.26
i7.2 1 1 0.00 0.00 (*) 1 384915 – 19 1.03
i7.3 1 4 1.00 1.00 4 1 381308 – 249 1.02
i7.4 1 1 0.50 0.50 4 10 379276 381240 840 1.01
i7.4 1 1 0.33 0.33 4 10 380610 420863 425 1.01
i7.4 1 1 0.25 0.25 4 10 380147 453920 301 1.01

i8.1 1 0 0.00 0.00 – 1 1077627 – 6 1.31
i8.2 1 1 0.00 0.00 (*) 1 842510 – 18 1.02
i8.3 1 4 1.00 1.00 4 1 816346 – 65 0.99
i8.4 1 1 0.50 0.50 4 10 817379 842510 860 0.99
i8.4 1 1 0.33 0.33 4 10 816947 842543 430 0.99
i8.4 1 1 0.25 0.25 4 10 842510 965237 340 1.02
i9.1 1 0 0.00 0.00 – 1 1113515 – 12 0.23
i9.2 1 1 0.00 0.00 (*) 1 1058052 – 45 0.22
i9.3 1 4 1.00 1.00 4 1 967824 – 394 0.20
i9.4 1 1 0.50 0.50 4 10 968313 985627 5083 0.20
i9.4 1 1 0.33 0.33 4 10 984841 990246 1664 0.20
i9.4 1 1 0.25 0.25 4 10 985445 1008011 1210 0.20

i10.1 1 0 0.00 0.00 – 1 518999 – 21 0.23
i10.2 1 1 0.00 0.00 (*) 1 496106 – 41 0.22
i10.3 1 4 1.00 1.00 4 1 494044 – 412 0.22
i10.4 1 1 0.50 0.50 4 10 493947 495048 1776 0.22
i10.4 1 1 0.33 0.33 4 10 493947 556325 827 0.22
i10.4 1 1 0.25 0.25 4 10 494865 521692 713 0.22

i11.1 1 0 0.00 0.00 – 1 1493974 – 240 0.92
i11.2 1 1 0.00 0.00 (*) 1 1311741 – 168 0.81
i11.3 1 4 1.00 1.00 4 1 1215811 – 334 0.75
i11.4 1 1 0.50 0.50 4 10 1211605 1221856 4680 0.74
i11.4 1 1 0.33 0.33 4 10 1211701 1221856 2091 0.74
i11.4 1 1 0.25 0.25 4 10 1211715 1311799 1908 0.74

i12.1 1 0 0.00 0.00 – 1 929879 – 99 0.04
i12.2 1 1 0.00 0.00 (*) 1 900970 – 96 0.04
i12.3 1 4 1.00 1.00 4 1 743000 – 643 0.03
i12.4 1 1 0.50 0.50 4 10 742986 743665 2750 0.03
i12.4 1 1 0.33 0.33 4 10 743013 872369 1524 0.03
i12.4 1 1 0.25 0.25 4 10 743054 769487 1232 0.03

i13.1 1 0 0.00 0.00 – 1 2004808 – 147 0.04
i13.2 1 1 0.00 0.00 (*) 1 1336341 – 146 0.03
i13.3 1 4 1.00 1.00 4 1 1262833 – 4953 0.03
i13.4 1 1 0.25 0.25 4 5 1287213 1340038 1295 0.03
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Table A1. Cont.

inst-stra t t∗ α β tR e zFR3 z̃FR3 tFR3 GRFR3

i14.1 1 0 0.00 0.00 – 1 1072064 – 121 0.03
i14.2 1 1 0.00 0.00 (*) 1 870620 – 112 0.02
i14.3 1 4 1.00 1.00 4 1 874675 – 1467 0.02
i14.4 1 1 0.50 0.50 4 10 868283 874675 8534 0.02
i14.4 1 1 0.33 0.33 4 10 869989 873346 3470 0.02
i14.4 1 1 0.25 0.25 4 10 869750 873346 2745 0.02

i15.1 1 0 0.00 0.00 – 1 4748345 – 158 0.06
i15.2 1 1 0.00 0.00 (*) 1 3378703 – 114 0.04
i15.3 1 4 1.00 1.00 4 1 3299658 – 2961 0.04
i15.4 1 1 0.25 0.25 4 5 3376770 3521995 1273 0.04

i16.1 1 0 0.00 0.00 – 1 1322785 – 373 0.03
i16.2 1 1 0.00 0.00 (*) 1 1314440 – 317 0.03
i16.3 1 4 1.00 1.00 4 1 1105696 – 3056 0.02
i16.4 1 1 0.50 0.50 4 10 1115006 1118602 9982 0.02
i16.4 1 1 0.33 0.33 4 10 1110520 1127188 5573 0.02
i16.4 1 1 0.25 0.25 4 10 1108419 1188678 4631 0.02

i17.1 1 0 0.00 0.00 – 1 4765528 – 216 0.06
i17.2 1 1 0.00 0.00 (*) 1 3840918 – 169 0.05
i17.3 1 4 1.00 1.00 4 1 3498342 – 5640 0.04
i17.4 1 1 0.25 0.25 4 5 3470274 3634862 1790 0.04

i18.1 1 0 0.00 0.00 – 1 5563198 – 496 0.05
i18.2 1 1 0.00 0.00 (*) 1 4998428 – 287 0.05
i18.3 1 4 1.00 1.00 4 1 4919158 – 7323 0.05
i18.4 1 1 0.25 0.25 4 5 4376836 4703839 5665 0.04

i19.1 1 0 0.00 0.00 – 1 1435743 – 737 0.02
i19.2 1 1 0.00 0.00 (*) 1 1214774 – 262 0.02
i19.3 1 4 1.00 1.00 4 1 1192122 – 7513 0.02
i19.4 1 1 0.25 0.25 4 5 1305792 1329767 4247 0.02

i20.1 1 0 0.00 0.00 – 1 5509216 – 565 0.05
i20.2 1 1 0.00 0.00 (*) 1 5376021 – 620 0.05
i20.3 1 4 1.00 1.00 4 1 5250293 – 7454 0.04
i20.4 1 1 0.25 0.25 4 5 4677596 5117283 8211 0.04

i21.1 1 0 0.00 0.00 – 1 4420856 – 1219 0.04
i21.2 1 1 0.00 0.00 (*) 1 3576249 – 545 0.03
i21.3 1 4 1.00 1.00 4 1 3574363 – 7509 0.03
i21.4 1 1 0.25 0.25 4 5 3460527 3713737 3814 0.03

i22.1 1 0 0.00 0.00 – 1 6062626 – 434 0.05
i22.2 1 1 0.00 0.00 (*) 1 6199723 – 789 0.05
i22.3 1 4 1.00 1.00 4 1 6195805 – 7505 0.05
i22.4 1 1 0.25 0.25 4 5 5647473 5885361 12152 0.04

i23.1 1 0 0.00 0.00 – 1 4810217 – 922 0.04
i23.2 1 1 0.00 0.00 (*) 1 3921690 – 891 0.03
i23.3 1 4 1.00 1.00 4 1 3868223 – 7643 0.03
i23.4 1 1 0.25 0.25 4 5 3884956 4092853 6036 0.03

i24.1 1 0 0.00 0.00 – 1 10874201 – 1680 –
i24.2 1 1 0.00 0.00 (*) 1 10126557 – 728 –
i24.3 1 4 1.00 1.00 4 1 9772910 – 7651 –
i24.4 1 1 0.25 0.25 4 5 9766088 10115514 19097 –
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Table A1. Cont.

inst-stra t t∗ α β tR e zFR3 z̃FR3 tFR3 GRFR3

i25.1 1 0 0.00 0.00 – 1 5362888 – 1847 0.04
i25.2 1 1 0.00 0.00 (*) 1 5132699 – 967 0.04
i25.3 1 4 1.00 1.00 4 1 – – – –
i25.4 1 1 0.25 0.25 4 5 4842158 4973660 11256 0.03

i26.1 1 0 0.00 0.00 – 1 11346333 – 3507 –
i26.2 1 1 0.00 0.00 (*) 1 10986554 – 3750 –
i26.3 1 4 1.00 1.00 4 1 11525857 – 7724 –
i26.4 1 1 0.25 0.25 4 5 10634810 11670300 54606 –

i27.1 1 0 0.00 0.00 – 1 12020554 – 3354 –
i27.2 1 1 0.00 0.00 (*) 1 10550018 – 3900 –
i27.3 1 4 1.00 1.00 4 1 11440102 – 7908 –
i27.4 1 1 0.25 0.25 4 5 10515986 11979699 44680 –

i28.1 1 0 0.00 0.00 – 1 6619515 – 2151 0.04
i28.2 1 1 0.00 0.00 (*) 1 5403491 – 2035 0.03
i28.3 1 4 1.00 1.00 4 1 5720090 – 7839 0.04
i28.4 1 1 0.25 0.25 4 5 4848022 5141084 16810 0.03

i29.1 1 0 0.00 0.00 – 1 11586305 – 5483 –
i29.2 1 1 0.00 0.00 (*) 1 11604908 – 10514 –
i29.3 1 4 1.00 1.00 4 1 12551581 – 13282 –
i29.4 1 1 0.25 0.25 4 5 11978319 39568606 61395 –

i30.1 1 0 0.00 0.00 – 1 7019432 – 3298 –
i30.2 1 1 0.00 0.00 (*) 1 6241369 – 5616 –
i30.3 1 4 1.00 1.00 4 1 5510879 – 7975 –
i30.4 1 1 0.25 0.25 4 5 5199642 5568422 30977 –

i31.1 1 0 0.00 0.00 – 1 9454280 – 5650 –
i31.2 1 1 0.00 0.00 (*) 1 8762868 – 10895 –
i31.3 1 4 1.00 1.00 4 1 – – – –
i31.4 1 1 0.16 0.16 4 5 8228076 9286897 61123 –

i32.1 1 0 0.00 0.00 – 1 9283942 – 15161 –
i32.2 1 1 0.00 0.00 (*) 1 8607805 – 17326 –
i32.3 1 4 1.00 1.00 4 1 – – – –
i32.4 1 1 0.16 0.16 4 5 9970914 10195529 82811 –

(*) See definition of stra 2.
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