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Abstract: The problems of synthesis and analysis of multidimensional controlled models of popula-
tion dynamics are of both theoretical and applied interest. The need to solve numerical optimization
problems for such a class of models is associated with the expansion of ecosystem control require-
ments. The need to solve the problem of stochastization is associated with the emergence of new
problems in the study of ecological systems properties under the influence of random factors. The
aim of the work is to develop a new approach to studying the properties of population dynamics
systems using methods of numerical optimization, stochastization and machine learning. The syn-
thesis problems of nonlinear three-dimensional models of interconnected species number dynamics,
taking into account trophic chains and competition in prey populations, are studied. Theorems
on the asymptotic stability of equilibrium states are proved. A qualitative and numerical study of
the models is carried out. Using computational experiments, the results of an analytical stability
and permanent coexistence study are verified. The search for equilibrium states belonging to the
stability and permanent coexistence region is made using the developed intelligent algorithm and
evolutionary calculations. The transition is made from the model specified by the vector ordinary
differential equation to the corresponding stochastic model. A comparative analysis of deterministic
and stochastic models with competition and trophic chains is carried out. New effects are revealed
that are characteristic of three-dimensional models, taking into account the competition in popu-
lations of prey. The formulation of the optimal control problem for a model with competition and
trophic chains is proposed. To find optimal trajectories, new generalized algorithms for numerical
optimization are developed. A methods for the synthesis of controllers based on the use of artificial
neural networks and machine learning are developed. The results on the search for optimal trajecto-
ries and generation of control functions are presented.The obtained results can be used in modeling
problems of ecological, demographic, socio-economic and chemical kinetics systems.

Keywords: computer modeling; stability; permanent coexistence; model with trophic chains and
competition; optimal control; stochastization of one-step processes; Python; software package;
machine learning; artificial neural networks; evolutionary computing

1. Introduction

Solving the synthesis and analysis problems of multidimensional controlled models
of population dynamics with the subsequent development of a new problem-oriented
software is a novel scientific direction. The importance of creating numerical optimization
algorithms in the context of this scientific direction is associated with the expansion of
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requirements for ecosystem control, in particular for control the number of populations of
valuable commercial species. The need for stochastization and the importance of assessing
the impact of external influences are associated with the emergence of new problems in the
study of ecological systems properties taking into account random factors. Such problems
include comparative analysis of the deterministic and stochastic systems trajectories.

Mathematical modeling is an effective tool for solving problems of predicting the state
of natural systems and assessing their stability in relation to various disturbances. To solve
these problems, both traditional and new methods and approaches are used. Important
methods used in stability studies are Lyapunov’s first and second methods [1]. These
methods are effectively applied in the study of the qualitative properties of generalized
population models of high dimension. These qualitative properties are various types of
stability, in particular, asymptotic stability in the sense of Lyapunov, as well as properties
associated with the permanent coexistence of species in ecosystems. In some cases, it is pos-
sible to conduct an analytical study and perform an assessment of sustainability. However,
the need to study ecological systems with various relationships between subsystems and a
change in the structure of these relationships in the process of functioning often lead to the
synthesis of mathematical models, the analytical study of which is very difficult. Various
generalizations and modifications of the classical models [2] are considered in numerous
papers (see, for example, in [3–7]).

Mathematical models of interacting species dynamics, taking into account competition
and with trophic chains, are considered, for example, in [8–14]. In [8,9], the stability
conditions of the “predator–two prey” system are investigated. In [10], a mathematical
model of a system with two competing prey and one predator is analyzed, the influence
of predation on the coexistence of species is described. A model of the dynamics of two
prey rivals with the addition of a predator species to alter competition outcomes are
studied in [11]. In [12], the stability of the limit cycles of the three-dimensional model
“predator–two prey” is investigated.

In [13], a numerical-analytical approach based on the theory of co-symmetry is devel-
oped to study the nonlinear effects of interaction between biological species. In problems
of mathematical ecology, the appearance of co-symmetry is usually associated with the
fulfillment of a number of relationships between the parameters of the system. Cases of
interaction of three populations (prey and two predators, two prey and a predator) are con-
sidered. Families of stationary distributions and properties of limit cycles are investigated
for a homogeneous area. For the system of two prey and a predator, regions of parameters
are found for which the coexistence of two prey without a predator is possible, as well as
stationary and oscillatory distributions of three coexisting species.

In [14,15], mathematical models of populations size dynamics interacting according
to the “predator–two prey” principle are constructed and investigated. The possibility
of stable coexistence of populations in the model is established, and the conditions for
the occurrence of persistent chaotic oscillations are studied. The mechanism of complex
dynamic behavior emergence in a system of three populations interacting according to the
principle of “predator–two competing prey” is described.

For the purpose of stochastic modeling of various dynamic systems, a method for
constructing self-consistent one-step models is proposed [16] and a software package [17,18]
is used. For most models of population dynamics, a deterministic description is proposed
in the scientific literature. Despite the fact that deterministic models often adequately
characterize the qualitative properties of real systems, there are aspects that do not allow
us to consider these models sufficiently reliable. In the deterministic case, the probabilistic
nature of the birth-death processes and random fluctuations that occur over time in the
environment are not taken into account. The use of stochastic modeling of population
interaction dynamics allow to take into account probabilistic mechanisms and is aimed
at a more complete description of the system. In particular, it is possible to study such
properties of stochastic processes arising in nonlinear dynamics as the amplification or
disappearance of vibrations caused by noise.
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In the process of stochastic modeling, the problem arises about the mechanism of
introducing stochastic terms into a deterministic equation [19,20]. Stochastization is often
carried out additively, i.e., simply by adding a term with a stochastic variable. However, it
is more adequate to introduce the stochastic part consistent with the deterministic one. This
becomes possible if both parts (deterministic and stochastic) are obtained from the same
equation. Such an opportunity is provided by the method of constructing self-consistent
stochastic models. This method is based on the combinatorial methodology [21,22]. This
method assumes that the evolution in time of multidimensional birth–death systems can
be considered as a result of individual interactions between the elements of this system.
According to this method, the master equation is used to formalize the system. This
equation describes the evolution of the probability distribution P(x, t) in a Markov chain
with continuous time and is a balance equation for the probability of each state of the system.
In addition, it is assumed that the probability of a transition from one state to another
state (which is a consequence of the interaction under consideration) is proportional to the
number of possible interactions of this type. This method allows to make the transition to
a stochastic model, the assessment of stochastics influence on the qualitative properties of
the model is an important stage of its study. Some systems of population dynamics based
on the construction of stochastic self-consistent models are considered in [16,23].

The transition from the deterministic to the stochastic case is carried out using the
software package for stochastization of one-step processes [18]. This software package is
created using Python libraries SymPy [24], NumPy [25] and SciPy [26]. It contains both
modules for solving stochastic and ordinary differential equations by the Runge–Kutta
method [27], and a module for automatic obtaining the coefficients (in symbolic form) of
the Fokker–Planck equation from the interaction scheme.

Until now, within the framework of the application of this software package, there
are no systematic study of problems associated with modeling stochastic control systems.
Using the developed software in [23,28], the problem of modeling a controlled system with
competition and migration is investigated.

Some aspects of optimal control of distributed population models are studied in [29].
The criterion of optimality for auto-reproduction systems in the analysis of evolutionarily
stable behavior is presented in [30]. In [31], formulations of optimal control problems
for individual classes of population-migration models with competition under phase and
mixed constraints are proposed. In [28,32], the issues of using a generalized parametric
model in the form of polynomials are considered, special cases for various dimensions of
coefficient matrices are studied.

The presence of a complex structure of controlled population models with trophic
chains leads to the need to develop algorithms and create software for global parametric
optimization.

Note that the methods of optimal control for population models are insufficiently
developed and require further improvement. In particular, the development of control
methods and numerical optimization based on evolutionary algorithms adapted to popula-
tion models is of particular interest. The approach to optimal control based on evolutionary
algorithms allows to investigate the behavior of models taking into account the similarity
of processes inspired by nature.

Algorithms inspired by nature [33,34] are quite effective for solving problems of global
parametric optimization. These algorithms allow one to take into account the high dimen-
sion of the search space, the complex landscape and the high computational complexity
of the target functions. In [28], the analysis of one-criterion global optimization methods
is presented and the issues of their application for finding the coefficients of parametric
control functions are considered, and the effects of the controlled model stochastization
are also studied. Methods of control systems numerical simulation described by stochastic
differential equation are considered in [35].

The use of neural networks in control systems is discussed in [36]. The presentation
of the neural network in the form of a multilayer perceptron is presented and the use of
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this network for approximating functions is described. An algorithm for back propagation
of the error is developed. Three control architectures are presented: adaptive control
with a reference model, predictive control of the model and control based on linearization
feedback. It is shown in [37] that medium-sized neural network models can be used in
conjunction with predictive model control. The authors propose using dynamic deep
neural network models to initialize reinforcement learning and also proposed using deep
neural network dynamics models to initialize a model-free learner, in order to combine the
sample efficiency of model-based approaches with the high task-specific performance of
model-free methods. It is shown in [38] that input convex networks can be trained to obtain
accurate models of complex physical systems. Input convex recurrent neural networks
are designed to track the temporal behavior of dynamic systems. In [39], it is shown that
reinforcement learning is more focused on goal-directed learning from interaction than
other machine learning methods.

Note that when studying multidimensional models with trophic chains, it is ad-
visable to use applied mathematical packages and general-purpose programming lan-
guages [24–26,40]. When modeling population systems, various software tools are used
that provide ample opportunities for conducting computational experiments. For example,
in [23,31], the study of the models is carried out using the Python language and symbolic
computation libraries.

The aim of the current paper is to synthesize and analyze various types of three-
dimensional models of populations interacting according to the principle of “predator–two
competing prey”. The formulations of control problems for models under consideration
are new. The construction of original stochastic models both without control and with
control is proposed. To analyze the models, modern methods of intelligent analysis,
stochastization and numerical optimization are used. For computational experiments, a
specialized author’s software is developed.

In Section 2, a description of deterministic models without control is given, equilibrium
states are found, conditions for permanent coexistence and stability conditions are obtained.
Section 3 contains statements of optimal control problems with phase constraints for various
types of three-dimensional models with trophic chains. A computer study of the trajectories
of controlled models is carried out. The trajectories of deterministic controlled systems
with trophic chains are constructed and control functions are synthesized. The results of the
numerical solution of optimal control problems for a given set of parameters are presented.
In Section 4, we construct a stochastic model with trophic chains both without control
and with control. The results of computer experiments are presented. A comparative
analysis of the results in the stochastic and deterministic cases is carried out. In Section 5,
the optimization of the deterministic model trajectories using artificial neural networks
is proposed. Section 6 contains a discussion of the results. To solve the problems, we
use methods of differential equations theory, numerical optimization methods, machine
learning methods and algorithms for symbolic computation. To synthesize stochastic
models, a method for constructing self-consistent stochastic models and a generalized
stochastic algorithm are used.

We use specialized software systems as tools for studying models and solving optimal
control problems. The software packages are intended for numerical experiments on the ba-
sis of the implementation of algorithms for constructing motion trajectories, for generation
of control functions, as well as for the numerical solution of differential equations systems
by modified Runge–Kutta methods. The proposed methods and the author’s software
allowed to obtain new results in the field of description and study of nonlinear controlled
processes of population dynamics. These results include new theoretical provisions on
the stability and permanent coexistence of populations, as well as optimization, machine
learning and stochastization algorithms adapted to new problems.
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2. Deterministic Models without Control and Methods for Their Study

As a basic model, we consider a model that describes the dynamics of two competing
prey species with a predator population interaction. This model is formalized using a
system of ordinary nonlinear differential equations of the form [8]:

ẋ1 = x1(a1 − ε11x1 − ε12x2 − b1y),

ẋ2 = x2(a2 − ε21x1 − ε22x2 − b2y),

ẏ = y(−c + d1x1 + d2x2 − γy),

(1)

where x1, x2 and y are the phase variables (respectively, the population density of the
first competitor, the second competitor and the predator), ai is the coefficient of natural
reproduction of the competitor, bi and di are the coefficients of interaction between the
predator population and the prey populations, i = 1, 2, εij at i = j = 1 and i = j = 2 are
the coefficients of intraspecific competition, c is the coefficient of natural mortality of a
predator, γ is the coefficient of intraspecific competition of a predator, y(0) ≥ 0, xi(0) ≥ 0
and i = 1, 2. The following conditions are satisfied for the coefficients: εij ≥ 0, i 6= j; i = j,
γ ≥ 0, ai > 0, bi > 0, di > 0, c > 0, i, j = 1, 2.

The equilibrium states, which are obtained taking into account the parameters of the
model (1), are as follows:

E∗0 (0, 0, 0), E∗1

(
a1

ε11
, 0, 0

)
, E∗2

(
0,

a2

ε22
, 0
)

, E∗3

(
0, 0,− c

γ

)
,

E∗4

(
0,

a2γ + b2c
γε22 + b2d2

,
a2d2 − cε22

γε22 + b2d2

)
, E∗5

(
a1γ + b1c

γε11 + b1d1
, 0,

a1d1 − cε11

γε11 + b1d1
,
)

,

E∗6

(
a1ε22 − a2ε12

ρ1
,

a2ε11 − a1ε21

ρ1
, 0
)

, E∗7 (x∗1 , x∗2 , y∗),

where

x∗1 =
(a1b2 − a2b1)d2 + (b1ε22 − b2ε12)c + (a1ε22 − a2ε12)γ

D1
,

x∗2 =
(a2b1 − a1b2)d1 + (b2ε11 − b1ε21)c + (a2ε11 − a1ε21)γ

D1
,

y∗ =
(a1ε22 − a2ε12)d1 + (a2ε11 − a1ε21)d2 − cρ1

D1
,

µ1 = b2d2ε11 + b1d1ε22 − b2d1ε12 − b1d2ε21, ρ1 = ε11ε22 − ε12ε21, D1 = µ1 + γρ1.

For the equilibrium state E∗7 , the positivity condition of each component is satisfied.
Further, we will assume that there is a unique equilibrium state E∗7 , so that D1 6= 0 and
x∗1 > 0, x∗2 > 0, y∗ > 0.

Next, we study a model that is formalized using a system of nonlinear differential
equations:

ẋ1 = x1(a1 − ε11x1 − ε12x2 − by),

ẋ2 = x2(a2 − ε21x1 − ε22x2 − by),

ẏ = y(−c + dx1 + dx2).

(2)

The transition from model (2) to model (1) is carried out by means of equalities
b1 = b2 = b, d1 = d2 = d, γ = 0.

The equilibrium states, which are obtained taking into account the parameters of the
model (2), are as follows:

Ē0(0, 0, 0), Ē1

(
a1

ε11
, 0, 0

)
, Ē2

(
0,

a2

ε22
, 0
)

, Ē3

(
0, 0,− c

γ

)
,
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Ē4

(
0,

c
d

,
a2d− cε22

bd

)
, Ē5

(
c
d

, 0,
a1d− cε22

bd

)
,

Ē6

(
a1ε22 − a2ε12

ρ1
,

a2ε11 − a1ε21

ρ1
, 0
)

, Ē7(x̄1, x̄2, ȳ),

where

x̄1 =
(a1 − a2)bd + (ε22 − ε12)bc

D2
, x̄2 =

(a2 − a1)bd + (ε11 − ε21)bc
D2

,

ȳ =
d(a1ε22 − a2ε12 + a2ε11 − a1ε21)− cρ1

D2
,

D2 = bd(ε11 + ε22 − ε12 − ε21).

For the equilibrium state Ē7, the positivity condition of each component is satisfied.
Further, we will assume that there is a unique equilibrium state Ē7, so that D2 6= 0 and
x̄1 > 0, x̄2 > 0, ȳ > 0.

System (1) has the property of permanent coexistence [8] if for the equilibrium state
E∗7 conditions are satisfied:

x∗i = lim
T→∞

T−1
∫ T

0
xi(t)dt, y∗ = lim

T→∞
T−1

∫ T

0
y(t)dt,

where t is time, xi, y are phase variables of system (1), i = 1, 2.
Next, we consider the following conditions for the model (1) and the model (2),

presented in Table 1.

Table 1. Conditions for the model (1) and the model (2).

Conditions for the Model (1) Conditions for the Model (2)

A1: a1ε22 > a2ε12, Conditions Bi coincide with
A2: a2ε11 > a1ε21, conditions Ai, i = 1, 2, 3, 4
A3: a1ε22 < a2ε12, B5: D2 > 0,
A4: a2ε11 < a1ε21, B6:{ε11 x̄1 + ε22 x̄2}{ρ1 x̄1 x̄2 +
A5: D1 > 0, +bdx̄1ȳ + bdx̄2ȳ} > x̄1 x̄2ȳD2.
A6: {ε11x∗1 + ε22x∗2 + γy∗}
{ρ1x∗1 x∗2 + (γε11 + b1d1)x∗1y∗+
+(γε22 + b2d2)x∗2y∗} > x∗1 x∗2y∗D1.

In [8], using conditions A1–A6, the stability properties of equilibrium states E∗4 –E∗6 , as
well as the properties of permanent coexistence and stability for a state of equilibrium E∗7
are studied. In particular, in the indicated paper, the following Theorems 1–3 are obtained
for the system (1).

Theorem 1. Internal equilibrium state E∗6 exists if and only if the conditions (A1 ∧ A2) ∨ (A3 ∧
A4) are satisfied. If conditions A1 ∧ A2 are satisfied, then the equilibrium state E∗6 is asymptotically
stable. If conditions A3 ∧ A4 are satisfied, then the equilibrium state E∗6 is a saddle point and
unstable. Internal equilibrium state E∗5 exists if and only if the condition a1d1 > cε11. If the
equilibrium state E∗5 exists, then this equilibrium state is asymptotically stable. Internal equilibrium
state E∗4 exists if and only if the condition a2d2 > cε22. If the equilibrium state E∗4 exists, then this
equilibrium state is asymptotically stable.

Theorem 2. A positive equilibrium state E∗7 of system (1) is asymptotically stable if the conditions
A5 ∧ A6 are satisfied. Equilibrium state E∗7 is unstable if the following conditions are satisfied:

(1) D1 < 0;
(2) {ε11x∗1 + ε22x∗2 +γy∗}{ρ1x∗1 x∗2 +(γε11 + b1d1)x∗1y∗+(γε22 + b2d2)x∗2y∗} < x∗1 x∗2y∗D1.



Mathematics 2021, 9, 3303 7 of 18

The proof of Theorems 1 and 2 is contained in [8] and is based on the results in [41,42].

Theorem 3. If the conditions A5 ∧ (A1 ∨ A2) are satisfied, then the populations in system (1)
permanently coexist.

The proof of Theorem 3 is contained in [8] and is based on the results in [43,44].
Below we present the theorems obtained for the model (2) with the application of

conditions B1–B6. The obtained theorems are a modification and development of the results
in [8].

Theorem 4. Internal equilibrium state Ē6 exists if and only on the conditions (B1 ∧ B2) ∨ (B3 ∧
B4) are satisfied. If the conditions B1 ∧ B2 are satisfied, then the equilibrium state Ē6 of system (2)
is asymptotically stable. If the conditions B3 ∧ B4 are satisfied, then the equilibrium state Ē6 of
system (2) is a saddle point and unstable. Internal equilibrium state Ē5 exists if and only if the
condition a1d > cε11. If the equilibrium state Ē5 exists, then this equilibrium state is asymptotically
stable. Internal equilibrium state Ē4 exists if and only if the condition a2d > cε22. If the equilibrium
state Ē4 exists, then this equilibrium state is asymptotically stable.

Theorem 5. A positive equilibrium state Ē7 of system (2) is asymptotically stable if the conditions
B5 ∧ B6 are satisfied. Equilibrium state Ē7 is unstable if the following conditions:

(1) D2 < 0;
(2) {ε11 x̄1 + ε22 x̄2}{ρ1 x̄1 x̄2 + bdȳ(x̄1 + x̄2)} < x̄1 x̄2ȳD2.

Theorem 6. If the conditions B5 ∧ (B1 ∨ B2) are satisfied, then the populations in system (2)
permanently coexist.

The proof of Theorems 4–6 is based on Theorems 1–3, taking into account conditions
B1– B6.

The ecological interpretation of Theorems 1–3 is given in [8], and for Theorems 4–6
this interpretation should take into account the equality of the parameters d1 and d2, b1 and
b2, as well as the vanishing of the coefficient γ. It should be mentioned that the model (2),
in comparison with the model (1), provides more favorable conditions for the development
of the predator population.

The results of stability and permanent coexistence study for the model (2) are verified
by using a computational experiment. We are considering the existence of a positive
equilibrium state Ē7(0.5, 2, 4) with permanent coexistence. The choice of the appropriate
coefficients for the system (2) is carried out as a result of solving the corresponding problem
of global parametric optimization. One of the stages in solving this problem is the synthesis
of a numerical criterion for the stability of the system. We offer the following quality
criterion:

f (δ) =
1

t2 − t1

∫ t2

t1

‖X(t)− Ē7‖dt, (3)

where T = (t1, t2) is the time interval, X(t) is the numerical solution to the system (2), δ =
(a1, a2, ε11, ε12, ε21, ε22, b, c, d). We assume that the minimum of criterion (3) corresponds
to the values of the parameters for a stable state Ē7. To find δ, the differential evolution
algorithm is used, while the values X(t) are calculated by the Runge–Kutta method of the
4th order.

To carry out computational experiments in order to calculate the model parameters,
a program in Python 3 is developed. Taking into account criterion (3), we obtained that
δ = (15.43185316, 16.44974787, 14.08406168, 2.8365639, 3.5900231, 5.96370525, 0.68087012,
19.28853967, 7.71414772). The obtained coefficients satisfy the conditions of stability
and permanent coexistence. Reverse substitution δ into equilibrium Ē7 gives the value
(0.499, 2.001, 3.999), which is agreed properly with the theoretical results.
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The phase portrait for the equilibrium state Ē7(0.5, 2, 4) is shown in Figure 1. Projection
onto the plane for the model (2), taking into account the selected set of parameters, is shown
in Figure 2.

Figure 1. Phase portrait in three projections for the equilibrium state Ē7(0.5, 2, 4).

Figure 2. Projection of the phase portrait on x1, x2 at y = 4.

In Figures 1 and 2, we marked the state of equilibrium Ē7(0.5, 2, 4), corresponding to
the selected set of parameters by the red dot. It should be highlighted that this equilibrium
state is a stable node with permanent coexistence. It is possible to obtain another type of
phase portrait with a stable state of equilibrium by changing the form of the criterion (3).

3. Deterministic Models with Control and Methods of Their Research

We formulate the optimal control problem for the population model (2). Let the
differential equations of the controlled model have the form

ẋ1 = x1(a1 − ε11x1 − ε12x2 − by)− u1,

ẋ2 = x2(a2 − ε21x1 − ε22x2 − by)− u2,

ẏ = y(−c + dx1 + dx2)− u3,

(4)
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where ui, i = 1, 2, 3 are control functions. Other designations are similar to the designations
for the model (1). The initial and boundary conditions for the model (4) have the form

X(0) = (0, 0, 0), X(T) = (x11, x21, y1), (5)

0 ≤ u1 ≤ u11, 0 ≤ u2 ≤ u21, 0 ≤ u3 ≤ u31, t ∈ [0, T]. (6)

For the Equations (4)–(6), we propose the following control quality functional:

J(U) =
∫ T

0
‖U(t)‖dt, U = (u1, u2, u3). (7)

Note that minimization of functional (7) corresponds to minimization of losses from
regulation of population density x1, x2, y. Thus, the optimal control problem for (4) is
as follows: find such a J(u) → min, that satisfies conditions (5), (6) taking into account
xi > 0, y > 0, i = 1, 2.

By analogy with the work [28] for the design of controls, we use a parametric control
model in the form of polynomials. The specified model has the form

ui(t) = ‖RΩ‖, R = (ri1, ri2, ..., rin)
∗, Ω = (t0, t1, ..., tm), i = 1, 2, 3.

Note that the control model parameters are the coefficients ri1, ri2, ..., rin. We propose
a method for calculating ri1, ri2, ..., rin using heuristic algorithms of global parametric
optimization.

As it is possible to use various types of parametric control for (4), we propose a
generalized algorithm for constructing optimal trajectories based on reinforcement learning.
The block diagram of the algorithm is shown in the Figure 3.

Start

Construct a formal
parametric control

model for the system (4)

Adjust the parameters
of the control model

taking into account the
optimization scheme

Estimate the value
of the loss function

Are the
required
indicators
achieved?

Construct a final
trajectory for the
model with control

Stop

no

yes

Figure 3. Solving the optimal control problem on the basis of reinforcement learning.
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Thus, the optimal control problem consists in finding such ui = ui(t) that satisfy
(5)–(7). To solve this problem using the algorithm in Figure 3 it is necessary to

(a) construct the loss function,
(b) construct a parametric control model and
(c) use the global parametric optimization algorithm to find the coefficients of the control

model with a minimum loss function.

We propose the design of stochastic models with control taking into account the
“predator–two prey” interaction. To study such models, it is advisable to use the control
laws u1, u2 and u3 using the algorithm for obtaining the optimal trajectory of the model (4).

We use the algorithm in Figure 3 within the framework of solving the optimal control
problem for the model (4) formulated in this article. Loss function to be minimized is

f (k1[X(Te)− X(T)], k2 J(U)), (8)

where k1, k2 are weight coefficients, X(Te) is the value of X(T) at step 4 of the algorithm in
Figure 3, f is a scalar ranking function.

To find the coefficients of the matrix R and carry out computational experiments, a
program in Python 3 is developed. The following values of the parametric coefficients with
δ = (16, 8, 8, 4, 3.5, 1, 1, 2.5/3, 1/3) are obtained:R1

R2
R3

 =

−8.6426× 10−3 8.8785× 10−4 −1.0422× 10−5

9.1043× 10−2 −7.1641× 10−3 1.4524× 10−4

−1.8462× 10−2 3.8469× 10−3 −8.4859× 10−5


Small values of the parametric coefficients are consistent with the optimality crite-

rion (7). The trajectories of the controlled system (4) with the coefficient matrix R are shown
in Figure 4.

Figure 4. Trajectories of a system taking into account polynomial control functions for T = 50,
X(T) = (0.5, 2, 4).

Note that at t < 20 there is no oscillating change in population density in the controlled
system. At t > 20, the type of the motion becomes close to an uncontrollable system, while
the trajectory satisfies the boundary conditions with respect to X(T). Further, in Section 4,
we carry out the stochastization of the models (2), (4) to study the qualitative features of
the influence of the synthesized control law on the dynamics of population density.

4. Stochastization of the Trophic Chain Model

Consider a system of n components in which s different interactions occur:

∑
a

NA
a Xa

k+A
�
k−A

∑
a

MA
a Xa, A = 1, s, a = 1, n.
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Coefficient NA
a at Xa is a number of components of the form Xa on the left part of the

equation, MA
a is a number of components of the form Xa on the right part of the equation.

We use a vector representation:

x = (x1, x2, ..., xn),

NA = (NA
1 , NA

2 , ..., NA
n ),

MA = (MA
1 , MA

2 , ..., MA
n ),

where xa is a number of components of the form Xa. We also define

rA = MA − NA.

Thus, one step of interaction A in the forward and reverse directions can be written in
the form of two relations:

x → x + rA,

x → x− rA.

Probabilities of transition from the state x to state x± rA per unit of time are propor-
tional to the number of ways of choosing the combination NA

a or MA
a from x components

and are defined by the expressions

s+A(x) = k+A ∏
a

xa!
(xa − NA

a )!
,

s−A(x) = k−A ∏
a

xa!
(xa −MA

a )!
.

Thus, the general form of the master equation for an integer variable x varying in
steps of length rA takes the form:

∂tP(x, t) = ∑
A

[(
s−A(x + rA)P(x + rA, t)− s+A(x)P(x, t)

)
+

+
(
s+A(x− rA)P(x− rA, t)− s−A(x)P(x, t)

)]
.

(9)

Further, the Kramers–Moyal expansion is used to transition from the master equation
to the Fokker–Planck equation. We consider the following assumptions. First, it is assumed
that only small jumps take place, i.e., sA(x) is a function that changes slowly with x.
The second assumption is that P(x, t) also slowly changes with change x. Then, it is
possible to perform a translation from the point (x± rA) to point x taking into account the
decomposition of the right part into a Taylor series:

∂tP(x, t) = ∑
A

[
∑

j

(
(rA∇)j

j!
s−A(x)P(x, t)

)
+ ∑

j

(
(−rA∇)j

j!
s+A(x)P(x, t)

)]
.

Discarding terms of order higher than two, we obtain the Fokker–Planck equation

∂tP(x, t) = −∑
a

∂a[Fa(x)P(x, t)] +
1
2 ∑

a,b
∂a∂b[Gab(x)P(x, t)], (10)

where

Fa(x) = ∑
A

rA
a
[
s+A(x)− s−A(x)

]
,

Gab(x) = ∑
A

rA
a rA

b
[
s+A(x) + s−A(x)

]
.
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The Fokker–Planck equation describes the time evolution of the probability density
function. For the Fokker–Planck Equation (10), one can write down the corresponding
stochastic differential equation in the Langevin form

dx = f (x, t)dt + g(x, t)dW,

where x ∈ RN is the system state function, W ∈ RN is the standard N-dimensional
Brownian motion. It is known that the following relations hold for the coefficients:

f (x) = F(x),

g(x) = G(x)G(x)T .

The algorithm aimed at practical application for obtaining a stochastic differential
equation from the interaction scheme shown on Figure 5.

Start

Find system state operators
from the interaction scheme

Find the operator for
changing of the system state

Obtain transition intensities

Form the coefficients of the
Fokker–Planck equation

Form the stochastic
differential equation

Stop

Figure 5. Generation of a stochastic differential equation from the interaction scheme.

A numerical experiment is carried out for various sets of the model parameters [32].
It is found that for the particular case of the model (1) under the constraints ε11 = ε22 =
ε12 = ε21 = ε and b1 = b2, a1 = a2, d1 = d2 the stability type of systems is significantly
influenced by the coefficients of intraspecific and interspecific competition. Oscillations are
formed if ε = δ = 0 and if a1 = ka2, d1 = ld2 with l = k. At ε = δ 6= 0 the oscillations are
damped. At a1 = ka2, d1 = ld2 with l 6= k one of the populations of prey is dying out.
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Next, we will consider the application of this method to the model (2). According to
the method described above, for stochastization of the model it is necessary to write down
the interaction scheme. Suppose that system interactions defined by the following scheme:

Xi
ai−→ 2Xi, i = 1, 2,

Xi + Xj
εij−→ Xj, i, j = 1, 2,

Xi + Y d−→ 2Y, Xi + Y b−→ Y, i = 1, 2,

Y c−→ 0.

(11)

In (11), each line corresponds to a certain type of interaction between populations.
Lines 1 and 4 define, respectively, natural reproduction and mortality of population species,
provided that there are no other factors. Line 2 for i = j describes intraspecific competition.
The specified line for i 6= j corresponds to interspecific competition. Line 3 defines a
predator-prey relationship.

For the interaction scheme (11) of the model (2) using the developed software package
the coefficients of the three-dimensional Fokker–Planck equation are obtained:

F(x) =

a1x1 − ε11x2
1 − ε12x2x1 − byx1

a2x2 − ε21x1x2 − ε22x2
2 − byx2

−cy + dx1y + dx2y

, G(x) =

G11 0 0
0 G22 0
0 0 G33

,

where F(x) is the drift vector, the G(x) is the diffusion matrix, G11 = a1x1 + ε11x2
1 +

ε12x2x1 + byx1, G22 = a2x2 + ε21x1x2 + ε22x2
2 + byx2, G33 = cy + dx1y + dx2y.

For the numerical analysis of the obtained stochastic model, we consider the time
interval [0,50]. The choice of parameters is consistent with the choice of parameters for
the deterministic model (2). Figure 6 shows the trajectories of the stochastic model in
comparison with the trajectories of the deterministic model (2).

Figure 6. Comparison of the trajectories of the stochastic model and the deterministic model.

The next step in the study of the model is the construction of a stochastic model for a
system (4) with control. Similarly to a system without control we obtain the interaction
scheme which will have the following form:

Xi
ai−→ 2Xi, i = 1, 2,

Xi + Xj
εij−→ Xj, i, j = 1, 2,

Xi + Y d−→ 2Y, Xi + Y b−→ Y, i = 1, 2,

Y c−→ 0,

Xi
ui−→ 0, Y

u3−→ 0, i = 1, 2.

(12)
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The description of the top four lines (12) corresponds to the scheme (11), and the last
line is added to describe the control.

For the interaction scheme (12) of the model (4), the coefficients of the three-dimensional
Fokker–Planck equation are obtained:

F(x) =

a1x1 − ε11x2
1 − ε12x2x1 − byx1 − u1

a2x2 − ε21x1x2 − ε22x2
2 − byx2 − u2

−cy + dx1y + dx2y− u3

, G(x) =

G11 0 0
0 G22 0
0 0 G33

,

where F(x) is the drift vector, the G(x) is the diffusion matrix, G11 = a1x1 + ε11x2
1 +

ε12x2x1 + byx1 + u1, G22 = a2x2 + ε21x1x2 + ε22x2
2 + byx2 + u2 and G33 = cy + dx1y +

dx2y + u3.
For a numerical experiment in relation to a system with control, parameters similar

to the parameters of a system without control are chosen. The results of the numerical
solution of the stochastic differential equation in comparison with the ordinary differential
equation are presented in Figure 7.

Figure 7. Comparison of trajectories of stochastic and deterministic systems with control.

A comparative analysis of the deterministic system (2) behavior and corresponding
stochastic system behavior shows that for the system without control the stochastization
destroys oscillatory trajectories. These trajectories acquire a monotonous character and
enter a stationary mode, which is associated with the extinction of the x1 population. In
turn, the stochastization of the controlled system allows to keep such x1 population density
that does not vanish. It is worth nothing that the values x1, x2, y at time 50 are close to the
optimal values corresponding to the deterministic system (4).

5. Optimization of Deterministic Model Trajectories Using Artificial Neural Networks

Next, we consider the problem of optimizing the trajectories of a population model
using an algorithm based on a neural network controller. We introduce an additional
restriction on the control in the system (4). Let the control functions multiplicatively depend
on the density of the corresponding population. Taking into account this restriction, the
equations of the system take the form

ẋ1 = x1(a1 − ε11x1 − ε12x2 − by)− u1x1,

ẋ2 = x2(a2 − ε21x1 − ε22x2 − by)− u2x2,

ẏ = y(−c + dx1 + dx2)− u3y.

(13)

Notations of the model (13) are explained in Section 2. We consider a problem in the
search for the optimal control law which is consistent with the asymptotic stability of the
equilibrium state and with the permanent coexistence of two prey and a predator.

We propose controller based on an artificial neural network the topology of which is
shown in Figure 8.
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Figure 8. Topology of the neural network controller to control the model (13).

The loss value is applied to the inputs (e1, e2, e3), the loss value with delay is applied to
the inputs (ê1, ê2, ê3). Two hidden layers of the neural network have a tangential activation
function, the output layer has a logistic activation function with a fixed multiplier. The
neural network is trained according to the algorithm in Figure 3, and the loss function has
the form (8).

To train a neural network and perform computational experiments, software is devel-
oped by the aid of Python 3. The original implementation of the neural network computing
module on the basis of Numpy mathematical package is used. We consider the activa-
tion of neural network control at t > 50. Training is carried out for equilibrium state
Ē7(0.5, 2, 4). The trajectories of the system (13) at δ = (16, 8, 8, 4, 3.5, 1, 1, 2.5/3, 1/3) are
shown in Figure 9.

Figure 9. Trajectories of the system (13) with neural network control at δ = (16, 8, 8, 4, 3.5, 1, 1, 2.5/3, 1/3).

Note that upon activation of neural network control, the system (13) comes to a state
of equilibrium that is close to Ē7(0.5, 2, 4). Oscillations are observed with a small period
and amplitude, and the oscillations do not damp with an increase in the control frequency.

6. Discussion

The carried out qualitative and quantitative analysis of the models of population
dynamics and the obtained analytical results make it possible to construct the regions of
stability and permanent coexistence of species for various special cases of the model (1).
Figures 1 and 2 show the phase portraits for such a set of parameters, which is obtained
using evolutionary calculations. At the same time, evolutionary calculations make it
possible to search for equilibrium states belonging to the regions of stability and permanent
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coexistence. The carried out computational experiments show the conformity of the
numerical results and Theorems 1–6.

The proposed formulation of the optimal control problem for the model (4) is new and
provides for both the possibility of phase and mixed constraints and the use of parametric
control, in particular, polynomial control. The novelty of the approach to the synthesis of
the model (4) controllers lies in the use of adapted machine learning algorithms based on
differential evolution. The considered control quality criterion is aimed at unconditional
minimization of the impact on populations. The synthesized control satisfies the conditions
of stability and permanent coexistence, taking into account the optimality and the given
boundary conditions (Figure 4). The prospect of further research is to consider other type
of control quality criteria associated with the control of individual populations.

The transition from models defined by vector ordinary differential equations to the
corresponding stochastic models makes it possible to identify and compare qualitative
features of dynamics. For uncontrolled and controlled cases, interaction schemes (11)
and (12) are constructed, and the influence of stochastization on the dynamics of population
density in a model with trophic chains is studied (Figures 6 and 7). Comparative analysis
showed that for an uncontrolled system, stochastization leads to the degeneration of the
oscillatory mode of trajectories into a monotonic one with the extinction of prey population
(Figure 6). The results of stochastization of the controlled system showed that the densities
of all three populations remain positive and correlate with the deterministic system at
t = 50 (Figure 7).

The proposed neural network approach to optimizing the trajectory dynamics of a
population model makes it possible to study the features of constructing such a control
that is multiplicatively depend on the population density. On the basis of the developed
topology of the neural network (Figure 8), a controller is proposed, the implementation of
which gives trajectories with the properties of asymptotic stability (Figure 9).

The instrumental and methodological support of mathematical modeling of popula-
tion systems presented in Sections 2–5 allows for a comprehensive study of the models
under consideration.

Note that the proposed computational procedures involving intelligent analysis
demonstrate a fairly high efficiency in solving problems of mathematical modeling of
population systems. At the stage of studying deterministic models, the author’s software
complex for modeling population systems based on artificial intelligence is used. The
specified software package is developed in Python 3 using the mathematical libraries
NumPy, SciPy and Matplotlib. As a tool for stochastization of the proposed models, a
specialized software package is used to construct stochastic dynamic models and search
for appropriate trajectories.

7. Conclusions

This paper proposes a new approach to the synthesis and analysis of nonlinear three-
dimensional models of the population size dynamics taking into account trophic chains
and competition in prey populations. For different sets of parameters, trajectories and
corresponding phase portraits are constructed. The results of an analytical study of stabil-
ity and permanent coexistence conditions are verified using computational experiments.
For a positive equilibrium state for a given set of model parameters, it is shown that the
considered equilibrium state belongs to the regions of stability and permanent coexis-
tence of species. The conformity of theoretical results with the results of computational
experiments is verified. Stochastization of the deterministic model for uncontrolled and
controllable cases is carried out. Comparative analysis of deterministic and stochastic
models shows that the behavior of models with the same sets of parameters may have
significant differences.

The formulation of the optimal control problem using a parametric polynomial model
is proposed. A generalized algorithm for optimal control based on the reinforcement
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learning is developed. A method for optimizing the trajectory dynamics of a population
model on the basis of artificial neural networks using is proposed.

The applied significance of the paper’s results is due to the fact that models (2), (4)
and their stochastic generalizations can serve to study the qualitative properties of not only
ecological systems, but also socio-economic, demographic, chemical and physical systems.
The obtained results can be used in solving problems such as modeling of deterministic and
stochastic systems, optimal control of populations and resources, predicting the behavior
of dynamic systems in the presence of noise, formalized description of technological
processes. In addition, the results can be used in the development of algorithmic support
for problem-oriented software packages, as well as in solving of reinforcement learning
problems.

Prospects for further research are in the synthesis and computer study of population
models with partial control and in expanding the range of numerical methods of global
parametric optimization in the search for optimal trajectories. In addition, a promising
area of research is the study of the influence of stochastization on the nonlinear models
dynamics with neural network control.
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