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Abstract: Along with the rapid development of information technology, online social networks
have become more and more popular, which has greatly changed the way of information diffusion.
Influence maximization is one of the hot research issues in online social network analysis. It refers
to mining the most influential top-K nodes from an online social network to maximize the final
propagation of influence in the network. The existing studies have shown that the greedy algo-
rithms can obtain a highly accurate result, but its calculation is time-consuming. Although heuristic
algorithms can improve efficiency, it is at the expense of accuracy. To balance the contradiction
between calculation accuracy and efficiency, we propose a new framework based on backward
reasoning called Influence Maximization Based on Backward Reasoning. This new framework uses
the maximum influence area in the network to reversely infer the most likely seed nodes, which is
based on maximum likelihood estimation. The scheme we adopted demonstrates four strengths.
First, it achieves a balance between the accuracy of the result and efficiency. Second, it defines the in-
fluence cardinality of the node based on the information diffusion process and the network topology
structure, which guarantees the accuracy of the algorithm. Third, the calculation method based on
message-passing greatly reduces the computational complexity. More importantly, we applied the
proposed framework to different types of real online social network datasets and conducted a series
of experiments with different specifications and settings to verify the advantages of the algorithm.
The results of the experiments are very promising.

Keywords: influence maximization; backward reasoning; influence cardinality; online social networks

1. Introduction

With the development of the Internet, online social networks have become more and
more popular, and have penetrated all aspects of human lives. We can share what we have
seen and heard through online social networks, and we can also obtain the latest news and
marketing information from there. Online social networks have become a new carrier for
the spread of information [1]. The information transfer in online social networks is faster
and more convenient, it is easier to create a popular trend, which brings new opportunities
and challenges to marketing, and also attracts great attention of researchers.

Word-of-mouth marketing in the new situation can be abstractly described as an influ-
ence maximization problem, which is one of the key issues in social network analysis [2]. It
refers to mining the most influential top-K nodes from an online social network to maxi-
mize the final spread of influence in the network. Kempe et al. first formulated the problem
of influence maximization as a discrete optimization problem, which is a milestone in the
research of influence maximization [3]. They also proved that when the diffusion model is
independent cascade and linear threshold models, the problem of influence maximization
is an NP-hard.

As one of the important issues of online social network analysis, previous research
on this issue is mainly divided into two categories: research based on greedy algorithms
and heuristic algorithms. Greedy algorithms usually require Monte Carlo simulation of the
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propagation process, and an accurate Monte Carlo simulation often needs to be repeated
many times. Although this method guarantees the accuracy of the results, it is very time-
consuming. For the heuristic algorithms, they can use heuristic information to shorten
the running time, but this will cause a loss of accuracy and stability. In response to this
problem, researchers are constantly exploring new methods to balance the contradiction
between calculation accuracy and efficiency.

In this paper, we propose a solution using backward reasoning, which is based
on maximum likelihood estimation. The basic idea is to improve the efficiency of the
algorithm by avoiding the Monte Carlo simulations while ensuring the accuracy of
the result. We define the influence cardinality of nodes and establish rules by using
backward reasoning to evaluate the probability of each node as a seed node to spread
the information to the entire network. Based on these foundations, the set of seed nodes
can be constructed according to given strategies. The influence cardinality considers
the process of information diffusion, which provides a guarantee for the accuracy of
the algorithm. In addition, to reduce the time complexity of calculating the influence
cardinality, we propose an algorithm based on message-passing, which greatly reduces
the computational complexity of our framework.

Summing up, the highlights of this paper are four-fold. First of all, to solve the
problem to influence maximization, we propose a new framework, Influence Maximization
based on Backward Reasoning, (IMBR), which achieves a balance between the accuracy
of the result and the efficiency. Second, we define the influence cardinality of the node
based on the information diffusion process and the network topology structure. Third, the
calculation method based on message-passing reduces the number of repeated traversals
of the entire network. Finally. A series of experiments with different specifications and
settings were carried out on real online social network datasets to examine the advantages
of the framework, which proves to be quite promising.

The rest of the paper is organized as follows. In the next section, a brief survey of
the related work about influence maximization is given. The framework proposed in this
paper is presented in Section 3. The experiments on real world networks are performed in
Section 4. Finally, conclusions and future works are given in Section 5.

2. Related Work

The problem of influence maximization was first proposed by Domingos and
Richardson [4]. Based on this research, Kempe et al. [3] first defined the problem
as a discrete optimization problem. According to their research, the definition of the
optimization problem for maximizing influence is to mine K seed nodes that can max-
imize the spread of influence on an online social network based on a given diffusion
model. Besides, they also proved that the influence function satisfies the sub-module
properties and the monotonicity under the most commonly used independent cascade
and linear threshold models. Finally, they proposed a greedy climbing algorithm [5],
which can guarantee the approximate optimal of 1− 1

e − ε. Later, Sviridenko [6] extends
the greedy framework using a non-uniform cost function for seed selection. In order
to improve calculation efficiency, Leskovec et al. [7] proposed the Cost Effective Lazy
Forward (CELF) schema, Goyal et al. [8] proposed CELF++, an extension of CELF. CELF
and CELF++ use the sub-mode attribute of the influence function to avoid calculating
the marginal gain of all non-seed nodes when selecting a seed node every time. Es-
tevez et al. [9] presented a Set Covering Greedy (SCG) algorithm which was also the
improvement of the greedy algorithm. When selecting the seed nodes, SCG discards the
overlapping part with the neighbor nodes of the seed nodes. To improve the efficiency
of the solution, Chen et al. [10] proposed a new algorithm called New Greedy-IC. This
algorithm removes those edges that cannot successfully propagate the information in
the iterative process. After these, Zhou et al. [11] used the influence function to find
the upper limit of the marginal benefit of the node influence diffusion. Based on this,
the Upper Bound based Lazy Forward (UBLF) algorithm was proposed. UBLF can
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reduce the number of repetitions of Monte Carlo simulation to improve computational
efficiency by using boundaries. Unfortunately, at the beginning of selecting seed nodes,
the effect of reducing the number of Monte Carlo simulations is significant. As more
and more seed nodes are selected, the effect continues to decay. Lu et al. [12] proposed a
cascade discount (CD) algorithm, which is based on the greedy algorithm, to solve the
problem of influence maximization in the independent cascade model. Moreover, there
are some other improved methods based on greedy algorithms, Ge et al. [13] extended
the confidence interval estimator and proposed an end-to-end method for influence
maximization, called the influence maximization based on learning automata (IMLA).
Tian et al. [14] proposed a hybrid potential-influence greedy algorithm (HPG) based
on the linear threshold model. The HPG algorithm uses the “influence accumulation”
property of the diffusion model to heuristically select half of the seed nodes with the
largest potential influence, and then greedily select the other half seed nodes. Wang
et al. [15] proposed a potential-based greedy selection strategy to solve this problem,
and so on [16].

Although the greedy algorithm can guarantee the best approximation, the solution
process takes a huge amount of time. This is because in the process of selecting seed
nodes, it is necessary to repeatedly calculate the marginal revenue of all non-seed nodes
through Monte Carlo simulations. As we all know, Monte Carlo simulation is very
time-consuming. Even if the number of repetitions is reduced, when the network scale
becomes larger, the computational complexity is still considerable. Therefore, some
researchers began to consider using heuristics to improve efficiency. Chen et al. [10]
discussed the relationship between influence diffusion and the degree of nodes and
proposed the Degree-Discount heuristic algorithm. This algorithm can significantly
reduce the calculation time, but at the expense of some accuracy. Wang et al. [17] pro-
posed a community-based greedy algorithm (CGA) to mine top-K influential seed nodes.
CGA considers the community structure in the process of influence diffusion. Further-
more, Khomanmi et al. [18] considered the spread of influence in the local community
and proposed a fast and scalable algorithm named the community finding influential
node (CFIN). The CFIN algorithm includes two main parts: local community spread-
ing and seed selection. After, Kundu et al. [19] defined the diffusion degree of the
node, which is a centrality measure used to indicate the influence of the node on other
nodes. They used this measure to mine the influential nodes. Kim et al. [20] proposed a
scalable influence approximation algorithm based on the independent cascade model,
which is called the Independent Path Algorithm (IPA). IPA treated the independent
influence path as an influence evaluation unit to effectively calculate the influence of
the node. There are some other heuristics based on influence path like shortest path
(SPIM) [21], SIMPATH [22], and LDAG [23]. Besides, Singh et al. [24] designed a new
method called Influence Maximization Algorithm Based on Ant Colony Optimization
(ACO-IM) to solve the problem of influence maximization in social networks. ACO-IM
defined the rules for individuals to exchange and update information in the problem of
influence maximization. Jung et al. [25] combined influence ranking (IR) and influence
estimation (IE) to propose a novel algorithm, IRIE, to solve the problem of influence
maximization. The algorithm can be used for the independent cascade model and its
extended models. Tang et al. [26] proposed an algorithm, called TIM. In theory, TIM
can return a (1− 1

e − ε) approximate solution. In practice, TIM adopts a novel heuristic
method, which can significantly improve efficiency without affecting its asymptotic
performance. To support massive graphs, some other different algorithms have also
been proposed. Cohen et al. [27] proposed the greedy sketch-based impact maximiza-
tion (SKIM) algorithm. The core of SKIM is to construct the summary structure of
each node, that is, the combined reachability sketch. SKIM is a greedy algorithm in
the sketch space. It has high scalability and can be easily extended to graphs with
billions of edges. To improve the efficiency of calculation, Nguyen et al. [28] were
inspired by the stop and stare strategy and proposed the Stop-and-Stare Algorithm
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(SSA), which is based on sampling technology. And they also proved that SSA is the first
approximation algorithm that uses the (asymptotically) minimum number of samples.
In addition, other heuristic-based algorithms are MIA [29], CIM [30], CoIM [31], and
others [32,33]. These heuristic methods use the heuristic information in the influence
diffusion process to improve the efficiency of seed node selection but at the expense
of accuracy.

In addition to these works, it is important to note that some variant problems based
on the influence maximization problem have recently appeared. Gong et al. [34] consid-
ered the robustness assumption in the influence maximization problem and proposed
the robust influence maximization problem. This problem focuses on the uncertainty
factors affecting the information diffusion model and the algorithms. Seo et al. [35]
changed the search target from individuals to communities and mined communities
containing influential individuals in the network. They used a multi-dimensional vector
to represent influence, where each dimension represents a kind of influence factor. Based
on this, they proposed a search method across multiple impact criteria. Considering the
dynamic behavior of online social networks, Singh et al. [36] studied the influence maxi-
mization problem in an online social network that evolves over time. In this framework,
the first step is to predict the change of the network and then mine the seed nodes in
the predicted network. Li et al. [37] paid attention to the problem of maximizing the
positive influence in the signed social network. The formal definition of this problem is
to select the top-K to send nodes with the largest positive influence in a given signed
social network. They proposed a greedy algorithm for maximizing net positive influence
based on game theory. Wu et al. [38] combined the problem of influence maximization
with the diffusion of multi-source information and proposed the problem of multiple
influence maximization (MIM), in which multiple pieces of information can be spread
independently in the network. The goal of the multiple influence maximization problem
is to maximize the overall cumulative influence spread of different information under
the constraints of the seed budget k. Xie et al. [39] studied the problem of influence max-
imization in a competitive environment and analyzed the effect of inactive nodes and
community homogeneity on information diffusion. Besides, to improve the effectiveness
of seed nodes, some works have extended the classic IM problem by adding contextual
features, such as topic, time, location [40–42].

Many improvements to the problem of influence maximization have been proposed,
however, the efficiency of these methods is still unsatisfactory. Most of the previous work
can be divided into two categories based on greedy algorithms and heuristic algorithms.
The greedy-based algorithm uses a large number of Monte Carlo simulation processes
to get high accuracy, but the computation is time-consuming. The heuristic algorithm
is highly efficient, but it is easy to fall into the local optimal solution. Therefore, it is a
particularly critical issue to design a more efficient and more accurate scheme for evaluating
the influence of nodes, which can get a higher accuracy result and avoid a large number of
Monte Carlo simulations.

3. Methodology

In this section, we first give a formal definition of the influence maximization problem
and describe in detail the new framework proposed in this paper.

3.1. Preliminaries

In this part, we first give a formal definition of the online social networks, then define
the problem of influence maximization based on the above, and finally introduce the
information diffusion model used in this paper.

Definition 1. An Online Social network with N users can be represented by a graph G(V, E), Set
of nodes V represents users, where |V| = N and the set of edges E refer to the relationship between
individuals. Influence can spread along the edges in the social network.
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Definition 2. The definition of the influence maximization is to select K seed nodes for a given online
social network G(V, E) and an influence diffusion model M, which simulates how information
spreads in the social network, to maximize the number of influenced nodes in G. Suppose S denotes
the set of seed nodes and R(S) be the number of nodes influenced by the selected seed nodes based on
the diffusion model M. The formal representation is as follows:

S∗ = arg max
S⊂V,|S|=K

R(S). (1)

The influence takes information as the carrier. For the information diffusion process,
we focus on the spread of influence of the node when the process is over. Therefore, we
use an Epidemic model, which is the most common model used to study information
propagation as the information diffusion model. The susceptible infection (SI) model is
one of the Epidemic models. In the SI model, in the beginning, the state of the seed nodes
is set to the infected state, and the state of all other nodes is susceptible. A node changes
from susceptible state to infected state when accepting information, and it can affect the
susceptible nodes in its neighbor nodes according to probability p in the future. Once a
node becomes infected, it will always maintain this state. This process ends when no more
new nodes are infected [43].

3.2. Proposed Method

The influence maximization framework based on backward reasoning put forth by
this paper consists of two parts. First, the first stage evaluates the ability of each node
as a seed node to affect the entire network. In the second stage, seed nodes are selected
according to the evaluation results and strategies.

3.2.1. Evaluate the Influence of Node Based on Maximum Likelihood Estimation

Suppose that a piece of information is sent out by a seed node v in an online social
network G, and then the information continues to spread far away according to the given
information diffusion model. When the process is over, we can find that N nodes are
infected. Since the information spreads along the edges in the graph, so these infected
nodes form the influence area of node v, which is a connected subgraph of G. The goal of
maximizing influence is to select the node with the greatest influence as the seed nodes.
Using backward reasoning, the greater the influence of the node, the larger the influence
area. After removing the isolated nodes in the online social network G, the remaining
nodes construct the largest connectivity subgraph GM, which is also the largest influence
area. In an online social network, the influence area of the most influential node should
be the largest, assuming that the influence area of the best seed node is GM. To find out
the most influential node, we evaluate the probability of each node v as a seed node
leading to the largest influence area GM. The greater the probability, the higher the
possibility that node v would affect the social network, that is, the greater the influence.
To make this estimation, we assume that the seed node propagates information in G
based on the above SI model and the nodes in GM have a uniform prior probability. Based
on this reasoning, a maximum likelihood estimator is constructed, which is defined
as follows:

v̂ = arg max
v⊂GM

P(GM|v) (2)

where P(GM|v) represents the probability of using node v as the seed node to simulate the
information diffusion process according to the SI model, and the final influence area is GM.
Therefore, to select the seed nodes, we need to evaluate P(GM|v) for all v ∈ GM.

However, we found that evaluation of P(GM|v) may not be computationally tractable.
To solve this problem, we consider it from another perspective and transform the problem
into a permutations problem, which is subject to the structure of GM. As shown in Figure 1,
if the seed node is the node v1, it can only affect node v3. After node v3 is activated, the
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information may be transmitted to nodes v2, v4, v5. According to this, the infected order
{v1, v3, v2, v4, v5} and {v1, v3, v5, v2, v4} are permitted permutations. However, owing
to the limitations of the network structure, the order of infection {v1, v5, v2, v4, v3} is
impossible. Therefore, we need to find all these permitted permutations, where node v is
the beginning node, and their corresponding probabilities to evaluate P(GM|v) .

Mathematics 2021, 9, x FOR PEER REVIEW 6 of 17 
 

 

However, we found that evaluation of 𝑃(𝐺ெ|𝑣) may not be computationally tracta-
ble. To solve this problem, we consider it from another perspective and transform the 
problem into a permutations problem, which is subject to the structure of 𝐺ெ. As shown 
in Figure 1, if the seed node is the node 𝑣ଵ, it can only affect node 𝑣ଷ. After node 𝑣ଷ is 
activated, the information may be transmitted to nodes 𝑣ଶ, 𝑣ସ, 𝑣ହ. According to this, the 
infected order {𝑣ଵ, 𝑣ଷ, 𝑣ଶ, 𝑣ସ, 𝑣ହ} and {𝑣ଵ, 𝑣ଷ, 𝑣ହ, 𝑣ଶ, 𝑣ସ} are permitted permutations. How-
ever, owing to the limitations of the network structure, the order of infection 
{𝑣ଵ, 𝑣ହ, 𝑣ଶ, 𝑣ସ, 𝑣ଷ} is impossible. Therefore, we need to find all these permitted permuta-
tions, where node 𝑣 is the beginning node, and their corresponding probabilities to eval-
uate 𝑃(𝐺ெ|𝑣). 

1

32 4

5

 
Figure 1. An online social network with 5 individuals. 

Definition 3. For a given online social network 𝐺(𝑉, 𝐸), we define 𝐼(𝑣, 𝐺) as the influence car-
dinality of node 𝑣. 𝐼(𝑣, 𝐺) is the total number of different permitted permutations of the nodes on 
𝐺, which start from node 𝑣 ∈ 𝐺 and are subject to the structure of graph 𝐺. 

When the problem is transformed, it becomes feasible to evaluate the 𝑃(𝐺ெ|𝑣). As-
suming that 𝛺(𝑣, 𝐺ெ) is the set of all permitted permutations, in which source is 𝑣 and 
influence area is 𝐺ெ. 𝜎 represents a permitted permutation, which is also a spread path. 
In order to compute 𝑃(𝜎|𝑣) for every σ ∈ 𝛺(𝑣, 𝐺ெ), let 𝜎 = {𝑣ଵ = 𝑣, 𝑣ଶ, ⋯ , 𝑣ே}, then 

𝑃(𝜎|𝑣) = ∏ 𝑃(𝑘௧௛ infected node = 𝑣௞|𝐺௞ିଵ(𝜎), 𝑣)ே
௞ୀଶ   (3)

where 𝐺௞(𝜎)  represents the subgraph of 𝐺ெ . There are 𝑘  nodes in the 𝐺௞(𝜎), {𝑣ଵ =

v, 𝑣ଶ, ⋯ , 𝑣௞} for 1 ≤ 𝑘 ≤ 𝑁. 
Given the seed node 𝑣 and 𝐺௞ିଵ(𝜎), the next node to be infected can be any of the 

uninfected neighbors of the infected nodes in 𝐺௞ିଵ(𝜎). Since the infection probability of 
all individuals is independent and identically distributed in the SI model, each of these 
uninfected nodes has an equal probability of becoming the next infected node. Assuming 
𝐺௞ିଵ(𝜎) has 𝑛௞ିଵ(𝜎) uninfected neighboring nodes, we can simplify formula 3 to 

𝑃(𝜎|𝑣) = ∏
ଵ

௡ೖషభ(ఙ)

ே
௞ୀଶ .  (4)

Observing the above formula, we find that the problem of calculating 𝑃(𝜎|𝑣) has 
become to computing the size of the diffusion boundary 𝑛௞ିଵ(𝜎) for 2 ≤ 𝑘 ≤ 𝑁. In gen-
eral, computing this boundary is complicated, we first assume that 𝐺ெ is a regular tree, 
and then gradually change 𝐺ெ from a tree to a graph, which is also helpful for under-
standing. In this way, suppose the 𝑘௧௛ node added to 𝐺௞ିଵ(𝜎) is 𝑣௞(𝜎), and the degree 
is 𝑑௞(𝜎). Based on this, we can obtain 

𝑛௞(𝜎) = 𝑑ଵ(𝜎) + ∑ (𝑑௜(𝜎) − 2)௞
௜ୀଶ . (5)

Next, it is easy to find 

Figure 1. An online social network with 5 individuals.

Definition 3. For a given online social network G(V, E), we define I(v, G) as the influence
cardinality of node v. I(v, G) is the total number of different permitted permutations of the nodes
on G, which start from node v ∈ G and are subject to the structure of graph G.

When the problem is transformed, it becomes feasible to evaluate the P(GM|v) . As-
suming that Ω(v, GM) is the set of all permitted permutations, in which source is v and
influence area is GM. σ represents a permitted permutation, which is also a spread path. In
order to compute P(σ|v) for every σ ∈ Ω(v, GM), let σ = {v1 = v, v2, · · · , vN}, then

P(σ|v) =
N

∏
k=2

P(kth infected node = vk|Gk−1(σ), v) (3)

where Gk(σ) represents the subgraph of GM. There are k nodes in the Gk(σ), {v1 = v, v2,
· · · , vk} for 1 ≤ k ≤ N.

Given the seed node v and Gk−1(σ), the next node to be infected can be any of the
uninfected neighbors of the infected nodes in Gk−1(σ). Since the infection probability of
all individuals is independent and identically distributed in the SI model, each of these
uninfected nodes has an equal probability of becoming the next infected node. Assuming
Gk−1(σ) has nk−1(σ) uninfected neighboring nodes, we can simplify formula 3 to

P(σ|v) =
N

∏
k=2

1
nk−1(σ)

. (4)

Observing the above formula, we find that the problem of calculating P(σ|v) has
become to computing the size of the diffusion boundary nk−1(σ) for 2 ≤ k ≤ N. In general,
computing this boundary is complicated, we first assume that GM is a regular tree, and
then gradually change GM from a tree to a graph, which is also helpful for understanding.
In this way, suppose the kth node added to Gk−1(σ) is vk(σ), and the degree is dk(σ). Based
on this, we can obtain
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nk(σ) = d1(σ) +
k

∑
i=2

(di(σ)− 2). (5)

Next, it is easy to find

P(σ|v) =
N

∏
k=2

1
d1(σ) + ∑k

i=2(di(σ)− 2)
. (6)

According to formula 6, if GM is a d regular tree, every node has the same degree d in
GM, so for any node v and permitted permutation σ.

P(σ|v) =
N−1

∏
k=1

1
dk− 2(k− 1)

≡ p(d, N). (7)

Therefore, the maximum likelihood estimator becomes

v̂ ∈ arg max
v∈GM

P(GM|v)

= arg max
v∈GM

∑
σ∈Ω(v,GM)

P(σ|v)

= arg max
v∈GM

I(v, GM)p(d, N)

= arg max
v∈GM

I(v, GM)

(8)

We can find that if GM is a regular tree, the influence of node v can be evaluated
simply by evaluating I(v, GM) for all v ∈ GM. This is because the structure of the regular
tree is special, and the probabilities of all permitted permutations are the same. When
GM is a general tree, it becomes computationally intractable since different permitted
permutations have different probabilities. Due to the exponential number of terms involved,
constructing a maximum likelihood estimator for a general tree could be computationally
quite expensive. Therefore, we adopted a heuristic method to resolve the heterogeneity
of degrees.

If the GM is a general tree, assuming that information is transmitted between nodes in
a breadth-first search (BFS) way, which is the fastest way of information diffusion.

In order to calculate the probability of BFS permitted permutations, the BFS permitted
permutation with node v as the seed node is denoted as σ∗v . Then in a general tree, the
maximum likelihood estimation becomes as follows after derivation

v̂ ∈ arg max
v∈GM

P(σ∗v |v)I(v, GM) (9)

Next, if GM is a general graph, calculating the probabilities of all possible permitted
permutations in a given network is computationally prohibitive. Therefore, we also adopt
a heuristic approach. As we all know, when a piece of information is sent out by a node, its
spread path is a spanning tree of the graph. Therefore, suppose that if the node v ∈ GM
is a seed node, after the information is sent from v, it will spread along a breadth first
search tree rooted at v. This breadth first search tree, which is the fastest spread fashion of
information, is denoted as Tb f s(v). Therefore, we effectively obtain the following maximum
likelihood estimator for a general graph:

v̂ ∈ arg max
v∈GM

P(σ∗v |v)I
(

v, Tb f s(v)
)

(10)

We find that the node influence cardinality I(v, GM) plays a crucial role in evaluating
whether the node v is suitable as a seed node. To calculate efficiently, we convert the graph
into the corresponding tree structure in the process. So, in the following, we describe in
detail how to efficiently compute I(v, GM) when GM is a tree.
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Let Tv
u denote the subtree rooted at node u, with node v as the seed node in a tree

graph GM. |Tv
u | represents the number of nodes in Tv

u . To explain this definition clearly,
an example is given in Figure 2. Figure 2 shows the spread path with node v1 as the seed
node. The subtree on the left has 3 nodes. It takes node v2 as the root node and node v1 as
the seed node, so

∣∣T1
2

∣∣= 3 . Similarly, we can obtain
∣∣T1

7

∣∣= 1 .
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In a tree graph GM with N nodes, to calculate I(v, GM), we need to find the permissible
permutations of N nodes in the GM. For a given permutation, there are N slots and the
first of that must be the seed node v. Therefore, we only need to find the number of distinct
ways to fill the remaining N − 1 slots. These permutations are constrained by the structure
of the graph, that is, a node u must be located before all nodes in its subtree Tv

u . According
to this constraint, the number of permissible permutations of all nodes in Tv

u is I(u, Tv
u ).

Based on this, the following relationship can be obtained.

I(v, GM) = (N − 1)! ∏
u∈child(v)

I(u, Tv
u )

|Tv
u |!

(11)

where child(v) denotes the set of all children nodes in the subtree rooted at v in the
graph GM.

We extend this recursion to the next depth level in GM, and we will get

I(v, GM) = (N − 1)! ∏
u∈child(v)

I(u,Tv
u )

|Tv
u |!

= (N − 1)! ∏
u∈child(v)

(Tv
u−1)!
|Tv

u |! ∏
w∈child(u)

I(w,Tv
w)

|Tv
w |!

= (N − 1)! ∏
u∈child(v)

1
|Tv

u | ∏
w∈child(u)

I(w,Tv
w)

|Tv
w |!

(12)

A leaf node l only has one node and one permitted permutation, so I
(
l, Tv

l
)
= 1.

Repeat this recursion until the leaf layer of the tree graph is reached, then the number of
permitted permutations rooted at the seed node v in a given graph GM can be calculated
by the following formula.

I(v, GM) = N! ∏
u∈GM

1
|Tv

u |
(13)

To evaluate the influence of nodes, we need to compute the influence cardinality of
every node in GM. The computational complexity of calculating the size of subtrees Tv

u
for all u and v in a GM with N nodes is O

(
N2). When the network scale becomes larger,

the computational efficiency will be greatly reduced. To improve efficiency, we make a
profound study of the relation between neighbor nodes. When node v and node u are two
neighbor nodes in GM, all their subtrees have the same size except for the subtrees rooted
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at u and v. Based on this discovery, a special relationship exists between two subtrees,
as follows:

|Tv
u | = N − |Tu

v | (14)

According to this relationship, we can calculate the influence cardinality of any two
neighbor nodes.

I(u, GM) = I(v, GM)
Tv

u
N − Tv

u
(15)

This special relationship is the key to optimizing the algorithm for calculating the
influence cardinality of each node in GM. Suppose that the node v is selected as the seed
node in GM. In order to obtain the size of all its subtrees Tv

u to calculate its influence
cardinality I(v, GM), every other node u needs to pass two messages up to its parent
node. The number of nodes in u′s subtree is the first message, which is represented
by tup

u→parent(u). The other message includes the cumulative product of the size of the

subtree of every node in u′s subtree, expressed as pup
u→parent(u). Then the parent node can

get the size of its own subtree by adding the tup
u→parent(u) messages together. Using these

messages, the parent node can also get its cumulative subtree product by multiplying
the pup

u→parent(u) messages together. Starting from the leaf nodes, recursively pass the
message upwards until the seed node receives the message. According to formula (13),
the seed node multiplies the cumulative subtree products of its child nodes to obtain
its influence cardinality I(v, GM). After that, we use formula (15) to evaluate the
influence cardinality for the children of v. Each node passes its influence cardinality
to its child nodes, which we call rdown

u→w for w ∈ child(u). The complete process is as
the following Algorithm 1. After optimization, the computational complexity of the
algorithm that calculates the influence cardinality of all nodes is reduced from O

(
N2)

to O(N).

Algorithm 1 Calculate the influence cardinality based on message-passing

Input: An online social network G(V, E)
Output: Influence Cardinality of nodes in G
1: Gmax = f (G) //Find out the largest connectivity subgraph Gmax.
2: GM = f (Gmax) //Choose a node v as the seed node and change Gmax to BFS tree graph GM
with v as root.
3: for u in GM do
4: if u is a leaf then
5: tup

u→parent(u) = 1

6: pup
u→parent(u) = 1

7: else
8: if u is root v then
9: ∀ w ∈ child(v) : rdown

v→w = N!
N ∏j∈child(v) pup

j→v

10: else
11: tup

u→parent(u) = ∑
w∈child(u)

tup
w→u + 1

12: pup
u→parent(u) = tup

u→parent(u) ∏
w∈child(u)

pup
w→u

13: ∀ w ∈ child(u) : rdown
v→w = rdown

parent(u)→u
tup
u→parent(u)

N−tup
u→parent(u)

14: end if
15: end if
16: end for
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3.2.2. Select Seed Nodes Based on Strategy

In this part, we construct the set of seed nodes according to different strategies. In the
previous, we evaluated the probability that each node will affect the entire network when
it is used as a seed node in GM. To maximize the spread of the seed set, we use a greedy
strategy to select seed nodes. This strategy aims to select K most influential nodes from the
candidate seed nodes. For each round, the node with the largest influence is selected to
join the seed set. Algorithm 2 describes the complete process of the strategy, as follows

Algorithm 2 Construction of seed set based on greedy strategy

Input: The BFS tree subgraph GM of an online social network G(V, E), the size of seed nodes set
K
Output: the set of seed nodes S
1: while |S| < K do

2: sa = arg max
v⊂GM−S

P(GM

∣∣∣∣v)
3: S = S∪ sa
4: end while

4. Experiments and Discussion

In this section, a series of experiments with different specifications are carried out
for highlighting the performance and efficiency of the proposed scheme. This section
is divided into two parts. The datasets used in the experiments and the baseline al-
gorithms are introduced in the first part, and the remaining part is the analysis of the
experimental results.

4.1. Experiment Setup

We compare the performance of five different algorithms on four real social network
datasets. These four datasets are crawled from real online social networks, and the com-
pared algorithms include classic algorithms and the latest algorithms. To avoid randomness
in the process of selecting seed nodes, each algorithm was run 50 times independently.

4.1.1. Dataset Description

To verify the performance of our framework, we conduct experiments on four different
online social network datasets. These datasets are detailed in Table 1. The second column
represents the name of the online social network dataset. The number of edges and nodes
of the dataset are shown in the third and fourth columns. It can be found from the table
that we use different scale datasets to make the experiment more convincing. The average
degree of nodes in the online social network is listed in the fifth column. The last two
columns of the table respectively show the average clustering coefficient and diameter of
the network.

Table 1. The description of datasets.

No. Name Edges Nodes Average Degree Average Clustering
Coefficient Diameter

1 Facebook 88,234 4039 43.7 0.61 8
2 ca-HepTH 25,998 9877 5.3 0.47 17
3 Epinions 508,837 75,879 6.7 0.14 14
4 Twitter 1,768,149 81,306 43.5 0.57 7

4.1.2. Baseline Algorithms

To demonstrate the superior performance of the framework IMBR, our algorithm
is compared with several existing algorithms. The algorithms to be compared are
summarized below.
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Degree-Discount [10]: This is a heuristic algorithm based on node degree, which
selects the nodes with the largest out-degree as the seed nodes. Besides, it considers the
influence of neighbor nodes. If its neighbor is selected as the seed node, the out-degree of
the node will decrease by one.

Upper Bound based Lazy Forward (UBLF) [11]: This is a greedy algorithm, it uses the
upper bound based lazy forward to mine the top-K influential nodes in an online social
network. UBLF has the same accuracy and less running time than other greedy algorithms
such as CELF and CELF++.

Influence Maximization Algorithm Based on Ant Colony Optimization (ACO-IM) [24]:
This algorithm uses ant colony optimization to maximize the influence of the set of seed
nodes. According to the fitness function, the best solution is selected in the iterative process
and added to the seed set.

Community-based Greedy Algorithm (CGA) [17]: This algorithm first detects the
structure of the community, and then exploits a dynamic programming algorithm to find
influential nodes in these communities.

Sketch-based Impact Maximization Algorithm (SKIM) [27]: This is a greedy algorithm
in the sketch space. The key of the algorithm is per-node summary structures.

Stop-and-Stare Algorithm (SSA) [28]: This is a sampling-based framework for the
influence maximization problem, which is faster than other sampling algorithms.

4.1.3. Evaluation Measure

According to the previous analysis, the goal of influence maximization is to mine k
seed nodes with the greatest influence to maximize the final influence range. In order to
measure the performance of the algorithm, we applied each algorithm to different datasets
and get k seed nodes respectively. Then, the seed nodes are used as the information source,
and the process of information spreading on the corresponding network is simulated based
on the SI model. When the information spreading process is over, the number of affected
nodes is used as the influence spread of the seed nodes. We use the influence spread of the
seed nodes as a measure of the effectiveness of the algorithm.

In the experimental part, the probability of an individual changing from the susceptible
state to the infected state in the SI model is set to p = 0.08, and each propagation process
goes through 1000 iterations. The range of k ranges from 5 to 50, with 5 as an interval.

4.2. Result and Discussion

To show the performance of our IMBR algorithm, we applied IMBR to different
datasets and compared it with six rival benchmark algorithms from different aspects. The
first measure to be evaluated is the influence spread of the seed nodes selected by different
algorithms, which is the most important in the problem of influence maximization. We
use the seed nodes obtained in the experiment to perform 1000 Monte Carlo simulations
and take the average of the simulation results as the final influence spread of the set of
seed nodes. Applying IMBR and other algorithms to different real online social network
datasets, the results are shown in Figure 3.

Analyzing these figures carefully, we can find that as the size of the seed nodes set
K increases, the influence spread becomes larger in all datasets. Greedy algorithm UBLF
performed best, and the results of SSA and SKIM were close to that of UBLF. At the same
time. Another important result is that our algorithm IMBR has achieved similar results to
SKIM, which provides a piece of evidence for the accuracy of our algorithm. The idea of
the maximum likelihood estimator is to evaluate the influence of nodes in the diffusion
process based on the entire network structure. It considers the entire process of information
diffusion, which leads to higher accuracy of the results. In addition, the seed nodes set
selected by Degree-Discount has a poor result in different situations. This is because it
considers less node information in the process of selecting, which improves efficiency
at the expense of accuracy. Moreover, the stability of Degree-Discount is not good. As
the size of the datasets increases, the gap between Degree-Discount and other algorithms
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gradually becomes larger. The performance of the ACO-IM algorithm is second only to our
algorithm. The seed nodes selected by the CGA algorithm are not good, which is due to
the CGA algorithm mines influential seed nodes in different communities while ignoring
information dissemination between communities. It is worth noting that the gap on the
ca-HepTH and Epinions datasets between other algorithms and the UBLF, which is based
on the greedy algorithm are larger than that on the Facebook and Twitter datasets. Through
the analysis of the datasets, we found that owing to the sparse network structure of the
datasets, the average node degree in the ca-HepTH and Epinions datasets is only 5.3 and
6.7, respectively, while the average node degree in the Twitter and Facebook datasets is
43.7 and 43.5, respectively.
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Next, we analyze the impact of network type and network properties on the results of
our algorithm. From the above analysis, it is found that the greedy algorithm UBLF has
the highest accuracy. To facilitate the analysis, we normalize the accuracy of the algorithm
according to the following formula:
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AccIMBR =
ISPIMBR
ISPUBLF

. (16)

where AccIMBR represents the normalized accuracy of our algorithm IMBR, and ISPIMBR
denotes the influence spread of the seed node selected by the IMBR algorithm. Similarly,
ISPUBLF represents the influence spread of the seed nodes selected by the UBLF algorithm.

The following table shows the normalized accuracy of our algorithm under different
data sets. The second to tenth columns of Table 2 indicates the normalized accuracy of the
IMBR algorithm when k takes different values. The last column of Table 2 represents the
average of the normalized accuracy under different datasets.

Table 2. Normalized accuracy of IMBR algorithm on different datasets.

5 10 15 20 25 30 35 40 45 50 Average

Facebook 0.94 0.92 0.95 0.96 0.99 0.98 0.96 0.97 0.98 0.98 0.96
ca-HepTH 0.67 0.54 0.82 0.8 0.8 0.87 0.85 0.89 0.9 0.93 0.81
Epinions 0.88 0.9 0.87 0.88 0.89 0.88 0.87 0.91 0.95 0.94 0.9
Twitter 0.93 0.96 0.97 0.97 0.98 0.98 0.97 0.96 0.97 0.97 0.97

With further analysis of the experimental results, it is found that the IMBR algorithm
has the highest accuracy on the Twitter dataset and the worst performance on the ca-
HepTH dataset; when k is larger, the accuracy of the IMBR algorithm is higher. Moreover,
to explore the relationship between the results and network properties, a comparative
analysis of Tables 1 and 2 shows that the smaller the diameter of the network, the higher
the accuracy of the IMBR algorithm. This is because the smaller the network diameter, the
shorter the path for each individual to receive information. The IMBR algorithm evaluates
the influence of nodes based on the spread path. The shorter the spread path, the smaller
the evaluation error.

In the last part of the experiment, we compared the running time between our algo-
rithm and the other six rival algorithms on different online social network datasets. We
fixed the size of seed nodes to 50 and compared the cost time of different algorithms. The
result is shown in Figure 4.
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The result in Figure 4 reveals that the running time of the IMBR proposed in this paper
is similar to the running time of CGA. UBLF has the longest running time, followed by
ACO-IM, and Degree-Discount has the shortest running time. Degree-Discount algorithm
saves time at the expense of accuracy. In addition, it can be found that the running time of
our algorithm IMBR is faster than SSA and SKIM. Our algorithm IMBR avoids Monte Carlo
simulations, and the calculation method based on message-passing greatly reduces the
computational complexity. Compared with the greedy algorithm UBLF, IMBR significantly
improves computational efficiency.

Based on the experimental results, we conclude that our proposed scheme based on
the maximum likelihood estimator has found an optimal solution in the trade-off between
time and accuracy. In terms of running time and influence spread, IMBR is not the best
among all algorithms. However, compared with the UBLF based on the greedy algorithm,
IMBR achieves a higher running speed. Compared with the Degree-Discount algorithm,
which is the fastest algorithm, IMBR maintains a higher accuracy. Compared with the
CGA and ACO-IM algorithms, IMBR has a great accuracy improvement. Compared with
SKIM and SSA, IMBR has improved efficiency while maintaining accuracy close to SKIM.
Considering the computational efficiency and accuracy, IMBR strikes a better balance
between efficiency and accuracy.

5. Conclusions

With the rapid development of the Internet, online social networks have greatly
changed human lives. This change has attracted many researchers to devote themselves to
studying online social networks. Influence maximization is one of the hot research issues
in this field. To solve this problem, many algorithms have been proposed. These works
are mainly divided into two categories: algorithms based on greed and algorithms based
on heuristic information. Greedy algorithms have high accuracy, but poor efficiency. The
reason is that the Monte-Carlo simulations used by greedy algorithms are time-consuming.
The heuristic algorithms are efficient, but the accuracy is not high. To find a better balance
between efficiency and accuracy, we continued to study this issue in depth.

In this paper, we propose a framework of influence maximization based on backward
reasoning in online social networks. Using this new framework, it is possible to estimate
the ability of each node as a seed node to affect the entire network, which can measure the
influence of nodes. The seed nodes can be selected based on this estimation using a greedy
strategy. A series of experiments were conducted on real online social network datasets to
explore the advantages of our framework. The results show that our method significantly
shortens the running time under the premise of ensuring the accuracy of the results.
In other words, the proposed framework achieves a good balance between efficiency
and accuracy.

In future work, we intend to conduct in-depth research based on this work. One
potential extension is based on this work to study the problem of maximizing marketing
revenue under budget constraints. Another potential direction is to delve into the problem
of influence maximization when the entire network structure cannot be obtained.
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