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Abstract: To overcome the low timeliness of resource scheduling problems in spatial information
networks, we propose a method based on a dynamic reconstruction of resource request queues and
the autonomous coordinated scheduling of resources. First, we construct a small satellite network and
combine the graph maximum flow theory to solve the link resource planning problem during inter-
satellite data transmission. In addition, we design a multi-satellite resource scheduling algorithm
with minimal time consumption based on graph theory. The algorithm is based on graph theory to
reallocate the resource request queue to satellites with idle processing resources. Finally, we simulate
the efficient resource scheduling capability in the spatial information network and empirically
compare our approaches against two representative swarm intelligence baseline approaches and
show that our approach has significant advantages in terms of performance and time consumption
during resource scheduling.

Keywords: collaborative scheduling; spatial information network; resource coordination; genetic
algorithm; particle swarm optimization algorithm

1. Introduction

A Space-Terrestrial Integrated Network (STIN) includes a space-based backbone
network, space-based access network and ground-based node network. STIN is an es-
sential national information infrastructure which closely integrates space, air, land, ship
and island resources to achieve global reliable and efficient space-time data transmission
capability. Spatial information network development needs to cross the sky and earth
platforms to realize the integrated management and ample space and ground resources
application in the future. With the gradually increasing dependence of industries on spatial
information network services and increasing commercial and military demands, rapid
response and efficient services have become the fundamental aspects of concern for various
application fields.

However, the inefficient scheduling of storage resources in spatial information net-
works leads to extreme difficulties in rapidly allocating and efficiently utilizing resources.
The communication between satellites and ground base stations is constrained by the visi-
ble time window resulting in relatively few resources available for satellites. When faced
with multitasking and highly time-sensitive task scenarios, the limited storage resources
cannot meet the demand. Therefore, how to solve the inter-satellite resource collaborative
scheduling problem and realize the dynamic and rapid scheduling of spatial information
network resources has become an extremely challenging and meaningful research direction
on network resource management. The complex time-varying characteristics of spatial
information networks make the collaborative resources scheduling extremely difficult.

Mathematics 2021, 9, 3293. https://doi.org/10.3390/math9243293 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4350-9299
https://orcid.org/0000-0002-6336-0228
https://doi.org/10.3390/math9243293
https://doi.org/10.3390/math9243293
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9243293
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9243293?type=check_update&version=2


Mathematics 2021, 9, 3293 2 of 23

Fortunately, researchers have studied resource scheduling problems and achieved
results based on machine learning, reinforcement learning, and game theory methods.
Such methods can learn independently, deeply mine data correlations, and integrate
multiple factors for calculation. These methods offer significant performance advantages
and significantly improve resource utilization. However, the space-time dynamic change
characteristics of spatial information networks cause satellite and link resources to change
dynamically over time. It is a challenge to know the state of resources at the next moment
in the spatial information network. Unfortunately, the methods often cannot effectively
schedule resources when facing a resource request queue with extensive data. Moreover,
the methods may cause resource requests to have to wait a long time or to not achieve
optimal overall resource scheduling.

Therefore, the cooperative scheduling of spatial information network resources still
faces two challenges:

1. The existing satellite resource scheduling process requires a visible time window
between the satellite and the ground station, which will lead to long waiting time
costs and poor timeliness of resource scheduling. An essential issue for research is
breaking through the barrier of ground base station control, coordinating the free
satellite resources, and improving resource utilization [1].

2. In the spatial information network, the satellite task distribution is unbalanced, and
reasonably reconfiguring the task queue and realizing the fast scheduling of satellite
resources is an urgent problem [2,3].

In this paper, we propose a Resource request Queue Reconstruction and Collabora-
tive Scheduling method (RQRCS) to remedy the poor timeliness of spatial information
network resource scheduling. The method aims to solve the dynamic reconstruction of the
global resource request queue and cooperate with idle satellite resources to complete the
collaborative scheduling of spatial information network resources. RQRCS decomposes
the cooperative scheduling problem of spatial information network resources into two sub-
problems: the dynamic reallocation problem of the global resource request queue and the
global optimization problem of inter-satellite resource link resources. First, we construct a
satellite network graph based on the current satellite and its surrounding satellite resource
status information. Then, we design the resource allocation algorithm with the least cost
(time) consumption based on the graph theory. Moreover, according to the allocation
result, we reallocate the resource request queue to the satellites with idle resources for
processing. The satellite resources assigned to the resource request operation can meet the
current resource demand, but there is still contention for inter-satellite link resources. The
optimization of global link resources is proposed according to a tiny spatial information
network and the maximum flow theory in the graph. Finally, we achieve the goal of
minimizing the time consumption of task execution on spatial information networks.

Our contribution can be summarized as follows:

1. We propose the RQRCS method that mainly includes a multi-satellite resource schedul-
ing model and algorithm based on the dynamic reconstruction of a multi-satellite
cooperative resource request queue. We aim to minimize the execution time of the re-
source request queue and solve the problem of poor timeliness of spatial information
network resource scheduling to achieve the goal of rapid response to the resource
request of the task.

2. In order to prevent the resource scheduling process from relying too much on the
ground-based stations and causing significant waiting time delays, we investigate an
autonomous resource allocation strategy on satellites. First, we obtain information
on the status of idle storage and observation resources on the neighboring satellites
of the current satellite and construct a small-satellite network. Then, we construct a
minimum cost flow calculation model for dynamic maps to calculate the mission data
transmission route with the shortest time to solve the problem of fast and cooperative
allocation of multi-satellite resources.
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3. To solve the problem of contention for spatial information network link resources, we
calculate the transmission route and the maximum data flow at the current moment
according to the link resources usage and the amount of data to be transmitted. We
transform the global link optimization problem from a small spatial information
network to a multi-objective maximum network flow problem. Then, we design the
maximum flow allocation of inter-satellite link resources algorithm to improve the
utilization of link resources and reduce the time consumed by resource contention.

2. Related Work

In recent years, researchers have conducted in-depth research on the scheduling of
spatial information network resources with the explosive growth of multimedia services
and the continuous emergence of new space tasks. Presently, the scheduling methods of
spatial information network resources are mainly based on machine learning, reinforcement
learning, and game theory.

2.1. Resource Scheduling for Single Satellite

Researchers have conducted in-depth studies on the satellite resource scheduling
problem and achieved specific results. In particular, the scheduling methods of single-star
resources are studied [4,5], mainly on earliest mission priority, satellite resource scheduling
mechanism, heuristic algorithms, high-level priority algorithms with time estimation and
critical path algorithms [6–11]; these methods are the simplest, fast and effective resource
scheduling methods. However, dealing with a large data volume of resource request
queues, these methods often fail to schedule resources effectively and may result in many
resource request tasks waiting for a longer time or failing to achieve the best overall
resource scheduling.

2.2. Resource Scheduling Method Based on Machine Learning

Based on the satellite time window characteristics, many researchers design algo-
rithms to solve the scheduling problem of the visual time window constraints [12–14].
The resource scheduling process can generally be divided into task planning and resource
allocation. Some scholars analyze the constraints and build corresponding models for
these two aspects [15]. Paper [16] proposes an intelligent resource scheduling system based
on the deep neural network (DNN, deep neural network) to solve the long solution time,
low efficiency, and high computational cost problem of other scheduling algorithms. A
study [17] proposes a learning-based approach (LBA, learning-based approach) to solve the
problem of agile earth observation satellite in-flight scheduling. It uses offline training-on-
board scheduling mode and uses a large amount of historical data to train classification on
the ground offline. Moreover, it embeds the classifier into the onboard greedy construction
algorithm. Researchers [18] studied the scheduling of Earth observation satellite tasks with
specific time requirements, proposed an automatic scheduling algorithm for state equations
based on linear temporal logic (LTL, linear temporal logic), and introduced LTL semantics
to automate constraints and time specifications and to formulate the parameters of the task
specification appropriately. The research [19] on small satellite networks expands the tradi-
tional dynamic programming algorithm based on it. It proposes a finite embedded infinite
two-layer dynamic programming framework, transforming the scheduling optimization
problem into a discrete Markov decision process (MDP). Papers [20–23] considered the
complex constraints faced in the process of satellite resource scheduling, combined with
computational geometry and other theories for modeling, and verified the effectiveness of
the model based on data from many instances. Ref. [24] proposed a heuristic algorithm
based on deep reinforcement learning which automatically learns multi-satellite scheduling
strategies and problem representation. Ref. [25] proposes a graph-based joint scheduling
strategy which combines the information in the sensing and transmission phases, makes
full use of the satellite network’s observation and transmission resources, and maximizes
resource utilization.



Mathematics 2021, 9, 3293 4 of 23

Although machine learning methods have better resource scheduling performance,
such methods usually incur high time consumption and require more computational
resources during the learning process. The methods are difficult to adapt to the demand of
high timeliness of resource-constrained spatial information networks.

2.3. Resource Scheduling Method Based on an Intelligent Optimization Algorithm

Researchers have studied the dynamic network characteristics based on game theory
models to maximize the benefits of spatial information networks [2,3]. Dynamic graphs
can represent the dynamic change characteristics of these networks. Therefore, researchers
propose resource scheduling based on graph theory and design corresponding algorithms
to solve emotional resource scheduling problems [26]. The cooperative scheduling problem
of spatial information network resources has achieved good results. Paper [27] proposed
an on-demand learning resource reservation and scheduling algorithm (RODS). In RODS,
resource requests are provided to the server through the terrestrial Internet. An improved
maximum queue length algorithm is used to schedule reservation requests to generate an
optimized scheduling plan. Paper [28] introduced an operational planning and schedul-
ing strategy based on the time sequence availability of consumable and replenishable
resources based on the analysis of satellite function and payload resource constraints,
dividing the planning and scheduling cycle into several parts and combining them. Model-
ing optimization, a genetic particle swarm optimization algorithm (GPSO), is proposed.
Researchers [29–32] proposed an ant colony optimization algorithm (ACO, ant colony
optimization). Based on the observation that the problem’s solution space is sparse, the ant
colony algorithm is combined with the pheromone update method based on the guided
solution. The basic idea of this method is that once the algorithm stops, the distribution
of the pheromone trajectory can be changed by updating the pheromone trajectory with
the guided solution. When the number of satellite observation task requests increases
over time, the multi-satellite data downlink resource scheduling cannot be handled effec-
tively [33]. One paper refers to a data downlink resource scheduling model that adapts
to the observation task increment that is established to solve this problem. A new algo-
rithm based on evolutionary calculation is proposed to quickly optimize the allocation
and adjustment of data downlink resources to download high-priority observation data
as soon as possible. Paper [34] proposes a fireworks algorithm (FWA, Fireworks algo-
rithm), in which FWA is a swarm intelligence algorithm used to produce high-quality
solutions to continuous optimization problems. FWA was first proposed in 2010 in [35] for
the global optimization of complex functions. Papers [36,37] propose several improved
models based on swarm intelligence algorithms to improve the overall benefits of resource
scheduling. Some researchers [38] also regard data transmission task scheduling as a
combined optimization problem between satellite data transmission requirements, visible
time windows, and ground station resources and propose a satellite data transmission
scheduling algorithm based on the framework of differential evolution algorithm. In the
process, the individual evaluation process is improved by an improved method based on
0/1 knapsack. One paper [39] formulates the data exchange between the ground station
and the satellite as a multiprocessor task scheduling problem and proposes a fixed and
relaxed heuristic algorithm based on the Lagrangian version to overcome the inability of
standard integer programming to resolve complex technical constraints procedures. One
study [40] abstracted and simplified the multi-satellite resource scheduling problem and
established a mathematical model combined with the design idea of a genetic algorithm,
and proposed an improved genetic algorithm for population disturbance elimination.

However, intelligent optimization algorithms have enumeration properties, and the
computation time is difficult to estimate. It is challenging to meet the stability requirements
of dynamic network resource scheduling.
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2.4. Resource Scheduling Method Based on Game Theory

Paper [41] proposes a resource allocation method based on multi-layer matching game
theory, which mainly solves the problem of resource allocation in multi-user scenarios.
Researchers [2] consider the service quality requirement as the constraint condition, study
the access control strategy based on the penalty function, and propose a cooperative
game satellite bandwidth resource allocation algorithm. Paper [42] proposes a bargaining
cooperative game model based on the Nash equilibrium and proves the effectiveness of this
method in time complexity. One study looked at [2] the problem of joint transmission power
and bandwidth allocation and proposed a combined resource management method based
on game theory. Researchers [43] analyzed the similarities between mobile and complex
satellite services based on the main characteristics of the millimeter-wave spectrum and
proposed a new cooperative scheduling algorithm based on a game-theoretic framework.

In summary, the approaches based on machine learning, reinforcement learning, or
game theory ensure the maximization of resource utilization. However, the time complexity
of the algorithms is slightly higher, which increases the occupation of valuable satellite
computing resources and needs to be calculated on ground-based base stations. The
establishment of communication links between ground-based stations and satellites will
consume a large amount of time. The resource scheduling algorithms start from the
perspective of task execution gain, thus ignoring the time consumption of the algorithms,
and the efficiency of resource scheduling still needs further research.

Therefore, we propose a coordinated resource scheduling method from the perspective
of efficient scheduling of spatial information network resources to solve these problems
quickly and efficiently.

3. Satellite Resource Scheduling Problem Formulation
3.1. Preliminaries

To provide a clear description of the data model, we present a list of the main variables
used in the paper. As shown in Table 1.

Table 1. List of variables.

Variables Description

T Discrete time
t Slot time
S Satellites
Q Task queue
τ Time Slice

c(u, v) Time consumption from node u to v
f r
s (t) The amount of resource

sours Source Node Satellite Collection
nei Neighborhood Nodes
K Request tasks

ssource The source satellite
ssink The sink satellite
(u, v) The edge from u to v
f r
u,w(t) The data amount on the edge (u, w)
gq(t) The time cost which consumed to complete a request

Φ The waiting delay and the corner time of antenna equipment
fs(x) The time consumption for all tasks performed on satellite s
Ur

s (t) The time cost consumption for the resource request
lmax
s,s′ Link bandwidth
V Nodes in a network representing satellites
E Edge in a network representing an inter-satellite link
G The spatial information network
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3.2. Problem Formulation

The traditional satellite resource scheduling method solves the satellite resource
scheduling plan at the ground base station and then transmits it to the satellite for execution.

As shown in Figure 1, the network operation control center is the central hub of
satellite work and the command post of ground control satellites. Its role is to send specific
instructions after mission planning to the satellites. We can express the command set
received by satellite in the form of a queue. If there is a visible time window between the
satellite and the ground station, the ground station can receive the data sent by satellite.
The satellite executes the instruction process sent by the ground station and the relationship
between the satellite and the ground base station. The function gq(t) represents the
time cost of the satellite si to respond to a specific resource request task at a slot t and
complete the resource scheduling. The function fs(x) represents the time consumed to
meet resource scheduling for all resource request operations received by satellite s. The
function fs

(
gq(t)

)
represents the time required for all satellite resource requests for job

scheduling in a discrete time period T = {1, 2, · · · , τ}. To improve resource utilization and
achieve efficient resource scheduling effects, we need to solve the minimum value of the
function under the complex constraints in the spatial information network to reach the
minimum time consumption. The model is established as Equation (1),

min
τ

∑
t=1

S

∑
s=1

Q

∑
q=1

fs
(

gq(t)
)

s.t.

C1 :
δ

∑
t=σ

cs(t) 6 1, ∀σ ∈ R∗, ∀s ∈ ξ, ∀δ < S,

C2 : ∑
q

wq(u, v) 6 c(u, v),

C3 : τ > 1, τ ∈ R∗, S > 1, Q > 1,

C4 : lmin
s,s′ 6 f r

s (t) 6 lmax
s,s′ ,

(1)

As shown in Formula (1), S represents the satellites that have a visible time window
with the ground base station during the period of t, t inτ. The task queue on the satellite
s, s ∈ S is denoted as Q, where the time required for the task q, q ∈ Q to be executed is
denoted as fs

(
gq(t)

)
. The execution time consumption of task q varies depending on the

merit of the resource scheduling policy. The model (1) describes the minimum time cost
to be consumed in discrete-time tau to execute the tasks on the satellite according to the
resource scheduling scheme. Therefore, we need to calculate the minimum value of the
function fs

(
gq(t)

)
, where the constraint C1 indicates that each satellite can communicate

with at most one object in a slot. The object includes satellites or observation targets,
which is the constraint C2 of the inter-satellite link. The amount of data that needs to be
transmitted is less than the maximum capacity of the transmission link established between
the satellites. C3 indicates the lower limit of the time range, the number of satellites, and
the number of resource requests in the satellite queue. C4 shows the link bandwidth
constraint, lmin

s,s′ represents the lower bandwidth limit, and lmax
s,s′ denotes the upper limit of

the link bandwidth.
The paper considers the global resource scheduling optimization problem with a

new idea, studies the global optimization problem of the satellite resource request queue,
and proposes a dynamic reconstruction method of the multi-satellite coordination global
resource request queue.
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Figure 1. Schematic diagram of the existing spatial information network resource scheduling process.

4. Resource Request Queue Reconstruction and Collaborative Scheduling Method

For multi-satellite and multi-mission high time and high load resource scheduling
problems, the single-satellite resource scheduling method can no longer meet the multi-
resource and high time requirements. In an onboard autonomous resource allocation
environment with multiple missions and resource requests, local LEO and medium orbit
satellites may face many resource requests, resulting in long resource request queues
for local satellites and multiple types of resource requests that are idle resources for the
remaining satellites. Therefore, the pressure of high-load resource requests is relieved
based on idle satellite and link resources, effectively reducing the resource request response
time and improving resource utilization. In this research direction, we propose an online
dynamic scheduling and queue reconfiguration method for multi-satellite resource request
queues which solves the problems of excessive resource request pressure on a single satellite
and waste of idle satellite resources and achieves the purpose of autonomous redistribution
and dynamic scheduling of resource request queues on satellites.

This paper aims to solve the problem of collaborative scheduling of multi-satellite
resources in space information networks. As shown in Figure 2, we use the block dia-
gram [44,45] to describe the construct of the initialized network according to the resource
state, then calculate the inter-satellite link selection and satellite resource allocation strategy
based on the theory of multicommodity network flow. Finally, we update the resource
quantity data of the network and complete the collaborative resource scheduling among
multiple satellites.

As shown in Figure 3a shows that there are three satellites that have received the re-
source request sent by the ground station or other satellites at a slot t, where S = {s1, s2, s3}
represents the set of satellites that have received resource requests in the spatial informa-
tion network. The gray squares in the queue represent the number of storage resources
requested, the white squares represent the number of observation resources required,
and the black squares represent the number of computing resources needed. Figure 3b
shows the state in which the satellite set S redistributes all received resource requests at
a time T = t + δ and cooperates with neighboring satellites to share the resource request
pressure, where the time interval δ satisfies ∀δ ∈ N+ at this time δ > 0. The satellite set
S
′
= {s1, s2, s3, s4, s5, s6} includes the original satellite set S and other satellite sets {s4, s5}

that are coordinated. Each satellite in the satellite set S
′

is allocated a certain amount of
resource request operations according to the number and status of satellite resources. From



Mathematics 2021, 9, 3293 8 of 23

the satellite state figure at the time T = t + δ, it can be seen that the number of resource
request operations on the original satellite set S has been reduced, and the resource type
has become more singular. In contrast, the idle satellite set {s4, s5} has obtained a certain
number of resource request operations.

Satellite

Task Queue

Resources

Communication 
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Information

Initialize Network

Satellite 
network data

Orbital 
Parameters

Resource 
Status

Communicati
on Capability

Satellite 
network data
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Resource 
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Communicati
on Capability

Resource Allocation Scheme Transmission Link Calculation
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Minimum Cost Flow Calculation

Consumers
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Sharers

Allocation

Allocation

Minimum Cost Flow Calculation Maximum Flow CalculationLink Planning Result Maximum Flow CalculationLink Planning Result

Resource allocation 
results

Collaborative 
Satellite Collection

UpdateReadReadUpdate

Figure 2. The multi-satellite resource collaborative scheduling method in spatial information networks.

When faced with many resource request jobs, the single-satellite resource scheduling
method is challenging in terms of meeting the high timeliness and real-time requirements.
We propose a method of synergizing the resources of the current satellite and its surround-
ing satellites to improve the overall resource utilization of the space information network.
As shown in Figure 3, the state subgraph (a) to the state subgraph (b) is the process of
reducing the satellite service load.

In order to clearly describe the specific process of resource request queue recon-
struction and unified planning, we use spatio-temporal axes to represent the satellite
spatio-temporal variation [26]. Figure 4 is an example of the data transmission process
of multi-satellite resource request queue reallocation. The satellite set sours = {s1, s2, s3}
is the resource request sent by the ground base station or surrounding satellites, and the
satellite set nei = {s4, s5} is the surrounding satellite set sours.

In order to describe the state after the satellite receives the resource request and the
state after the resource request queue is reconstructed, we divide the satellite into two
conditions, namely the resource request receiving state si and the queue reconstruction
state s

′
i. si,j denotes the state of the i-th satellite in the j-th time.
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Figure 3. Schematic figure of autonomous reconstruction of resource request queue on a spatial
information network.
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Figure 4. Multi-satellite resource request queue redistribution data transmission process.

We consider the changes and interrelationships of the satellite states in three-time
intervals. The satellite set sours receives resource requests from the ground base station
or other surrounding satellites in the first-time interval to form a resource request queue.
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Meanwhile, the satellite communicates with the surrounding satellites and senses the
resource status information and resource request queue information. The satellites that
received the resource request in the first-time interval perceive two nearby satellites s4,1 and
s5,1 coordinate the resource request. As shown in the Figure 4, the satellite autonomously
plans the resource request queue of itself and the surrounding available satellites according
to its own resource status and the resource demand information of the mission.

Resource request tasks generally have the characteristics of a specific execution order.
The resources required for the task are related to each other, which means that the resources
we provide should also be in order. In addition, different types of resource requests usually
have different priorities, and the same resource type belonging to various tasks also has
different execution priorities. In order to satisfy the resource requirements of the resource
request queue, the satellite resource scheduling problem is mainly divided into two aspects:
optimizing the maximum profit of the network and the task minimum execution time.
The process of discovering a visible time window and establishing links between satellites
is usually slow. Suppose the processing time of the resource request operation is longer.
In that case, it will inevitably cause the loss of available resources, not guaranteeing the
timeliness requirements of multi-task and multi-resource requests. The existing resource
scheduling method mainly relies on the central control method of the ground station,
and the limitation of the visible time window from the satellite to the ground causes the
scheduling time to increase.

4.1. Problem Conversion

In order to compensate for the space-time limitation and improve the timeliness of
satellite resource scheduling, we propose a dynamic reconfiguration and collaborative
allocation model. The model considers the dynamic changes of inter-satellite links and the
cooperative allocation of multi-satellite resources in dynamic networks and aims to solve
the high timeliness of multi-satellite resource scheduling on spatial information networks.
In the process of spatial information network resource scheduling, we mainly consider the
time consumed by satellite resources and inter-satellite link resource scheduling operations.
As shown in Formula (2), the model describes the process of minimizing the time consump-
tion incurred by allocating resources to tasks according to the resource scheduling matrix
when visible links exist between satellites or between satellites and the ground station.
Where Ur

s (t) represents the time cost consumption for the resource request r of satellite s to
transmit unit data. f r

s (t) denotes the resource data amount to be transmitted for a time slot
t in the spatial information network for task r. Br

s(t) shows the scheduling matrix of source
request task on satellite s at time t, and the value range of the element br

s(t) in the matrix is
{0, 1}. Ls,s′ (t) indicates the state of establishing a communication link between satellite and
satellite s at time t. If it is successfully established, then Ls,s′ (t) = 1, otherwise Ls,s′ (t) = 0.
Φr

s(t) denotes the time consumption of the task latency, payload device transition, and
the start of task execution to the end of execution during different tasks operations. We
need to calculate the minimum time spent in the resource scheduling process within a
period. In addition, the time calculation function should be incremental, continuously
differentiable, and strictly concave. Therefore, we define the time calculation function as
log((Ur

s (t) f r
s (t) + E(r))Br

s(t)Ls,s′ (t) + Φr
s(t)), where E(r) denotes the time consumed by

task r from the start execution time to the end execution time. The incrementality of the
time calculation function is manifested in that the time required for calculation should
be increased with the passage of time. The concavity is that the total number of resource
request operations is constant and gradually decreases with time. We can transform the
original model (2) as the following model.
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min
τ

∑
t=1

S

∑
s=1

R

∑
r=1

log
(
(Ur

s (t) f r
s (t) + E(r))Br

s(t)Ls,s′ (t) + Φr
s(t)

)
s.t.

C1 : Br
s(t) = 1, ∀t ∈ {begin, end},

C2 : Ls,s′ (t) = 1, ∀t ∈
{

Wstart
s,s′ , Wend

s,s′

}
,

C3 : lmin
s,s′ 6 f r

s (t) 6 lmax
s,s′ ,

C4 : 0 < ur
s(t) 6 ζ,

C5 : br
s(t) ∈ {0, 1},

C6 : θs(r)− θs
(
r′
)
= γ, γ > 0,

C7 : sant ∈ N∗,

C8 : Lant
s ∈ N∗,

C9 : ∑
v∈s

f (u, v) = 0, u 6= ssource, starget,

C10 : Ls,s′(t) ∈ {0, 1},

(2)

where τ denotes the discrete-time period and t, t ∈ τ denotes the time gap. S denotes the
set of satellites available within some time gap t as S, s, s ∈ S denotes the satellites for
which some visible time window exists. R denotes the queue of missions on satellite s, and
r, r ∈ R denotes a particular mission on satellite s. Ur

s (t) f r
s (t)Br

s(t)Ls,s′ (t) denotes the time
consumption of a mission r in satellite s on some time gap t transmit to the target satellite
or ground base station in the presence of a visible time window. If there is no visible
time window, the time consumption is zero. Br

s(t)Ls,s′ (t)E(r) denotes the execution time
consumed by the task from the beginning to the end of execution if there is a visible time
window for the satellite and the number of resources required by the task can be satisfied.
C1 indicates that if the resource request operation is executable, the data transmission
related to resource scheduling should be completed within the specified time. C2 indicates
that the related data transmission of the resource request operation should be executed
within the visible time window. C3 indicates that the amount of data transmitted after
a successful inter-satellite link is established must be greater than the unit data and the
bandwidth occupied by the currently transmitted data must not be greater than the link
bandwidth threshold. C4 indicates that the time consumed for unit data transmission
must be more significant than 0 and less than the specified threshold ζ. C5 represents the
value range of the resource scheduling state of the inter-satellite link. C6 indicates that
multiple resource request operations use the same satellite resources, and there should
be enough conversion time. C7 manifests that the satellite antennas number should be
a positive number. C8 means that the number of links that any satellite antenna can use
should be positive. C9 represents the flow conservation constraint. C10 represents the link
connectivity state matrix.

In fact, the constraints of the above conditions are far from sufficient in solving the
actual problem, such as the influence of power constraints and space radiation on satellites.
However, it is necessary to ignore the constraints that have minimal impact on the problem
to illustrate the main problem of resource scheduling more clearly. Therefore, we consider
the main constraints and propose a simplified model to minimize the resource scheduling
time consumption. The model proposed in this paper is also applicable to more complex
application scenarios by adding constraints related to specific application scenarios. To
solve the minimum time consumption problem of resource scheduling, we investigate the
method of collaborative idle satellites to share the pressure of global resource requests
and achieve the goal of optimal resource scheduling in the global context. Suppose a
satellite network G(V, E) is given, where the edge (U, V) ∈ E represents the inter-satellite
connection link and V represents the satellite node. Suppose there are K requesting jobs
K =

[
k1 k2 · · · kn

]
with different resources. ssource indicates the source satellites in the
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network G. We need to reconstruct the task queue and send tasks to starget. The target
satellites starget are responsible for completing the resource scheduling requirements of

the allocated resource request operations. Ki =
(

si
source, si

target, di

)
denotes the resource

demand di of the i-th resource request operation from satellite si
source to satellite si

target. The
flow cause by the task r along the edge (u, v) at a slot t is f r

u,v(t). From the above definition,
the global reallocation of resource request queues can be transformed into an inter-satellite
link resource contention problem and a multi-satellite resource coordinated allocation opti-
mization problem. Furthermore, the optimization of inter-satellite link resource contention
can maximize data transmission in resource request queue redistribution. The solution
of the multi-satellite resource coordination optimization problem can minimize time con-
sumption in the resource scheduling process. Therefore, model (2) can be decomposed into
two models: the contention model for inter-satellite link resources and the multi-satellite
resource collaborative allocation optimization model.

4.2. Link Resource Competition Optimization

As mentioned above, the spatial information network resource scheduling problem
can be decomposed into the network link optimization and the network resource coopera-
tive allocation. In this section, we focus on modeling and algorithm design for the network
model link optimization problem, aiming to solve the high delay of data transmission and
incomplete data caused by dynamic links changes in the process of time-varying network
resource scheduling. In addition, it is commonly recognized that inter-satellite links in
space information networks are dynamically changing, and the maximum amount of data
that can be accommodated on the network changes continuously over time t. Therefore, we
need to calculate the maximum amount of data that can be accommodated on the current
network before allocating satellite resources. Without exceeding the maximum capacity, we
transmit the tasks r on each satellite to the satellite with free resources, thus reducing the
resource request load on the original satellite. The Formula (3) can be constructed for the
contention of inter-satellite link resources. It shows the time consumption of calculation,
storage, or antenna switching delay within the satellite.

As shown in Formula (3), the model describes the minimum time cost of interstellar
link data transmission. Where Ur

s (t) f r
s (t)Ls,s′ (t)ξ

r
s(t) denotes the time cost consumed for

data transmission on the satellite link, Φ denotes the waiting delay for data transmission
over the inter-satellite link and the corner time sum of the antenna equipment. C1 indicates
that once the link resource is occupied, it is not allowed by other jobs until the job transfer is
finished or the visible time window disappears. The constraint is defined because the link
resources between satellites are relatively precious, and we are only concerned with the
contention of link resources. Therefore, if we want the task execution time to become shorter,
link resource utilization needs to be maximized. Thus, frequent switching operations
consume link resources while causing more severe time loss. C2−C10 are the same with the
Formula (2), C11 in ∑w∈V f r

u,w(t) < f r
u,v(t) shows that the actual flow transmitted between

satellites is less than the inter-satellite link capacity. lmin
s,s′ 6 f r

u,v(t) 6 lmax
s,s′ exhibits that

the total flow to be transmitted between the satellites f r
u,v(t) is greater than the minimum

flow allowed to be transmitted lmin
s,s′ and less than the maximum flow lmax

s,s′ allowed to be
transmitted on the inter-satellite, C12 denotes that the flow sent by the original satellite
needs to be transmitted to the target satellite in its entirety. C13 indicates that the total flow
transmitted on the space information network is less than what the satellite network is
allowed to send.
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min
τ

∑
t=1

∑
s∈Snew

∑
r∈Rnew

log
(

Ur
s (t) f r

s (t)Ls,s′ (t)ξ
r
s(t) + Φ

)
s.t.

C1 : ∑
r∈Rnew

ξr
s(t) = 1, ξr

s(t) ∈ {0, 1}, r ∈ Rnew, s ∈ Snew, t ∈ τ.

C2 : Ls,s′ (t) = 1, ∀t ∈
{

Wstart
s,s′ , Wend

s,s′

}
,

C3 : lmin
s,s′ 6 f r

s (t) 6 lmax
s,s′ ,

C4 : 0 < ur
s(t) 6 ζ,

C5 : br
s(t) ∈ {0, 1},

C6 : θs(r)− θs
(
r′
)
= γ, γ > 0,

C7 : sant ∈ N∗,

C8 : Lant
s ∈ N∗,

C9 : ∑
v∈s

f (u, v) = 0, u 6= ssource, starget,

C10 : Ls,s′(t) ∈ {0, 1},
C11 : ∑

w∈V
f r
u,w(t) < f r

u,v(t), lmin
s,s′ 6 f r

u,v(t) 6 lmax
s,s′ ,

C12 : ∑
w∈V

f r
ssource ,w(t)⇔ ∑

w∈V
f r
w,starget(t),

C13 :
τ

∑
t=1

∑
s∈Snew

∑
r∈Rnew

f r
s (t) 6 max

(
VR

S (t)
)

.

(3)

Therefore, we mainly consider the problem of link utilization in the model (3). In the
task execution process, the resource utilization rate of the inter-satellite link directly affects
the overall resource scheduling time. Ideally, we can consider that the resource utilization
reaches the maximum, then the time consumed by resource scheduling is the minimum
when all resource requests are satisfied. Therefore, we designed the following algorithm to
improve the utilization of link resources.

According to Algorithm 1, we first create virtual source nodes and sink nodes accord-
ing to the resource amount that needs to transmit on the full link at a particular time t in
the spatial information network (lines 1–5), converting the multi-commodity network flow
problem into a single source and single sink problem. Then, we use the Ford-Fulkerson
algorithm to find the maximum flow in the network and the flow value that can circulate
on each edge (line 6). Based on the time consumed by the unit data on the link, we calculate
the maximum time consumed by the entire network at the current moment t. Finally, we
obtain the minimum data transmission time (lines 8–9).

4.3. Resource Cooperative Allocation Optimization

The multi-satellite resource coordination and allocation optimization problem requires
multiple satellites to provide various resources for mission execution. Multi-satellite
and multi-mission scenarios usually have multiple sources and multiple sink satellites.
Due to time variation and communication latency issues, it is difficult to assign tasks
based on satellite resource status. This may result in an imbalance of mission requests
processed by satellites, with some satellites being overstressed and others being relatively
underloaded. Meanwhile, the satellite resources cannot handle the tasks in time. Therefore,
the multi-satellite resource coordination problem can be solved based on the minimum
cost multimodal network flow theory. The model is constructed as follows,
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min
τ

∑
t=1

∑
(u,v)∈E

(
Uu,v(t)

R

∑
r=1

f r
u,v(t)

)
s.t.

C1 : ∑
v∈s

f r
u,v(t) = 0, u 6= ssource, starget,

C2 : ∑
w∈V

f r
u,w(t) < f r

u,v(t), lmin
s,s′ 6 f r

u,v(t) 6 lmax
s,s′ ,

C3 : ∑
w∈V

f r
ssource ,w(t)⇔ ∑

w∈V
f r
w,starget(t).

(4)

As shown in Formula (4), it describes the least cost incurred by the multi-satellite
resource allocation scheme within the discrete time-period τ. The nodes in the network
are represented as satellites, and the edges on the network are represented as visible links
between satellites. (u, v) denotes the visible links from satellite u to v, E denotes all links
on the network at the slot t. Uu,v(t) denotes the time consumption per unit of the flow
on the visible link (u, v), and ∑R

r=1 f r
u,v(t) denotes the flow of the task r over the link

(u, v). In addition, C1 is the inter-satellite link capacity constraint. C2 is the inter-satellite
transmission flow storage constraint, which indicates that no data is stored on the satellite
during the data transmission. C3 denotes the resource requirement satisfaction constraint.
Meanwhile, we identify the traffic scheme when we have solved for the minimum value.
We assume that the satellite whose mission exceeds the load is a source node in the satellite
networks. Then, we assign resources to the target satellite based on the flow from the
source node to other nodes. Therefore, we can obtain the multi-satellite resource allocation
scheme by calculating the minimum cost flow of the network, while we can ensure the
minimum cost consumption of the resource allocation scheme.

Algorithm 1 Maximum traffic allocation of inter-satellite link resources

Input: Given network G
(
V, E, ssource, starget, U, l

)
. Initialize the number of

transmissions di, the time Ur
u,v consumed per unit of data transmission,

link bandwidth lmax
s,s′ , source point ssource, and sink point starget,

Output: Network flow allocation time Time
1 if ssource 6= ∅&starget 6= ∅ then
2 superSourceNode.next() = ssource ;
3 superTartgetNode.next() = starget ;
4 G.add(superSourceNode);
5 G.add(superTargetNode);

6 MF=FordFulkerson(d,lmax
s,s′ );// Use the algorithm Ford-Fulkerson to

calculate the maximum flow value MF allowed in the network G
7 ; for each (u, v) ∈ E do
8 Time = Time + Ur

u,v ×MF(u, v);

9 Time = time + Φ;// The sum time consumed is the sum of link data
transmission time, antenna switching, satellite internal
calculations, and other operations.

10 return Time

As shown in Figure 5, we can observe the inter-satellite links and the satellites’ initial
state in the spatial information network. Our purpose is to find all paths that consume the
shortest time.
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Figure 5. The initial state of spatial information network resource allocation schematic diagram.

As shown in Table 2, we give a simple resource type and predefined value of the
demand quantity on the network G. The network G includes two resources, two source
nodes, three sinks, and the resource demand quantity on each node. On a given network G,
we design the following algorithm based on the spatial information network environment
characteristics to solve the minimum time consumption problem for resource allocation.

Table 2. Resource scheduling initial data sample.

Resources Type Sources Number Sinks Number

1 1 2
1 2 4
1 7 −4
1 8 −1
1 9 −1
2 1 3
2 2 3
2 7 −1
2 8 −4
2 9 −1

As shown in Algorithm 2, we use Algorithm 1 to calculate the maximum traffic
value that the current satellite network can accommodate (lines 1–7). If a resource request
operation is added to the source satellite set, all resource request queues of the current
satellite set are updated (line 10). Meanwhile, the total resource demand of the network at
the current moment is obtained. Suppose the total demand is within the accommodating
range of the entire network. In that case, the gurobi solver (a widely used solver, we have
obtained a license) is used to solve the optimal resource allocation route, and then the
current unallocated resources are updated (lines 11–13). If no new resource requests are
added, the optimal resource allocation plan is resolved using gurobi, then the currently
unallocated resources are updated and returned to the current minimum time resource
allocation plan (lines 18–20).

As shown in Figure 6, the computational results of the above simple example depict
the reconstruction of the satellite resource request queue and satellite resource coordination
scheme as well as the final route planning for resource coordination. The example shows
resource cooperation among satellites, where satellites accomplish resource request tasks
through resource sharing.
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Algorithm 2 Satellite resource allocation in dynamic network

Input: Given network G
(
V, E, ssource, starget, U, l

)
. Initialize the number of

resource requirements di, unit data transmission time Ur
u,v, link bandwidth

lmax
s,s′ , source ssource and sink starget,

Output: Network flow allocation time Time
1 if ssource 6= ∅&starget 6= ∅ then
2 superSourceNode.next() = ssource ;
3 superTartgetNode.next() = starget ;
4 G∗.add(superSourceNode);
5 G∗.add(superTargetNode);

6 MF=FordFulkerson(d,lmax
s,s′ );// Use the algorithm Ford-Fulkerson to

calculate the maximum flow value MF allowed in the network G∗

7 ; for each t < τ do
8 if a new resource request queue is added then
9 UpdateQueue(d(ssource));

10 if the resource demand at the current momentd<MF then
11 Route=gurobi.optimize();// Use the gurobi solver to calculate

the minimum time-consuming planning scheme.
12 d-dAllocated=dnew;// Update unallocated resources.

13 else
14 MF=FordFulkerson();// Update the maximum flow capacity.

15 else
16 Route=gurobi.optimize();
17 d-dAllocated=dnew;// Update unallocated resources.

18 return Route
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Figure 6. Satellite resource request queue reconstruction and inter-satellite resource coordination.

In summary, the optimization process of spatial information network resource schedul-
ing is the process of source request queue redistribution and inter-satellite coordination,
which ultimately minimizes the time consumed by the satellite resource scheduling process.

5. Numerical Experiment
5.1. Algorithm Complexity Analysis

The resource coordination scheduling method of a spatial information network is
mainly divided into two parts: the dynamic allocation of network resources and the
maximum flow allocation of inter-satellite link resources. The time complexity of adding
super source nodes and super sink nodes in the process of network resource dynamic
allocation is O(ssource + starget), and the time complexity of the Ford-Fulkerson algorithm
is O(E f ). We use approximate algorithms to solve the minimum cost calculation results
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of multiple resource types under multiple sinks and multiple source conditions. The
time complexity is only related to the scale n of the input example, and it varies with the
parameters ε. Therefore, the time complexity of PTAS ranges from O(n1/ε) to O(nexp(1/ε)).
According to the above analysis, the time complexity of Algorithm 1 is O(ssource + starget +

E f + n1/ε) or O(ssource + starget + VE2 + nexp(1/ε)), and the final time complexity is O(E f +
n1/ε) or O(E f + nexp(1/ε)). As with Algorithm 1, Algorithm 2 first adds virtual nodes for
the source and sink points with the time complexity of O(ssource + starget) and then solves
the maximum flow of the network. The time complexity of the algorithm Ford-Fulkerson
is O(E f ). Finally, satellite resources are allocated according to the traffic on each edge. We
call the algorithm proposed in this paper RQRCS, then the best time complexity of RQRCS
is O(E f ), and the worst-case time complexity is O(E f + nexp(1/ε)).

RQRCS proposes the algorithm with the smallest time-complexity among all algo-
rithms when the maximum flow f is small in the paper. When the maximum flow value
f is relatively large, then the advantages of this method will be significantly reduced.
However, influenced by the spatial information network, the number of satellites that can
establish a network with adjacent satellites at a specific moment is small, and the amount
of data transmitted by the inter-satellite link is also minimal. Therefore, we do not need
to consider the high time complexity caused by the large scale of the spatial information
network. We address the problem of the local small satellite network in resource request
queue reconstruction and satellite coordinated allocation.

5.2. Simulation Scenario

In order to study the critical problems of mission scheduling, link optimization,
collaborative computing, and network topology discovery of spatial information networks,
we developed a Chinese version of the Space-based information network satellite ToolKit
(CSTK) independently based on the actual satellite and common mission data in spatial
information networks. In this system, we simulated satellite data, including satellite load
data, satellite orbit data, inter-satellite visible time window and satellite ground visible
time window data, satellite resource capacity, and satellite resource quantity. In addition,
we simulated data of common Earth observation application scenarios, including Earth
observation area, mission execution time demand, mission resource type, mission resource
demand, etc. Moreover, we have developed various computational libraries required
for the CSTK system. The experiments in this paper were finished based on the CSTK
experimental simulation platform and coded in Python. Eventually, the system created
a multi-satellite and multi-task earth observation scene. The scene start time is “13 June
2021 04:00:00.000 UTCG”, and the end time is “14 June 2021 04:00:00.000 UTCG”. The
Earth observation scene contains 10 practical satellites, of which five satellites are used in
the Earth observation scene, and the remaining five are communications satellites. The
three-dimensional and two-dimensional views of the satellite and the earth in the Earth
observation simulation scene are shown in Figures 7 and 8. As shown in Figure 8, we
depict the track of the subsatellite point in the two-dimensional plane. CSTK uses the
satellite orbit parameter data provided by celestrak (https://celestrak.com/, accessed on
27 October 2021) to calculate the track of subsatellite point in the two-dimensional plane.
We denote the satellite coordinates in its orbital plane as cr=(x0, y0, z0). The calculation
Formula (5) is as follows,

cr =


x0 = −a

(
1− e2)× cos(θ)

1+e cos(θ)

y0 = −a
(
1− e2)× sin(θ)

1+e cos(θ)

z0 = 0

(5)

where a denotes semi major axis, θ indicates trueanomaly, e represents eccentricity. We ob-
tain basic satellite information and satellite orbit information from celestrak and third-party
satellite simulation calculation packages. The parameters of satellites in the simulation
scenario are shown in Table 3.

https://celestrak.com/
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(a) (b)

Figure 7. Spatial information network computing environment simulation platforms. (a) Satellite
management. (b) Observation scene.

Figure 8. Two-dimensional trajectory of satellite.

Table 3. Satellites parameters in the simulation scenario.

Id Satellite Mission Class Mean Eccentricity Inclination Argument of Perigee RAAN Mean Anomaly

1 COSMO-SkyMed 3 Earth Observation 0.0617566 deg/s 0.0001561 97.8893 deg 93.4363 deg 348.021 deg 266.704 deg
2 ZiYuan 2C Earth Observation 0.0626305 deg/s 0.004758 97.2866 deg 62.7732 deg 35.4333 deg 297.833 deg
3 IRIDIUM_162 Communications 0.0601366 deg/s 0.0002317 86.4485 deg 96.0452 deg 133.275 deg 264.101 deg
4 STARLINK-1490 Communications 0.0627664 deg/s 0.0001502 53.0558 deg 82.9425 deg 45.8273 deg 277.173 deg
5 STARLINK-1557 Communications 0.0627666 deg/s 0.0001709 53.0575 deg 117.008 deg 336.223 deg 243.109 deg
6 STARLINK-1569 Communications 0.0627667 deg/s 0.0001654 53.0574 deg 108.432 deg 336.473 deg 251.684 deg
7 KOMPSAT-2 Earth Observation 0.060932 deg/s 0.0018448 97.9422 deg 95.7576 deg 43.5438 deg 264.572 deg
8 Proba-V Earth Observation 0.0592918 deg/s 0.0005443 98.4077 deg 91.3034 deg 212.541 deg 268.877 deg
9 RADARSAT-2 Earth Observation 0.0595828 deg/s 0.0001296 98.5743 deg 92.0516 deg 171.152 deg 30.1928 deg
10 Globalstar M083 Communications 0.0525945 deg/s 0.0000275 51.9838 deg 225.309 deg 186.696 deg 305.39 deg

To facilitate experimental verification, only the observation and storage resources
required by the resource request queue are considered in this experiment.

5.3. Parameter Setting

We take a particular instantaneous network structure and assume that the number
of task queues at that moment is 12. If a new task is added to the queue at the next
moment, then the resource scheduling result needs to be recalculated. According to the
numbering of the satellites in Table 3, we assume that satellite 1 and satellite 2 have
already met the amount of mission resources requests. However, there are still tasks
waiting to be executed with observing resource requirements of six photographs and
storage resources of six GB. Next, we can schedule idle satellite resources to perform
tasks currently waiting due to resource shortages. This experiment compares the resource
scheduling algorithm RQRCS proposed in this paper with benchmark algorithms to verify
its effectiveness. These algorithms include Particle Swarm Optimization (PSO) and Genetic
Algorithm (GA). Both PSO and GA are provided by the Python 3.6 supported toolkits
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’sko.GA’ and ’sko.PSO’. The parameter settings for the PSO and GA algorithms are shown
in the following Table 4, where ID denotes the parameter number, size_pop indicates size
of population, and max_iter denotes max iteration.

Table 4. Parameter settings for PSO and GA algorithms.

ID
PSO GA

size_pop max_iter size_pop max_iter

P1 200 400 200 400
P2 300 600 300 600
P3 400 800 400 800
P4 500 1000 500 1000

5.4. Results Analysis

In the experiment, the RQRCS algorithm simultaneously considers two types of
resources: storage and observation. The resource scheduling scheme with minimum
time consumption is found by optimizing the network transmission path of multiple
resources. As shown in Tables 5 and 6, RQRCS finds the target satellites participating in
the collaboration and the least time-consuming path to the target satellite. In addition, we
can observe that satellite 7 has received five resource requests, including 4 GB of storage
resources and one observation of the use of resources; Satellite 8 received resource requests
from seven units, But satellite 8 requests two units of resource quantity from satellite 9.
Therefore, satellite 8 participates in allocating five units of resources, respectively; the use
of 1 GB storage resources and the use of four observation resources. Satellite 9 needs to
allocate 1 GB of storage resources and the use of one observation resource.

Table 5. RQRCS scheduling observation resource calculation results.

Scheduling Route Resource Transfers

1→ 4 3
2→ 4 3
4→ 5 5
4→ 7 1
5→ 8 5
8→ 9 1

Amount of time consumed per unit 62

Table 6. RQRCS scheduling storage resource calculation results.

Scheduling Route Resource Transfers

1→ 4 1
1→ 3 1
2→ 4 3
2→ 3 1
3→ 6 2
4→ 7 4
6→ 8 2
8→ 9 1

Amount of time consumed per unit 71

Figures 9 and 10 shows the multiple optimization solution processes using PSO and
GA algorithms based on different parameter settings for multi-satellite resource alloca-
tion. The minimum ordinal value in the figure is the minimum resource scheduling time
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consumed by the algorithms. The minimum time consumption value for PSO and GA
algorithms are 230 and 283 units of time, respectively. Table 7 shows that the algorithm
RQRCS exhibits less time consumption in the multi-satellite resource coordination process
compared to the baseline algorithms PSO and GA. Therefore, the experimental verification
and analysis indicate that the RQRCS algorithm has certain advantages.

(a) (b) (c) (d)

Figure 9. PSO solution process based on different parameter settings. (a) PSO process based on parameter P1, (b) PSO
process based on parameter P2, (c) PSO process based on parameter P3, (d) PSO process based on parameter P4.

(a) (b) (c) (d)

Figure 10. GA solution process based on different parameter settings. (a) GA process based on parameter P1, (b) GA process
based on parameter P2, (c) GA process based on parameter P3, (d) GA process based on parameter P4.

Table 7. Comparison of the time consumption of the three algorithm scheduling resource processes.

Algorithm
Time Consumption

- P1 P2 P3 P4

RQRCS 133 - - - -
PSO - 230 230 230 230
GA - 291 302 288 283

6. Conclusions

This paper studies the cooperative scheduling problem of space information network
resources. Aiming at the pain points of the strong dependence of resource scheduling
on ground base stations, weak autonomous coordination of resources, and low resource
utilization, we propose a low time complexity algorithm based on the related theory
of graphs to achieve dynamic reconfiguration of satellite resource request queues and
inter-satellite resource collaboration. We compare the time complexity of several baseline
algorithms for resource scheduling, analyze the computation time of multiple algorithms
in spatial information network scenarios, and compare the performance of the algorithms.
In future research, there are still some issues to be addressed. First, the model constraints
constructed are not perfect, such as power and radiation constraints. The time complexity
of the maximum flow algorithm determines the time complexity of the algorithm designed
in this paper. Optimization of the maximum traffic algorithm for dynamic networks can
effectively improve the computational efficiency of the whole algorithm. In addition, the
threshold setting of the number of coordinated satellites is not considered in this paper.
If the coordinated satellite resources are abundant, it will generate much link resource
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occupation and path optimization time consumption. If the coordinated satellite resources
are too few, the resource request and pressure will not be significantly relieved. Therefore,
how to select the number of peripheral satellites needs further study.
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