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Abstract: Auto-encoder (AE)-based deep subspace clustering (DSC) methods aim to partition high-
dimensional data into underlying clusters, where each cluster corresponds to a subspace. As a
standard module in current AE-based DSC, the self-reconstruction cost plays an essential role in
regularizing the feature learning. However, the self-reconstruction adversely affects the discrimi-
native feature learning of AE, thereby hampering the downstream subspace clustering. To address
this issue, we propose a hypergraph-supervised reconstruction to replace the self-reconstruction.
Specifically, instead of enforcing the decoder in the AE to merely reconstruct samples themselves,
the hypergraph-supervised reconstruction encourages reconstructing samples according to their
high-order neighborhood relations. By the back-propagation training, the hypergraph-supervised
reconstruction cost enables the deep AE to capture the high-order structure information among
samples, facilitating the discriminative feature learning and, thus, alleviating the adverse effect of the
self-reconstruction cost. Compared to current DSC methods, relying on the self-reconstruction, our
method has achieved consistent performance improvement on benchmark high-dimensional datasets.

Keywords: deep learning; computational intelligence; neural networks; deep subspace clustering;
hypergraph

1. Introduction

Subspace clustering has drawn increasing attention in computational intelligence and
data mining [1,2]. By assuming high-dimensional data resides in a set of low-dimensional
linear subspaces, numerous pioneer subspace clustering methods [3–6] aim to segment
the data into their corresponding subspaces. Most of these approaches exploit the self-
expression formulation. That is, each data sample can be expressed as a linear combination
of other samples, and the combination coefficients indicate the respective subspaces. Over
the last decade, this line of methods has witnessed their success in plenty of scientific
fields [7], such as computer vision [8]. Nevertheless, in practical situations, the data do not
necessarily accord with linear subspace models, as shown in [9], and the applicability of
such linear models are, thus, limited.

Rising to this challenge, DSC [9,10] provides a powerful framework to perform non-
linear feature learning, collaboratively with deep neural networks and subspace clustering.
In DSC, a standard neural network is the deep AE [11], which mainly involves an encoder
and decoder. The former performs deep feature learning by mapping the original features
of samples into a latent space (the output of the encoder is referred to as the latent represen-
tation). Taking the outputs of the encoder as input, the decoder attempts to map them back
to the original space by the guidance of the self-reconstruction cost function. For example,
Peng et al. [12] applied a deep AE with a sparse prior [4], in which they conduct sparse
subspace clustering on the latent representation of the deep AE. Later, Peng et al. [10]
came up with the DSC with `1-norm (DSC-L1), which imposes the sparsity to the latent
representation of a deep AE. Ji et al. [9] presented the DSC networks (DSC-Nets) using
deep AE, introducing a novel self-expression layer at the junction between the encoder
and decoder. The self-expression layer seamlessly combines deep feature learning and
subspace clustering.
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Recently, a few studies have attempted to exploit pseudo-labels to guide the neural
networks for deep discriminative feature learning. Since the DSC involves both the deep
neural network and clustering, a natural idea is to use the pseudo-labels, extracted from
the self-expression layer, to help discriminative the feature learning of neural networks.
Zhang et al. [13] proposed a self-supervised convolutional subspace clustering network
(S2 ConvSCN) that enhances the deep discriminative feature with pseudo-labels. In par-
ticular, they insert a fully-connected (FC) layer, coupled with a softmax function after the
encoder. Then, they perform pseudo-label training with a mixture of the cross-entropy and
center cost.

Although DSC has been substantially developed, a potential issue is that the self-
reconstruction cost used in most DSC methods can negatively affect the discriminative
feature learning of the encoder. In principle, the self-reconstruction cost exists to regularize
the deep feature learning of the encoder, e.g., preventing the latent representation of
the samples from collapsing into a single point [14]. However, it is shown that self-
reconstruction cost over-regularizes the deep AE and degrades the discriminability of the
latent representation of the encoder [15,16].

To address this issue, this paper proposes a hypergraph-supervised deep subspace
clustering method (H-DSC), as shown in Figure 1. Similar to [13,17], we employ the stan-
dard AE as the deep feature extractor, with the self-expression module in between. We also
introduce a classification module, attached to the encoder, which enables the supervision of
the pseudo-labels. Differently, we apply a hypergraph to reform the self-reconstruction cost.
The over-regularization of the self-reconstruction partly stems from the fact that it simply
enforces the decoder to reconstruct the samples themselves and neglects the informative
sample relations [16,18]. Such a self-reconstruction cost undermines the discriminability of
the deep AE, when trained by a standard back-propagation algorithm. Intuitively, samples
have different importance in the reconstruction, to reflect their individual roles. To this
end, we formulate the hypergraph-supervised reconstruction cost, which encourages the
decoder to reconstruct samples, based on the high-order relations in the hypergraph [19].
A hypergraph is a generalization of a graph, in which a hyperedge can connect an arbitrary
number of vertices or samples. This property endows a hypergraph to characterize the
high-order relations among samples and can be exploited to facilitate the deep feature
learning. Through back-propagation training, this hypergraph-supervised cost function
allows the encoder to capture high-order neighborhood structure information [20]. In this
sense, the hypergraph-supervised reconstruction cost enhances the discriminative fea-
ture learning of the encoder and mitigates the adverse effect of the self-reconstruction,
leading to an improved clustering performance. Empirical evaluations on benchmark
high-dimensional datasets have shown that our method consistently outperforms current
DSC methods with the self-reconstruction.

The contribution of this paper is summarized as follows.

1. We propose a hypergraph-supervised DSC that alleviates the adverse effect of the
self-reconstruction cost, improving the clustering performance.

2. We propose a hypergraph learning, based on the rich information from the self-
expression layer, enabling the hypergraph and DSC to collaborate and improve the
clustering performance.

3. We conduct experiments, including a series of ablation studies on benchmark high-
dimensional datasets, to illustrate the effectiveness of our proposed method.
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Figure 1. The framework of hypergraph-supervised deep subspace clustering (H-DSC), with the
encoder of the AE extract deep feature as Z; the self-expression Ls performs subspace clustering on
Z to extract the coefficient matrix C. The hypergraph is then learned from C and guides the deep
AE reconstruction with the cost function Lhyp-re. In addition, we incorporate Lcls for pseudo-label
training to improve clustering performance.

2. Related Work
2.1. Subspace Clustering

Let X = [x1, x2, . . . , xm] ∈ Rnx×m be a data matrix, with m samples and nx dimension.
The overarching goal of subspace clustering is to group the samples into respective clusters,
where a cluster corresponds to a subspace. Most early works in subspace clustering [3–6]
attempt leverage the self-expression, to identify which subspaces the given samples belong
to. Formally, the self-expression can be written via the following:

min
C

1
2
||X − XC||2F + σ||C||p, (1)

where σ is a trade-off parameter, and the coefficient matrix C ∈ Rm×m indicates sample
affinities. For example, if xi and xj belong to the same subspace, then Cij and Cji tend to be
large. In contrast, if xi and xk belong to the different subspaces, then Cik and Cki tend to
be small. Here, ||C||p denotes the prior term to prevent trivial solutions [6]. For instance,
the sparsity term ||C||1 [3,4], nuclear norm or low-rank term ||C||∗ [5], and dense term or
F-norm [6]. After obtaining C, those methods often conduct spectral clustering [21] on the
similarity matrix S = 1

2 (|C|+ |C|>) to finally cluster the samples.

2.2. Deep Subspace Clustering

The main challenge of these traditional subspace clustering methods is that they
are limited to apply to the linear subspace cases [9]. To address this issue, some kernel
based subspace clustering methods [22] have been proposed, yet it remains hard to choose
proper kernels for the underlying subspaces [9]. Recently, deep subspace clustering meth-
ods [9,12,23] have provided a promising direction, and they leverage deep neural networks
to perform nonlinear feature learning and subspace clustering collaboratively. Most deep
subspace clustering methods follow the pattern from [9]. Formally, the deep encoder
fE(; Θe) : Rnx → Rnz is employed to map the original sample xi for i ∈ [m] to the latent
space: zi = fE(xi; Θe), where Θe and nz stand for the parameter of the encoder and dimen-
sion of the latent presentation zi, respectively. Afterward, a decoder fD(; Θd) : Rnz → Rnx

is adopted to regularize the encoder [14] by mapping the latent representation zi for i ∈ [m]
back to the original space, denoted by x̂i, where Θd denotes the parameter of the decoder.
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The self-expression is then performed in the latent space Z. Combining the deep AE
reconstruction and self-expression, they have the following formulation:

min
Θe ,Θd ,C

Lself-re + β1Ls, (2)

where Lself-re = ∑i,j ||xi − x̂j||22 = ||X − X̂||2F, Ls = ||Z − ZC||2F + σ||C||F, and Z denotes
the latent representation matrix whose columns are zi for i ∈ [m]. The Lself-re is the self-
reconstruction term, and Ls is the self-expression in Z. F-norm on C is adopted for ease of
follow-up gradient-based training. Again, β1 is a trade-off parameter. Notably, Ji et al. [9]
added a fully-connected layer, without a bias between the encoder and decoder, whose
weights represent the coefficient matrix C; they call it the self-expression layer. Thereafter,
several works have been proposed. Peng et al. [23] combined a structured AE-based DSC
with linear subspace clustering. By incorporating adversarial training into DSC, some stud-
ies observed the improvement of clustering [24]. Jiang et al. [25] incorporated the self-paced
technique into DSC to gradually improve the clustering ability. Recently, Peng et al. [10]
came up with DSC-L1, with the sparsity on the latent representation. Multiple linear layers
have been exploited to characterize the low- and high-level information for DSC [26].

More recently, Zhang et al. [13] introduced the classification module that can leverage
the pseudo-labels extracted from the self-expression layer. Xu et al. [27] proposed a DSC
method that jointly learns an AE and latent block-diagonal representation matrix. ODSC is
proposed to leverage overcomplete representation for robust clustering [28]. Differently,
Peng et al. [29] proposed a DSC method with the maximum entropy term that increases the
connectivity of the learned affinity matrix. Building upon the idea of data augmentation,
Abavisani et al. [8] came up with a temporal ensembling component that enables the DSC
to maintain invariant subspaces from random data transformations.

However, the above methods share a common challenge: they mostly employ the
self-reconstruction cost in their frameworks, limiting the deep feature learning of the
encoder. Some recent studies [14,15,17] attempt to address this issue. A typical example
is the locality preserving module for reconstruction, proposed by [17]. Nevertheless, we
find that the locality preserving module amounts to a graph regularization, which merely
depicts the pairwise relations of samples. Unlike [17], we propose a hypergraph-supervised
reconstruction that exploits the high-order relations among samples, enhancing the deep
discriminative feature learning of the encoder and improving the clustering performance.

3. Method

This section formally presents our proposed hypergraph-supervised deep subspace
clustering (H-DSC) method, as shown in Figure 1. We first present background information,
regarding hypergraphs; then, we detail our framework, which mainly consists of two
parts: (1) hypergraph-supervised AE with the self-expression layer to perform the deep
feature learning and subspace clustering collaboratively; (2) the classification module that
enables supervision from the pseudo-labels. These two parts are seamlessly connected and
mutually enhance each other. The notation used in this article is summarized in Table 1 for
ease of exposition.

Table 1. The definitions of notations.

Notation Remark

X Data matrix
Z Deep latent representation
xi/zi The i-th sample in X/Z
C Self-expression coefficient matrix
S Similarity matrix formed by C
H Incidence matrix of hypergraph
Dv Degree matrix of vertices in hypergraph
De Degree matrix of hyperedges
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Table 1. Cont.

Notation Remark

W Weight matrix of hyperedges
Lh Hypergraph Laplacian matrix
yi The i-th sample in classification layer
ŷi Pseudo-label for i-th sample
m Number of samples
K Number of clusters
[m] The set of {1, 2, . . . , m}

3.1. Preliminaries on Hypergraphs

The hypergraphs are a generalization of graphs [19], providing a natural way to
characterize the high-order relations among samples. A standard hypergraph, and its
Laplacian, are proposed by Zhou, Huang, and Scholköpf [30], who generalized the reg-
ularized graphs and define the normalized hypergraph Laplacian. Formally, given a
hypergraph G = (V,E, W), with V, E, and W denoting the sample (vertex) set, the hy-
peredge set, and the weight matrix, respectively. Denote the weight corresponding to the
hyperedge ej as ω(ej). The degree of a vertex ai is defined as d(ai) = ∑ej∈E,ai∈ej

ω(ej). The

incidence matrix H ∈ R|V|×|E| is constructed to indicate the association between samples
and hyperedges, i.e., the entry Hi,j , h(ai, ej) = 1 if ai ∈ ej and entry Hi,j , h(ai, ej) = 0
otherwise. The degree of the hyperedge ej is δ(ej) = |ej|. By definitions, we have:

d(ai) = ∑
ej∈E

ω(ej)h(ai, ej) and δ(ej) = ∑
ai∈V

h(ai, ej). (3)

To use a concise matrix form, we denote the diagonal matrix DV and DE as the degree
matrix of the vertex and hyperedge, whose elements are (DV)i,i = d(ai) and (DE)j,j = δ(ej).
The hyperedge weight matrix can be a diagonal matrix, whose element is Wj,j = ω(ej).
The hypergraph Laplacian is then defined as [30]:

Lh = I − DV
−1/2HW DE

−1H>DV
−1/2. (4)

The hypergraph, along with its Laplacian, has demonstrated its effectiveness as a regular-
ization for various learning problems, owing to the powerful representation of high-order
relations [31,32]. In this paper, we leverage the powerful representation of the hypergraph,
to help improve the DSC by formulating a hypergraph-supervised reconstruction, which
specifically enhances the encoder to discover the high-order relations of samples and
facilitate the clustering.

3.2. Hypergraph-Supervised Auto-Encoder

Let X = [x1, x2, . . . , xm] ∈ Rnx×m be a data matrix, with m samples, which lie in
a union of low-dimensional subspaces of Rnx . Similar to the standard deep subspace
clustering mentioned in Section 2.2, we employ the deep encoder, fE(; Θe) : Rnx → Rnz ,
that maps the original sample xi for i ∈ [m] to the latent space: zi = fE(xi; Θe), as well
as a decoder fD(; Θd) : Rnz → Rnx to regularize the encoder [14] by mapping the latent
representation zi for i ∈ [m] back to the original space, denoted by x̂i. Differently, we have
no longer applied the self-reconstruction in Equation (2).

Hypergraph-supervised Reconstruction. Most DSC methods [9,10,12] employ the self-
reconstruction that serves as a necessary regularization to the deep AE [14]. Nevertheless,
the potential issue is that the self-reconstruction often over-regularizes the encoder and
hampers the deep feature learning [15,16], when the deep AE are trained by the back-
propagation. A possible remedy for this issue is the locality preservation module [17],
which attempts to reconstruct the neighbors of given samples, rather than themselves.
Formally, xi is encouraged to reconstruct its neighbor xj, with the weight Si,j , where Si,j,
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obtained by the self-expression layer, represents the affinity between samples xi and xj.
The basic idea is that samples with higher affinities should be similar in reconstruction.
Then, the corresponding graph-regularized reconstruction comes out as:

min
Θe ,Θd

∑
i,j

Si,j||xi − x̂j||22 = ||X − X̂||2F + 2Tr(XLX̂>), (5)

where the normalized Laplacian matrix L = I − D−
1
2 SD−

1
2 , the diagonal matrix D =

Diag(∑m
j=1 Si,j), and Tr() denote the trace operation.

However, we note that the weighted reconstruction in Equation (5) amounts to a pair-
wise graph regularization, which is limited to depict the pairwise relations of samples [20].
To address this issue, we propose hypergraph-supervised reconstruction, which allows the
deep AE to characterize high-order relations. Formally, suppose we are given a hypergraph
G = (V,E, W), as mentioned in Section 3.1, where a vertex corresponds to a sample in X.
The hypergraph reconstruction will be discussed later. Intuitively, we hypothesize that the
samples within the same hyperedge e are similar to each other in the reconstruction. We
then encourage the samples within the same hyperedge to be decoded through a weighting,
based on ω(e)

δ(e) . Accordingly, we formulate the hypergraph-supervised reconstruction as:

min
Θe ,Θd

∑
e∈E

∑
(xi ,xj)∈e

ω(e)
δ(e)
||xi − x̂j||22. (6)

This formulation makes the samples within the same hyperedge decode similarly. In other
words, the high-order relations among these samples are reflected in the reconstruction.
By the subsequent back-propagation training, the hypergraph-supervised reconstruction
in Equation (6) enables the deep AE to perform a more discriminative feature learning,
compared to the graph-regularized reconstruction and, thus improves clustering perfor-
mance. After the algebraic manipulations, according to [20], we can derive the matrix form,
as follows:

Lhyp-re = min
Θe ,Θd

∑
e∈E

∑
(xi ,xj)∈e

ω(e)
δ(e)
||xi − x̂j||22

= ||X − X̂||2F + 2Tr(XLhX̂>),

(7)

where Lh is exactly the hypergraph Laplacian in Equation (4).
DSC-based Hypergraph Learning. There remains the question of how to construct the

hypergraph, i.e., the incidence matrix H and the hyperedge weight matrix W . Numerous
plausible approaches have been studies in the hypergraph literature [33], but few of them
are well connected with the DSC. In this paper, we propose a data-driven approach that
learns the hypergraph from the self-expression layer of DSC. Given the data X, we assume
each sample xi form a vertex of the hypergraph; thus, the incidence matrix H becomes
a square matrix, with size m×m. The S formed from the self-expression layer provides
rich information about the geometry structure of samples, and such information can be
exploited to construct the hypergraph. Intuitively, samples with higher similarities should
form a hyperedge; accordingly, we opt to design the hyperedge as:

Hi,j =

{
1 if Si,j > θ2

0 otherwise,
(8)

where θ2 is a predefined threshold and empirically set as the mean values of the elements
in S. One can notice that a vertex xi is assigned to ej, on the basis of whether the similarity
Si,j is greater than the threshold θ2. In this way, each sample serves as a centroid in a
hyperedge. Each hyperedge can be regarded as a set that is formed by the centroid and
selected neighbors, according to the self-expression layer. The number of the selected
neighbors, by Equation (8), is adaptive to each sample, allowing us to flexibly characterize
the high-order information of data.
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The hyperedge weights also play a crucial role in the hypergraph. Intuitively, the
hyperedge weights are based on the intra-hyperedge similarities. In other words, the
hyperedge weight of ej should be large if the involved samples have higher similarities
to each other and vice versa [34]. Accordingly, we opt to exploit the summation of the
similarities within the hyperedge ej for j ∈ [m] as the weight:

∀j ∈ [m], ω(ej) = Wj,j = ∑
xi∈ej ,j 6=i

Hi,jSj,i. (9)

3.3. Pseudo-Label Classification Module

In line with the recent studies [13,17], we introduce the classification module that
allows us to leverage the pseudo-label information for a better deep feature learning. To
be specific, we insert a fully-connected layer, coupled with a softmax function, after the
encoder, transforming zi for i ∈ [m] to yi = softmax(Wczi) ∈ RK, where Wc ∈ RK×nz ,
softmax, and K stands for the fully-connected layer matrix, standard softmax function,
and number of clusters, respectively. The cost function for the classification module is the
standard cross-entropy:

Lcls =
m

∑
i

vi × `cross(yi, ŷi), (10)

where `cross denotes the standard cross-entropy function and ŷi is the one-hot pseudo-label
of yi, i.e., leaving the maximum value of yi to be 1, whereas the rest is set to 0. The variable
vi is used to select the highly-confident pseudo-label: vi = 1 if the maximum value in yi is
greater than a predefined threshold θ1 and vi = 0 otherwise. We empirically set θ1 = 0.8,
according to [17].

3.4. Training H-DSC

We seamlessly combine the costs of the self-expression in Equations (2), (7) and (10),
as follows, to form an end-to-end trainable H-DSC:

L = Lhyp-re + β1Ls + β2Lcls, (11)

where β1 and β2 are the trade-off hyperparameters, which are often determined by the
grid search [13,17]. The trainable parameters of H-DSC consist of the encoder parameters
Θe, decoder parameters Θd, self-expression layer parameters C, hypergraph Laplacian Lh,
and classification layer parameter Wc. Similar to most DSC methods [9,10,12,17], the cost
function L are the function of all the trainable parameters in the network, and this network
can be trained by the back-propagation. One practical implementation is the ADAM [35].
To train H-DSC, we propose a two-phase strategy: (1) pre-train the deep AE to provide
an initialization; (2) train the whole deep subspace clustering network, H-DSC, with the
above cost function.

Phase I: Pre-training. The pre-training phase only uses the cost Lhyp-re. In this phase,
we currently rule out the classification module. Moreover, The coefficient matrix C is set
as a fixed identity matrix, which amounts to training H-DSC without the self-expression
layer. Since Lhyp-re still requires the initial hypergraph, we adopt the standard hypergraph
learning approach [34] to efficiently initialize the hypergraph. In line with [9,17], the
pre-training stops when the training epoch reaches the maximum pre-train epoch Tpre.

Phase II: Training the whole H-DSC. In this phase, we apply the total cost L to train
the whole H-DSC, including the self-expression, classification module, and hypergraph-
supervised module. For clarity, we summarize the procedure in Algorithm 1. In exper-
iments, following [9], we set a maximum number of epochs Ttrain to stop the training.
When the network parameters are optimized, we have the latent representation Z and
self-expression C; then, we perform spectral clustering [21] on S to obtain the cluster labels.
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Algorithm 1 Procedure of Training H-DSC

Input:
The data matrix: X;
The hyperparameters β1 and β2;
The maximum iteration number Ttrain and Tpre.

Output:
The cluster labels.

Phase I: Pre-training
1: Randomly initializing the encoder Θe and decoder Θd;
2: Initializing Lh by [34];
3: Initializing the self-expression layer C = Im;
4: while Not reaching Tpre do
5: Forward propagation to compute the cost function Lhyp-re;
6: Back-propagation to update Θe and Θd by the ADAM optimizer [35];
7: end while

Phase II: Training the whole H-DSC
8: Restoring Θe and Θd from Phase I as initialization;
9: Randomly initializing the self-expression layer C;

10: while Not reaching Ttrain do
11: Forward propagation to compute the cost function L;
12: Back-propagation to update Θe, Θd, C, and Wc with the ADAM optimizer;
13: Updating H and W according to Equations (8) and (9), respectively, and then

updating Lh according to Equation (4).
14: end while
15: Performing spectral clustering [21] on S to obtain the cluster labels.

4. Experiment

This section presents the empirical evidence for the effectiveness of our proposed
Hypergraph-supervised deep subspace clustering (H-DSC). To assess our method, we
conducted experiments on benchmark high-dimensional datasets. Section 4.1 describes
the experimental settings; Section 4.2 demonstrates the effectiveness of the hypergraph-
supervised reconstruction by a series of ablation studies. Section 4.3 presents the com-
parisons between H-DSC and the recent benchmark DSC methods. Sections 4.4 and 4.5
illustrate the hyperparameter sensitivity analysis and convergence behaviors of H-DSC,
respectively.

4.1. Experiment Setting

Datasets. We applied four benchmark high-dimensional datasets to assess our
method [9,10,17]: ORL, Umist, MNIST, and COIL100. They are all available on the
websites: https://github.com/panji530/deep-subspace-clustering-networks; https:
//github.com/sckangz/selfsupervisedSC.

• ORL: Image datasets, consisting of 400 samples and 40 clusters, in which each cluster
consistently involves 10 samples.

• Umist: This image dataset comprises of 480 samples, belonging to 20 clusters, and
each sample is taken under varying poses. According to [17], each image is cropped
to 32× 32.

https://github.com/panji530/deep-subspace-clustering-networks
https://github.com/sckangz/selfsupervisedSC
https://github.com/sckangz/selfsupervisedSC
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• MNIST: This is the handwritten digits dataset, which contains 10 clusters, 0–9. Each
cluster involves 6000 training and 1000 testing samples, with 28× 28 pixels in each
sample. Following [17], we adopted the subset that consists of first 100 images of
each cluster.

• COIL100: This image dataset comprises of 7200 samples of 100 respective clusters of
toys; each sample is 32× 32.

Compared Methods. We compared H-DSC with the benchmark ones, including the
linear and deep subspace clustering. Linear models include low-rank representation (LRR,
TPAMI-2012) [36], low-rank subspace clustering (LRSC, PRL-2014) [5], sparse subspace clus-
tering (SSC, TPAMI-2013) [4], efficient dense subspace clustering (EDSC, WACV-2014) [6],
SSC with pre-trained convolutional AE features (AE+SSC), DSC network with `1-norm
(DSC-L1, NIPS-2017) [9], DSC network with `2-norm (DSC-L2, NIPS-2017), self-supervised
convolutional subspace clustering network (S2ConvSCN-L2, CVPR-2019) [13], deep sub-
space clustering (DeepSC, TNNLS-2020) [10], and pseudo-supervised deep subspace clus-
tering (PSSC, TIP-2021) [17].

Metrics. We applied three widely-used metrics [6,10], i.e., accuracy (ACC), normalized
mutual information (NMI), and purity, to assess the performance of each method. For a
dataset with m samples and K clusters, let li and l̂i be the ground-truths and predicted
labels for the i-th sample, respectively. The ACC measures the percentages of correct
partitions as:

ACC(l, l̂) =
∑m

i=1 φ(li, l̂i)

m

where the function φ(li, l̂i) = 1 if li = l̂i; otherwise, φ(li, l̂i) = 0. NMI measures the
entropy of mutual information between the predicted predicted labels and ground-truths.
Larger NMI values imply better clustering performance. It is defined as:

NMI(l, l̂) =
2 ∑K

i=1 ∑K
j=1

mij
m log

mijm

∑K
i=1 mi ∑K

j=1 mj

−∑K
i=1

mi
m log mi

m −∑K
j=1

mj
m log

mj
m

where mij denotes the number of samples with ground-truth i and predicted label j. Pa-
rameter mi denotes the number of samples in the i-th cluster. In addition to ACC and NMI,
purity is another frequently used assessment metric, which defines the pureness of the
predicted clusters, with a larger value implying a better prediction. It is defined as:

Purity(l, l̂) =
1
m ∑

k
max

j
|lk

⋂
l̂j|.

Implementation Details. For a fair comparison, we complied with the DSC litera-
ture [9,13,17] to prepare as follows: (1) network architecture: the architecture specification
of H-DSC, applied in the experiments for the respective dataset, is summarized in Table 2,
which is the same as [17]. As for the convolutional layers, we set the kernel stride as 2,
in both the horizontal and vertical directions, and used the rectified linear unit (ReLU) as
the activation function. (2) Optimizer and training: we used the ADAM [35] to perform
the gradient-based optimization, where the learning rate was set as 1e−3 in pre-training
and 1e−4 in the training phase. The maximum epoch in pre-training Tpre and training
Ttrain were set as 100 + K × 20 and 50 + K × 25, respectively. (3) Hyperparameters: we
trained the entire network with the grid searching for β1 and β2. The sensitivity analysis
can be seen in Section 4.4. (4) Post-processing: we used the commonly adopted post-proc
technique from [6] to process C before final clustering. (5) For competitors, we used their
public codes for the experiment. The corresponding hyperparameters were set according
to the report from the respective papers.
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Table 2. Network architecture of H-DSC for different datasets, including the “kernel size @ channels”.

ORL MNIST Umist COIL100

5× 5 @ 5 5× 5 @ 15 5× 5 @ 20 3× 3 @ 20
encoder 3× 3 @ 3 3× 3 @ 10 3× 3 @ 10 −

3× 3 @ 3 3× 3 @ 5 3× 3 @ 5 −
3× 3 @ 3 3× 3 @ 5 3× 3 @ 5 3× 3 @ 20

decoder 3× 3 @ 3 3× 3 @ 10 3× 3 @ 10 −
5× 5 @ 5 5× 5 @ 15 5× 5 @ 20 −

4.2. Effectiveness of Hypergraph-Supervised Reconstruction

To evaluate the effectiveness of our proposed hypergraph-supervised reconstruction
Equation (7), we prepared the following ablation study. Specifically, we first designed
the base-1 and base-2. They both had the same network structure and the same training
policy as H-DSC, except that the former adopted the self-reconstruction as in Equation (2),
whereas the latter adopted the graph-regularize reconstruction as in Equation (5). To further
verify the DSC-based hypergraph learning, we then prepared the base-3, which was the
same as H-DSC except that the hypergraph was learned by the standard approach as in [34]
and fixed during the network training. Finally, we used the grid search on β1 and β2 for all
the methods and only reported their best ACC in Table 3.

Table 3. Ablation study of the hypergraph-supervised reconstruction in Equation (7). The table
shows the ACC performance (%) of each method on four benchmark datasets. H-DSC, base-1, base-2,
and base-3 have the same network architecture and training policy, except that base-1 adopts the
self-reconstruction (as in Equation (2)), base-2 employs the graph-regularized reconstruction (as in
Equation (5)), and base-3 applies the standard hypergraph (yielded by [34]). The best results are
boldfaced, and the second-best ones are underlined.

Method/Dataset ORL Umist MNIST COIL100

Base-1 85.88 75.65 76.53 71.63
Base-2 86.17 78.95 83.08 74.21
Base-3 87.51 79.22 83.89 78.65

H-DSC (ours) 88.65 81.60 85.79 81.23

One can notice from Table 3 that H-DSC consistently outperforms its competitors, in
terms of ACC. Specifically, H-DSC exceeds base-1 by 2.77%, 5.95%, 9.26%, and 9.6% on
ORL, Umist, MNIST, and COIL100, respectively. Similarly, H-DSC gains 2.48%, 2.65%,
2.71%, and 7.02% ACC improvement over base-2 on ORL, Umist, MNIST, and COIL100,
respectively. The performance improvement of our H-DSC is rooted in the methodological
advantage: the H-DSC employs the hypergraph-supervised reconstruction to guide the
deep feature learning of the AE, while base-1 only adopts the self-reconstruction. These
results verify that hypergraph-supervised reconstruction enables AE to perform more
discriminative learning and alleviates the adverse effect of self-reconstruction. Likewise,
the performance gaps between H-DSC and base-2 confirm that hypergraph-supervised
reconstruction can be more effective than the graph-regularized reconstruction when it
comes to the AE-based deep discriminative feature learning. In addition, since H-DSC
achieves improvement around 1.14%, 2.38%, 1.9%, and 2.58%, compared to base-3, we can
reach a preliminary conclusion that the DSC-based hypergraph learning is more effective
than a predefined hypergraph approach [34]. This phenomenon indicates the effectiveness
of the joint optimization of hypergraph and DSC.
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4.3. Clustering Performance Comparison

Apart from the previous studies, we also compared H-DSC with recent benchmark
DSC methods, as listed in Section 4.1. As can be seen from Tables 4–6, H-DSC obtains
higher ACC, NMI, and purity than all the compared methods. In particular, our approach
gains 1.29%, 2.43%, 1.49%, and 4.35% improvement over the second-best method, in terms
of ACC on ORL, Umist, MNIST, and COIL100, respectively. The consistent improvement
demonstrates the effectiveness of our proposed method, indicating its potential for deal-
ing with a wide range of high-dimensional clustering tasks. Furthermore, we draw the
following observations.

First, H-DSC uniformly outperforms PSSC, a state-of-the-art DSC method, on all
the benchmark datasets. Particularly, H-DSC is superior to PSSC by 4.35%, 4.57%, and
7.13%, in terms of ACC, NMI, and purity, respectively, on COIL100. Such a significant
performance improvement arises from the difference between the hypergraph-supervised
reconstruction and the graph-regularized reconstruction. H-DSC and PSSC have the same
network architecture and classification module, and the main difference is the reconstruc-
tion term that guides the deep AE to perform the feature learning. Despite that PSSC
adopting the graph-regularized reconstruction to enhance the feature learning, such a
reconstruction is still limited to capturing the pairwise relations among samples. Dif-
ferently, hypergraph-supervised reconstruction enables us to characterize the high-order
relations among samples and facilitates the deep feature learning through back-propagation
training. Therefore, compared to the graph-regularization in Equation (5), the hypergraph-
supervised reconstruction is expected to have better performance improvement, when
incorporated into other deep clustering frameworks.

Second, H-DSC gains more performance improvement in large-scale datasets. For
example, the sample sizes of ORL, MNIST, and Umist adopted in the experiments are
all less than or equal to 1000, whereas the one of COIL100 is 7200. H-DSC gains 4.35%
ACC improvement in COIL100 over the second-best method. This improvement is more
significant than that in the rest of the datasets. This phenomenon partly arises from
that hypergraphs are more informative for large-scale datasets, compared to small-scale
ones [37]. In addition, similar to the other DSC methods, H-DSC outperforms the linear
subspace clustering counterparts by certain margins. The results are consistent with the
DSC literature [9,13,17]. These results are partly due to the fact that the datasets involved in
this paper do not conform to the linear subspace assumption. By employing the deep neural
networks to mitigate the linear assumption problem, one can expect that the performance
of most DSC methods significantly improves on the linear counterparts.

Table 4. ACC Performance comparison on four benchmark datasets (%). The best results are
boldfaced, and the second-best ones are underlined.

Method/Dataset ORL Umist MNIST COIL100

LRR (TPAMI-2012) 80.65 69.79 53.81 40.18
LRSC (PRL-2014) 75.21 67.29 51.40 49.33

SSC (TPAMI-2013) 76.66 69.04 45.32 55.00
EDSC (WACV-2014) 67.52 69.37 56.42 61.73

AE+SSC 76.24 70.24 45.37 61.12
DSC-L1 (NIPS-2017) 85.75 72.42 72.83 66.38
DSC-L2 (NIPS-2017) 86.00 73.12 74.22 69.04

S2ConvSCN-L2
(CVPR-2019)

87.36 76.49 80.30 74.69

PSSC (TIP-2021) 86.25 79.17 84.30 76.88
H-DSC (ours) 88.65 81.60 85.79 81.23
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Table 5. NMI Performance comparison on four benchmark datasets (%). The best results are
boldfaced, and the second-best ones are underlined.

Method/Dataset ORL Umist MNIST COIL100

LRR (TPAMI-2012) 86.02 76.32 56.32 48.29

LRSC (PRL-2014) 81.50 74.81 55.76 56.23

SSC (TPAMI-2013) 84.48 74.64 47.09 63.41

EDSC (WACV-2014) 76.78 75.21 57.52 68.27

AE+SSC 85.64 75.19 53.37 69.17

DSC-L1 (NIPS-2017) 90.25 75.62 72.17 74.24

DSC-L2 (NIPS-2017) 90.24 76.62 73.19 76.19

S2ConvSCN-L2
(CVPR-2019) 93.32 83.49 80.30 80.43

PSSC (TIP-2021) 92.25 86.67 76.76 81.66

H-DSC (ours) 94.87 88.13 78.93 86.23

Table 6. Purity performance comparison on four benchmark datasets (%). The best results are
boldfaced, and the second-best ones are underlined.

Method/Dataset ORL Umist MNIST COIL100

LRR (TPAMI-2012) 82.19 66.72 56.83 45.12
LRSC (PRL-2014) 75.47 65.26 55.51 53.29

SSC (TPAMI-2013) 77.69 65.46 49.40 59.41
EDSC (WACV-2014) 71.22 66.97 61.28 65.27

AE+SSC 79.57 67.89 52.86 66.68
DSC-L1 (NIPS-2017) 85.83 72.04 78.91 71.18
DSC-L2 (NIPS-2017) 86.79 72.76 79.85 71.80

S2ConvSCN-L2
(CVPR-2019)

90.36 79.22 81.22 77.59

PSSC (TIP-2021) 89.87 79.17 84.31 78.21
H-DSC (ours) 91.59 81.60 86.29 85.34

4.4. Hyperparameter Sensitivity Analysis

There are two hyper-parameters β1 and β2 in H-DSC. Broadly speaking, they are
data-dependent; thus, we conducted the grid search to find the optimal hyperparameter
values for each dataset. To demonstrate their influences on clustering performance, we
searched the β1 in [1, 10, 100, 1000] and β2 in [0.1, 1, 10, 100], and then plotted the
corresponding ACC performance on four benchmark datasets in Figure 2. From the figure,
one can see that although optimal hyperparameter values for the ACC performance varies
in different datasets, H-DSC performed stably in a wide range of values across the four
benchmark datasets.
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Figure 2. The ACC performance of our proposed H-DSC, with respect to the varying hyperparameter
β1 and β2 on four benchmark datasets.

4.5. Convergence Behaviors

To demonstrate the convergence behavior of H-DSC during training iterations, we
conducted experiments on MNIST and COIL100, with β1 = β2 = 1. We recorded the
hypergraph-supervised reconstruction, self-expression, total cost in Equation (11) during
the training process, and plotted them as a function of the number of epochs in Figure 3. As
can be seen, the cost functions Equation (11) converge in both datasets when the training
epochs are larger than 50.

Figure 3. The cost function value decay of H-DSC during the training process on COIL100 and
MNIST. The vertical and horizontal axis represent the cost function values and number of training
epochs, respectively. The red, blue, and green lines indicate the cost function value of Lhyp-re, Ls,
and L, respectively.

5. Conclusions

This paper proposes a hypergraph-supervised DSC method to simultaneously en-
hance the feature learning of deep AE and subspace clustering. In particular, we formulate
the hypergraph-supervised reconstruction that guides the decoder of AE to reconstruct
samples, according to the high-order relations in the hypergraph. By capturing the high-
order relations, the deep AE is allowed to perform a better discriminative feature learning.
In addition, we propose hypergraph learning, based on the self-expression in DSC, present-
ing a joint learning framework to improve the clustering performance further. Experiments
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on benchmark high-dimensional datasets demonstrate the effectiveness of our proposed
method, compared to several recent competitors.
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