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Abstract: In this paper, we study two important problems related to quasi-multiautomata: the
complicated nature of verification of the GMAC condition for systems of quasi-multiautomata, and
the fact that the nature of quasi-multiautomata has deviated from the original nature of automata as
seen by the theory of formal languages. For the former problem, we include several new conditions
that simplify the procedure. For the latter problem, we close this gap by presenting a construction of
quasi-multiautomata, which corresponds to deterministic automata of the theory of formal languages
and is based on the operation of concatenation.
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1. Introduction

The theory of formal languages is closely linked to the theory of automata. An automa-
ton is a finite representation of a formal language that can consist of an infinite number
of words. Automata are often classified by means of a class of formal languages that
they can accept; see, e.g., [1], a paper dealing with the automata theory from the point
of view of our present paper, or papers such as [2,3]. The algebraic theory of automata
studies various types of such structures, which are linked to actions of groups on sets.
In the case of algebraic automata, the way of functioning is rather straightforward and
simple: the automaton has a set of states and a set of inputs and, after we apply a certain
input on a certain state, the automaton switches to a new state as specified by the tran-
sition function. However, in the theory of formal languages, automata are regarded as
devices reading strings of words instead of single input symbols only. In other words,
inputs (or characters) are catenated and one-by-one put into the automaton, which causes
changes of states. In the algebraic definition, this can be seen in the definition of automaton,
where the input alphabet is a free monoid over the input set, i.e., for each nonempty set
A, we denote A∗ the set of all finite sequences a1a2 . . . an, ai ∈ A, i.e., finite words made
of symbols from A. Moreover, A∗ regards the usual binary operation of concatenation:
u = a1 . . . an, v = b1 . . . bk, uv = a1 . . . anb1 . . . bk. With this, A∗ is a free monoid over A with
a neutral element e, the empty word.

In the course of time, the algebraic theory of automata began to regard automata
without output, the operation of concatenation has been replaced by an arbitrary group
operation, and monoid or a group have been used instead of the free monoid. Definition 2
complies with traditional books such as [4–7] or recent papers such as [8]. One can see
that the conditions are constructed in such a way that both monoid and free monoid
are applicable.

Since the late 1930s, the group theory has been generalized in the sense that the
synthesis of elements of the carrier set need no longer to be an element of that carrier
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set. When subsets are permitted (such as a line segment being a result of an “operation”
on its endpoints), we arrive at a concept of hypercompositional structures. For a basic
introduction to the topic stressing its context from a historical perspective—see, e.g., an
easy-to-follow overview paper [9].

The generalizations of algebraic automata in the sense of the theory of hypercom-
positional structures first focused on constructions of commutative hypergroups on their
state sets. Properties of automata have been described by means of properties of such
hypergroups over their state sets; see, e.g., [5,10–12]. The next step is to construct hypercom-
positional structures on the input sets and generalize the MAC condition to GMAC. Since
there are no unique neutral elements in hypercompositional structures, the UC condition is
omitted; see, e.g., [13,14]. The concept of quasi-multiautomaton originated in conference
proceedings [15] while the GMAC condition was used for the first time (in the context of
dynamical systems) in [12]—e.g., in [16,17]. In this respect, notice also suffix automata,
which accept all suffixes of a given string and belong to the basic stringologic principles.
When generalizing their transitions to include specific buffer operations, we obtain new
subtree pushdown automata, which accept all subtrees of a given tree in the prefix notation;
see, e.g., [18].

In 1959, M. O. Rabin and D. Scott introduced the concept of nondeterministic finite
automata in [19] and proved their equivalence to deterministic finite automata. A nonde-
terministic automaton, such as a deterministic one, consumes a string of input symbols.
It enters a new state for each input symbol until all input symbols are consumed. Unlike
in deterministic finite automata, the way symbols are consumed is nondeterministic, i.e.,
for a state and an input symbol, the next state may be the original or one, two, or more
possible states. Thus, in the formal definition, another state is an element of a potential
set of states, which is a set of states that must be considered simultaneously. In this re-
spect, the connection with the theory of hypercompositional structures is rather obvious.
However, introducing hypergroups on input sets does not lead to nondeterministic quasi-
multiautomata because the transition function δ : H × S −→ S used in Definition 5 of a
quasi-multiautomaton maps to the state set S instead of the set of its subsets P(S).

2. Basic Definitions

In order to clarify terminology used throughout the paper, in this section, we collect
all basic definitions.

Definition 1. [1] A deterministic automaton is a 5-tuple (A, S, s0, δ, F), where A is input alphabet,
S is a finite nonempty set of states, s0 ∈ S is the initial (or start) state, δ : A× S −→ S is the state
transition function, and F ⊆ S is the set of final states. Sometimes it is convenient to use, instead
of δ, the extended transition function δ∗ : A∗ × S −→ S, where A∗ is the set of words over the
alphabet A, which is defined recursively as follows:

1. (∀s ∈ S)(∀a ∈ A) δ∗(a, s) = δ(a, s),
2. (∀s ∈ S) δ∗(a, λ) = s where λ is the empty string,
3. (∀s ∈ S)(∀x ∈ A∗)(∀a ∈ A) δ∗(ax, s) = δ∗(δ(a, s), x).

One can see that the conditions of the following definition are constructed in such a
way that both monoid and free monoid are applicable.

Definition 2. By automaton, we mean a structure A = (I, S, δ) such that I 6= ∅ is a free monoid,
S 6= ∅, and δ : I × S→ S satisfies the following condition:

1. There exists an element e ∈ I such that δ(e, s) = s for any state s ∈ S.
2. δ(y, δ(x, s)) = δ(xy, s) for any pair x, y ∈ I and any state s ∈ S.

The set I is called the input set or input alphabet, the set S is called the state set, and the
mapping δ is called next-state or transition function.
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Remark 1. Condition 1 is often called the unit condition (UC) while condition 2 is often called the
Mixed Associativity Condition (MAC).

Notice that, in our paper, we write “xy” instead of “x · y”. However, in order to
stress the difference between concatenation and arbitrary operation, we write “x · y” in
Definition 3. For a deeper insight including historical perspective and terminology issues
(e.g., “quasi-automaton” vs. “semiautomaton”), see [16].

Definition 3. By quasi-automaton, we mean a structure A = (I, S, δ) such that I 6= ∅ is a
monoid, S 6= ∅, and δ : I × S→ S satisfies the following condition:

1. There exists an element e ∈ I such that δ(e, s) = s for any state s ∈ S.
2. δ(y, δ(x, s)) = δ(x · y, s) for any pair x, y ∈ I and any state s ∈ S.

The set I is called the input set or input alphabet, the set S is called the state set, and the
mapping δ is called next-state or transition function.

The following definition is a standard introductory definition of the theory of hyper-
compositional structures (or algebraic hyperstructures as they are also known).

Definition 4. A hypergroupoid is a pair (H, ∗), where H is a nonempty set and the mapping
∗ : H× H −→ P∗(H) is a binary hyperoperation (or hypercomposition) on H (here, P∗(H)
denotes the system of all nonempty subsets of H). If a ∗ (b ∗ c) = (a ∗ b) ∗ c holds for all a, b, c ∈ H,
then (H, ∗) is called a semi-hypergroup. Moreover, if the reproduction axiom—i.e., relation a ∗H =
H = H ∗ a for all a ∈ H—is satisfied, then the semi-hypergroup (H, ∗) is called hypergroup.

The following definition transfers the concept of quasi-automaton into the theory of
hypercompositional structures.

Definition 5. [15] A quasi–multiautomaton is a triad MA = (H, S, δ), where (H, ∗) is a semi-
hypergroup, S is a nonempty set and δ : H × S → S is a transition function satisfying the
following condition:

δ(b, δ(a, s)) ∈ δ(a ∗ b, s) for all a, b ∈ H, s ∈ S. (1)

The semi-hypergroup (H, ∗) is called the input semi-hypergroup of the quasi–multiautomaton
A (H alone is called the input set or input alphabet), the set S is called the state set of the quasi–
multiautomaton A, and δ is called next-state or transition function. Elements of the set S are called
states; elements of the set H are called input symbols or letters. Condition (1) is called Generalized
Mixed Associativity Condition (abbr. as GMAC).

Finally, we recall the notion of nondeterministic automaton.

Definition 6. If, in Definition 1, we have δ : A× S −→ P(S) instead of δ : A× S −→ S, then
the 5-tuple (A, S, s0, δ, F) is called nondeterministic automaton.

3. GMAC Condition in the Definition of Quasi-Multiautomata

This section aims at facilitating verifications of the GMAC condition. When doing so,
we use ideas included in [1], where the notion of order of a state is defined in the context of
deterministic automata of Definition 1. Notice that in [1], the term word length—meaning
the number of concatenated input symbols—is used. For example, if we consider the word
aaabba on the set a, b, then its length is 6.

Definition 7. [1] The order of a state s ∈ S of the deterministic automaton in Definition 2, denoted
by ord s, is the minimum of the lengths of words that lead from the start state s0 to s.



Mathematics 2022, 10, 1 4 of 16

Example 1. Consider an automaton as defined in Definition 1. Now, let s0 be the initial state and
s5 the final state. The input alphabet is a free monoid over the set {a, b}. It is clear from Figure 1
that ord s0 = 0, ord s1 = ord s2 = 1, ord s3 = ord s4 = 2, and ord s5 = 3.

a

a
a

a

a
b

b b

b
s

s

s

s

s s0

1

2

3

4 5

a,b

Figure 1. Finite quasi-automaton.

Obviously, the order of a state is related to the operation of concatenation of words.
Thus, in Example 1, we have that ord s3 = 2 because the shortest word taking us from s0 to
s3 is aa. However, if we generalize the concatenation operation to an arbitrary associative
operation, i.e., move to Definition 3, we have that a · a is an element of I (say a). Thus,
the “length of the word” becomes either 1 or 0 depending on whether the element is or
is not isolated. The situation becomes even more complicated for quasi-multiautomata of
Definition 5.

However, in both cases, we observe a discrepancy when transferring the intuitive
notion of order tailored to the classical case of deterministic automata to quasi-automata or
quasi-multiautomata of Definitions 3 and 5. The reason for such a discrepancy lies in the
visualization of the algebraic concept by graphs and the fact that we no longer distinguish
between start and end states. Therefore, further on, we will focus on the “descriptions of
graphs” by “counting arrows” rather than attempts to stress the algebraic part of the notion.
As a result, we cannot use the notion of order (based on word length) anymore (because,
technically speaking, there are no words anymore). Notice that the forthcoming definitions
once again enable us to “count arrows” of the graphs.

Definition 8. By the transition number of states s, t ∈ S (in this order), denoted by tn(s, t), we
mean the smallest number of transitions that take us from the state s to the state t.

It is easy to see that in Figure 1, tn(s0, s5) = 2. Indeed, applying input b takes us from
s0 to s2; then, applying input a takes us from s2 to s5, which means that the smallest number
of transitions that take us from s0 to s5 is 2.

Notice that, from Definition 8, it does not follow that tn(s, t) = tn(t, s). This is evident
in Figure 2, where tn(s1, s3) = 2 while tn(s3, s1) = 1. Next, if there is no input that would
take us from one state to another, we say that the respective transition number is 0. An
example is depicted in Figure 1, where tn(s3, s1) = 0.

s s s1 2 3

a

b

a

Figure 2. Noncommutativity of the order of two states.

Before introducing Theorem 1, recall the definition of a reversible automaton from [5].

Definition 9. An automaton A = (A, S, δ) is called reversible, if for every state s ∈ S and
every input a ∈ A (or word a ∈ A∗) there exists an input b ∈ A (or a word b ∈ A∗) such that
δ(b, δ(a, s)) = s (or δ(ab, s) = s).
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Now, we generalize the notion to the case of quasi-multiautomata.

Definition 10. A quasi-multiautomaton MA = (H, S, δ) is called reversible, if for every state
s ∈ S and every input a ∈ H there exists an input b ∈ H such that δ(b, δ(a, s)) = s.

Remark 2. Notice that in every reversible quasi-multiautomaton there is tn(s, t) = tn(t, s) for all
s, t ∈ S.

To fully clarify the above notion and its application to quasi-multiautomata, we
present the following example, in which two multiautomata are given. The first one is not
reversible while the second one, with a modified input set, is.

Example 2. Consider the interval of real numbers I1 = [1, ∞) and the hyperoperation ◦1 :
I1 × I1 → P∗(I1) defined by

a ◦ b = {c ∈ I, c ≥ a · b}, for all a, b ∈ I1.

It is obvious that the associative law holds. Therefore, the structure (I1, ◦1) is a semi-
hypergroup. Then, the triad ((I1, ◦1),R+ \ {0}, δ1), where the transition function δ1 : I1 ×
R+ \ {0} → R+ \ {0} is defined by

δ(a, r) = a · r, for all a ∈ I1, r ∈ R+ \ {0}.

which is a quasi-multiautomaton. Now, for input a = 5.2 and state r = 10, we have δ1(5.2, 20) =
104. Thus, the quasi-multiautomaton is not reversible, because there is no input b such that
δ1(b, 104) = 5.2.

Now, consider the interval I2 = (0, ∞) instead and the hyperoperation “◦2” defined in
the same way as “◦1”. For the transition function δ2, defined in the same way as δ1, the triad
((I2, ◦2),R+ \ {0}, δ2) is a reversible quasi-multiautomaton because, for each input symbol a, there
exists an input symbol 1

a such that δ2

(
1
a , δ2(a, r)

)
= r.

At this point, using the notion of a reversible quasi-multiautomaton and the transition
number of two states, we can provide the following theorem regarding the validity of the
GMAC condition 1.

Theorem 1. In every reversible quasi-multiautomaton (H, S, δ), there is tn(s, t) = tn(t, s) = 1
for every two states s, t ∈ S.

Proof. Recall that the GMAC condition (1) is δ(b, δ(a, s)) ∈ δ(a ∗ b, s) for all inputs and
states. In a reversible quasi-multiautomaton, there is tn(s, t) = tn(t, s) for all s, t ∈ S.
Suppose that there exists at least one pair of states (t, s) ∈ S, such that tn(t, s) = 2—i.e.,
from the state t we can reach the state s after application of at least two inputs. Denote
such inputs as a, b ∈ H. Therefore, on the left-hand side of the condition GMAC, we have
δ(a, δ(b, t)) = r. However, on the right-hand side, for all c ∈ a ∗ b, we never obtain the
state r, because this would mean that tn(t, s) = 1, which would be a contradiction to the
assumption that tn(t, s) = 2. Naturally, the same is true for transition numbers greater
than 2.

In the following example, we show that the implication in Theorem 1 cannot be
reversed, i.e., it is not true that if for every two states there is tn(s, t) = tn(t, s) = 1, we
obtain a reversible quasi-multiautomaton (or a quasi-multiautomaton).

Example 3. Consider the structure (H, S, δ). In this structure, we show that there is a path
between each two states, yet the GMAC condition does not hold, i.e., from the fact that tn(s, t) = 1
for all s, t ∈ S, it cannot be deduced that (H, S, δ) is a quasi-multiautomaton. Consider the set
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H = {h1, h2}, the hyperoperation “◦” defined by the following Figure 3, and the transition function
δ defined by the transition diagram in Figure 4.

◦ h1 h2
h1 h1 H
h2 H H

Figure 3. Definition of hyperoperation “◦”.

1

11

2 2

2

h
r s

t

hh

hh

h

Figure 4. Transition number of every pair of states is 1, yet, GMAC does not hold.

It is clear from the transition diagram that for each pair of states r, s ∈ S there is tn(r, s) = 1.
However, the GMAC condition does not hold. Indeed, on the left-hand side, we have δ(h2, δ(h1, r)) =
δ(h1, t) = r while on the right-hand side, we have δ(h1 ◦ h2, r) = δ(h1, r) ∪ δ(h2, r) = {s, t} and
obviously the left-hand side is not included in the right-hand side.

Notice that the above example also shows that the validity of the GMAC condition
depends on the transition function as well as on the definition of the hyperoperation.

Theorem 2. If in a quasi-multiautomaton ((H, ∗), S, δ) there is tn(r, s) = 1 and tn(s, t) = 1 for
some r, s, t ∈ S, then there is tn(r, t) = 1.

Proof. Suppose that there is tn(r, s) = 1 and also tn(s, t) = 1 for some r, s, t ∈ S. Then,
there exists such an input i ∈ H for which there is δ(i, r) = s, and also an input j ∈ H for
which there is δ(j, s) = t. Since the GMAC condition holds, i.e., the state t = δ(j, δ(i, r)) is
included in the right-hand side δ(i ∗ j, r) =

⋃
c∈i∗j

δ(c, r), there is an input k ∈ i ∗ j, where⋃
c∈i∗j

δ(c, r) 3 δ(k, r) = t. Thus, there must be tn(r, t) = 1.

In the following Example 4, we present a trivial quasi-multiautomaton, where the
order of each pair of states is 1. The nontrivial quasi-multiautomaton is presented in
Example 5.

Example 4. Consider a quasi-multiautomaton, which was first presented in Example 5 of [16].
By coincidence, the order of each pair of states is 1, i.e., Theorem 2 holds for an arbitrary triad
of elements.

One can see that in the automaton with a free monoid, in the MAC condition of
Definition 2, we have links in the sequence of states that coincide with the “links” of
strings, i.e., concatenation. In other words, in order to reach a given state, the automaton
passes through the same states regardless of whether we regard the left- or the right-hand
side of the MAC condition of Definition 2. However, this is not the case for the quasi-
multiautomaton, where the GMAC condition suggests that there must exist a shorter, or
more efficient input that enables us to reach the same state as when applying two different
catenated inputs. Indeed, in Figure 5, we can get from b1 to b2 and from b2 to b3 or directly
from b1 to b3. Notice that without the input e4 applied to b1, the GMAC condition would
not hold.



Mathematics 2022, 10, 1 7 of 16

b1 b2 b3 b4
e3

e4

e5

e3

e4, e5

e3, e4

e5

e2 e2 e2 e2, e3, e4, e5

Figure 5. A quasi-multiautomaton where the transition number of each pair of states is 1.

Example 5. In this example, we summarize our above considerations and also explain why
Theorems 1 and 2 cannot be given as one even though they are semantically similar. In order
to maintain clarity, the quasi-multiautomaton in Figure 6 does not have evaluated transitions.
However, it is evident that the inputs could be easily supplemented as in Example 4. For this
quasi-multiautomaton, it is obvious that Theorem 2 applies. Furthermore, it is obvious that the
multi-automaton in Figure 6 is not reversible because there are no arrows in the opposite direction
in the transition diagram—i.e., from the state s1, we go to the state s2, but from the state s2 it is
not possible go to s1. If we considered bidirectional arrows in Figure 6, the quasi-multiautomaton
would be reversible. In such a case, we would be able to get from state s2 to state s4 via state s1,
which corresponds to the left side of the GMAC condition. This must be met, so we must go directly
from the state s2 to the state s4.

s

s

s

s

0 1

4

2 s3

s5

Figure 6. A quasi-multiautomaton that is not reversible.

Another indicator that would help to decide whether the GMAC condition is met or
not are identities (neutral elements) of the input hyperstructure. Recall that by an identity
of a semi-hypergroup (H, ∗), we mean such an element e ∈ H that there is x ∈ x ◦ e ∩ e ◦ x
for all x ∈ H. Although, in the definition of the quasi-multiautomaton, the UC condition of
Definition 2 is not required, it does not mean that no elements fulfilling it exist. If they do,
they are identities of the input semi-hypergroup.

Theorem 3. If in the quasi-multiautomaton ((H, ∗), S, δ) there exists an element e ∈ H with the
property δ(e, s) = s for all s ∈ S, then there is a ∈ a ∗ e ∩ e ∗ a for all a ∈ H—i.e., e is an identity
of (H, ∗).

Proof. Suppose that there is δ(e, s) = s for some e ∈ H and all s ∈ S and that the GMAC
condition δ(a, δ(b, s)) ∈ δ(a ∗ b, s) is satisfied for all a, b ∈ H and for all s ∈ S.

For an element e ∈ H, and arbitrary a ∈ H and s ∈ S, we have

δ(a, δ(e, s)) ∈ δ(a ∗ e, s) ∧ δ(e, δ(a, s)) ∈ δ(e ∗ a, s)

δ(a, s)) ∈ δ(a ∗ e, s) ∧ δ(a, s)) ∈ δ(e ∗ a, s)

δ(a, s)) ∈
⋃

c∈a∗e
δ(c, s) ∧ δ(a, s)) ∈

⋃
d∈e∗a

δ(d, s).

It is obvious that the state δ(a, s) belongs to the set of states on the right-hand side if
and only if a ∈ a ∗ e ∧ a ∈ e ∗ a, i.e., a ∈ a ∗ e ∩ a ∈ e ∗ a, for all a ∈ H.
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When the Cartesian composition of two quasi-multiautomata was constructed in [17],
the necessary condition of Theorem 1 was not satisfied. As a result, the GMAC condition
was not satisfied. The authors solved the problem by modifying the condition by adding
an extension to its right-hand side. Notice that the Cartesian composition of two automata
were introduced by Dörfler in [20], the composition was subsequently generalized to the
case of quasi-multiautomata in [17].

We conclude this section with the definition of products of automata introduced by Dörfler.

Definition 11. [21] Let A1 = (I, S, δ), A2 = (I, R, τ), and B = (J, T, σ) be quasi-automata.
By the homogeneous product A1 × A2, we mean the quasi-automaton (I, S × R, δ × τ), where
δ × τ : I × (S × R) → S × R is a mapping satisfying, for all s ∈ S, r ∈ R, a ∈ H, (δ ×
τ)(a, (s, r)) = (δ1(a, s), τ(a, r)), while the heterogeneous product A1 ⊗B is the quasi-automaton
(I × J, S× T, δ⊗ σ), where δ⊗ τ : (I × J)× (S× T) → S× T is a mapping satisfying, for all
a ∈ I, b ∈ J, s ∈ S, t ∈ T, δ⊗ σ((a, b), (s, t)) = (δ(a, s), σ(b, t)). For I, J disjoint, by A · B, we
denote the Cartesian composition of A and B, i.e., the quasi-automaton (I ∪ J, S× T, δ · σ), where
δ · σ : (I ∪ J)× (S× T)→ S× T is defined, for all x ∈ I ∪ J, s ∈ S, and t ∈ T, by

(δ · σ)(x, (s, t)) =

{
(δ(x, s), t) if x ∈ I,
(s, σ(x, t)) if x ∈ J.

Generalizing the homogeneous or heterogeneous products of quasi-automata to the
case of quasi-multiautomata is straightforward because, in these two cases, the condition
used in Theorem 2 holds. However, in the case of the Cartesian composition, the situation
is different. Since in the definition of the Cartesian composition the state set is created as
the Cartesian product of the state set of the respective quasi-multiautomata, it is obvious
from Figure 7 that the necessary condition tn(r, t) = 1 is not satisfied in the resulting
quasi-multiautomaton, as there is no direct path from state (s0, t0) to state (s1, t1) because
the respective input elements can affect one component only. For a deeper insight into this
issue, we refer the reader to Example 1 in [17], the proof of Theorem 2 in [22], or Example 4
in [16], where the GMAC condition is not satisfied anywhere and we consider modified
GMAC conditions, called E-GMAC.

(s ,t )

(s ,t ) (s ,t )

(s ,t )

1

00 0

01 1

1

Figure 7. Cartesian product of state sets.

4. Nondeterministic Quasi-Multiautomata

First of all, we provide an example of a nondeterministic automaton.

Example 6. Consider a nondeterministic finite automaton depicted in Figure 8. For input a applied
to the state s0 there is a transition to s1, or the automaton can remain in the state s0. As a result,
the machine must “decide” how to behave. The same situation applies to the input b and the
state s1. Nondeterminism means ambiguity—from a given state, more transitions can lead to the
same symbol. A nondeterministic automaton always chooses (sometimes we also say “guess”) the
transition that will lead to accepting the word—if that is possible. If we insert the word aba into the
automaton in Figure 8, then it has the following options for dealing with it:
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s0 −→ s0 −→ s0 −→ s0

s0 −→ s1 −→ s3 −→ s3

s0 −→ s1 −→ s2 −→ s3

In the first case, the automaton will remain in the state of s0; it certainly can because the rules of
transition allow this. In the second case, the automaton moves to other states and eventually reaches
s3, which is the final one. The third case has the same final state. In the second and third cases, the
automaton accepts the word. Notice that a nondeterministic automaton always automatically selects
the branch in which it accepts a word, if such a branch exists.

a

ab

b
s ss

s

0 1

2

3

a,b

a,b

Figure 8. Nondeterministic automaton.

The following definition transfers the notion of nondeterministic automaton from the
context of automata to the context of quasi-multiautomata.

Definition 12. By nondeterministic quasi-multiautomaton (denoted by NMA), we mean a triad
NMA = (C(H), S, δ), where (H, ∗) is a semi-hypergroup, S is a nonempty set, and δ : C(H)×
S→ P(S), where C(H) ⊆ P∗(H) is a transition function satisfying the following condition:

δ(B, δ(A, s)) ⊆ δ(A ∗ B, s) for all A, B ∈ C(H), s ∈ S. (2)

Notation 1. We will call the condition (2) big-GMAC.

In Figure 9, we can see the basic concepts of deterministic quasi-automata, i.e., au-
tomaton with the free monoid, automaton with a monoid, and quasi-multiautomaton.

s

s

s

s
0

1

2

3

s6

s

s5

4

a

b

c

d

e

f

g

i
j

Figure 9. Deterministic automaton.

In the case of an automaton with a free monoid, if we apply the string ad f to s0 then
δ(ad f , s0) = s3, and the string ij to s3, we reach the state s6. This is the same as applying
ad f ij directly to s0.

In the case of an automaton with a monoid, if we apply the input (character) b to the
state s0, we reach the state s4, where we apply g, which gets us to the state s3. In order for
the MAC condition to hold, there must exist an input (character) by which the automaton
goes directly from s0 to s3. In our case, such an input (character) is c (on condition that b · g
is defined as c).

The case of a quasi-multiautomaton is similar with the difference that there must be
c ∈ b ∗ g. Therefore, in Theorem 1, this is only a necessary condition, as it does not take
into account the fact that c ∈ b ∗ g.

While in nondeterministic finite automata of the formal language theory nondetermin-
ism occurs in the transition function, i.e., after we apply one input we can reach multiple
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states (see Figure 8), nondeterministic quasi-multiautomata of Definition 12 provide non-
determinism for the input set and leave the transition function single-valued.

In Figure 10, we consider the minimal extensive hyperoperation, where, for all a, b, there
is a ◦ b = {a, b}. Using Definition 6, we regard the element of the potent set, which we—by
means of the transition function—apply on a state. Thus, in Figure 10, we apply on s0 the
input in the form of the hypercomposition (hyperproduct) e ∗ f , which takes us to two
states: s3 and s6. Thus, we obtain a similar result to that after application of input a to s0 in
Figure 8.

s

s

s

s
0

1

2

3

s6

s

s5

4

a

b

c
d

e

f
b

a

c de

c

d

Figure 10. Nondeterministic quasi-multiautomaton.

Now, consider input e ∗ f = {e, f } applied on state s0 in Figure 10. Application of
condition (2) brings NMA into two states: s3 and s6. If we apply c ∗ d = {c, d} on each
of these two states, NMA turns into states s4, s5, s6, which are the results of the left-hand
side of the GMAC condition. On the right-hand side of this condition, we first evaluate
{e, f } ∗ {c, d} = {e, f , c, d}, which takes us to the set of states {s3, s4, s5, s6}. Obviously, the
set of states on the left-hand side is the subset of the set of states on the right-hand side
of GMAC.

5. Quasi-Multiautomata with the Input Semi-Hypergroup Based on Concatenation

In this section, inspired by [23], we present the construction of a quasi-multiautomata,
in which the input semi-hypergroup is based on the original concatenation operation, as is
the case of the classical concept of automata. For this type of construction, the necessary
condition of Theorem 2, tn(r, s) = 1 for all r, s ∈ S, is not required.

First, we recall the necessary concepts from the theory of formal languages. String
length |x| is the total number of symbols in the string x. A substring of a string is a sequence
of symbols that is contained in the original string—i.e., if x and y are strings, then x is a
substring of y if there exist strings z, z′ such that zxz′ = y. Prefix of the string a, denoted
by pre f (a), is such a substring of the string a that there exists a substring z of a (which
can be empty, however) such that pre f (a)z = a. Suffix of the string b, denoted su f (b), is
such a substring of the string b that there exists a substring z of a (which can be empty,
however) where zsu f (a) = a. The set of all prefixes of the string x will be denoted Spre f (x);
the empty word will be denoted by ε (see also notation used for binary trees in [24]).

Now, denote H∗ as the set of all strings over the set of symbol H and define a hyper-
operation ? : H∗ × H∗ −→ P∗(H∗) by

x ? y =
{

ab ∈ H∗ | a ∈ Spre f (x), b ∈ Spre f (y)
}

(3)

In other words, x ? y is in fact a set of all mutual concatenations of prefixes of x and y.

Example 7. Consider set M = {0, 1, 2} and the set M∗ of all strings over M. Further, consider
strings a, b ∈ M∗, where a = 1010 and b = 22. For these, we have

Spre f (a) = {ε, 1, 10, 101, 1010} and Spre f (b) = {ε, 2, 22}.
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Thus, we obtain

a ? b = {ε, 2, 22, 1, 12, 122, 10, 102, 1022, 101, 1012, 10122, 1010, 10102, 101022}.

Theorem 4. Let H∗ by an arbitrary nonempty set of strings over H and let “?” be a defined by (3).
Then, (H∗, ?) is a hypergoup.

Proof. First, we show that the associative law applies. For all strings a, b, c ∈ H∗, we have

(a ? b) ? c =
⋃

x∈Spre f (a)

y∈Spre f (b)

xy ? c =
⋃

x∈Spre f (a)

y∈Spre f (b)

z∈Spre f (c)

xyz = a ?
⋃

y∈Spre f (b)

z∈Spre f (c)

yz = a ? (b ? c).

The reproductive axiom holds automatically because “?” is extensive, i.e., a, b ∈ a ? b
for all a, b ∈ H∗. Indeed, each set of prefixes contains an empty word and the original
word, if we perform the concatenation operation of the empty string and the original string
from the second set of prefixes, we obtain the original string. Thus, the structure (H∗, ?) is
a hypergoup.

In the following two examples, Examples 8 and 10, we use the above hypergroup
as the input sets for two quasi-multiautomata. We will consider two types of transition
function. In the first case, it has the role of a “pointer”, i.e., it points to the follower of s0,
which is the result of the transition s1 = δ(a, s0). In this case, the transition function is
usually specified by a table or a transition diagram as in Figure 4 and there is no formula
or rule to calculate the transition. In the second case, the transition function has the form of
an “operation”, i.e., we obtain the new state by means of calculation (as in Example 2).

Example 8. Consider the hypergroup (M∗, ?) from Example 7 and the set of states T =
{a, b, c, d, . . . , m}. The transition function δT is defined by means of the transition diagram in
Figure 8. It is easy to verify that the structure MA = ((M∗, ?), T, δT) is a multiautomaton satisfy-
ing the GMAC condition. In Figure 11, we use different colors to highlight the following: processing
the input word 1010, i.e., δT(1010, a), (blue); the left-hand side of GMAC δT(22, δT(1010, a) (blue
and red); right-hand side of GMAC δT(1010 ? 20, a) (yellow).
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Figure 11. Quasi-multiautomaton based on a concatenation hypercomposition.
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Theorem 5. Let (H∗, ?) be a hypergroup from Theorem 4 and S be a set of states. Then, it is
possible to define a transition function δ such that ((H∗, ?), S, δ) is a quasi-multiautomaton.

Proof. Proof of the condition GMAC is obvious from the presented scheme in Figure 8
and from the definition of hyperoperation, where for two strings a and b, there is ab ∈ a ? b.
Indeed, suppose that a = a1 . . . an, b=b1 . . . bn. Then, the left-hand side of GMAC is

δ(a, δ(b, s)) = δ(a1 . . . an, δ(b1 . . . bn, s)) = δ(an, δ(an−1, . . . δ(a1, δ(bn, δ(bn−1,...δ(b1,s))))))

while on the right-hand side, we have

δ(b ∗ a, s) = δ(b1, s)∪ δ(b1a1, s)∪ δ(b1a2, s)∪ . . .∪ δ(b1b2a1, s)∪ δ(b1b2a1a2, s)∪ . . .∪ δ(b1 . . . bna1 . . . an, s),

where the last term of the union is δ(an, δ(an−1, δ(a1, δ(bn . . . , δ(b1, s)))))), which is the
left-hand side of the GMAC condition.

Of course, the transition function cannot be arbitrary.

Example 9. Consider a quasi-multiautomaton with the same input hyprergroup (M∗, ?). However,
instead of the state set T, consider the set of all natural numbers N. Next, define the transition
function δO : M∗ ×N −→ N by

δO(a, r) = a · r

for all a ∈ M∗ and r ∈ N. We can afford to define the transition function δ in such a way because
we treat numeric strings (1010 and 2020 below) as numbers. The GMAC condition is not satisfied
in this case. Indeed,

δO(22, δO(1010, 2) = δO(22, 2020) = 44440,

yet for the right-hand side of GMAC—i.e., δO(1010 ? 22, 2)—we require the string 22220 to belong
to 1010 ? 22. Yet, we could see in Example 7 that 22220 /∈ 1010 ? 22.

Next, we will use the construction of a multiautomaton of Theorem 5 and construct a
nondeterministic quasi-multiautomaton of Definition 12. There, the element of the power
set will be used as the input word, which we will obtain as a result of two elements (strings)
a, b ∈ H∗. In this context, on the right-side of the GMAC condition, the hypercomposition
of two sets will be required. It is therefore desirable to first prove the following lemma.

Lemma 1. In the hypergroup (H∗, ?), where “?” is defined by (3), there is Spre f (a ? b) = a ? b
for all a, b ∈ H∗.

Proof. Obviously, there is Spre f (x ? y) =
⋃

z∈x?y
Spre f (z). Moreover, it is obvious that x ∈

a ? b implies that x ∈ Spre f (a ? b). Proving the other inclusion is also simple. Indeed, the
fact that x ∈ Spre f (a ? b) =

⋃
c∈a?b

Spre f (c) implies that there exist words y, z ∈ H∗ such that

x = yz, where y ∈ Spre f (a), z ∈ Spre f (b). Yet, this means that x ∈ a ? b.

Example 10. Consider the quasi-multiautomaton MA = ((M∗, ?), T, δT) from Example 8 and
sets A = a ? b and C = c ? d, where a, b, c, d ∈ M∗. For a = 1010, b = 22, c = 1, d = ε, we have
A = {ε, 2, 22, 1, 12, 122, 10, 102, 1022, 101, 1012, 10122, 1010, 10102, 101022} (see Example 7)
and B = {ε, 1}. Proving that MA is a nondeterministic quasi-multiautomaton is rather difficult
because one needs to show validity of big-GMAC (2) for all states and inputs. However, we outline
the idea of the proof for our specific choice of states and inputs.

We need to show that there is δ(B, δ(A, a)) ⊆ δ(A ? B, a). From the transition diagram, we
calculate the left-hand side of big-GMAC (2):

δ(B, δ(A, a)) = δ(B, {a, b, d, f , g, j, k, l, m}) = {a, b, d, e, f , g, i, j, k, l, m} (4)
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Before calculating the right-hand side, we first establish A ? B. This is quite easy (given the
specific choice of the set B and Lemma 1):

A ? B = {ε, 1, 2, 10, 12, 22, 101, 102, 122, 1010, 1012, 1022, 10102, 10122, 101022}∪
{ε, 11, 21, 101, 121, 221, 1011, 1021, 1221, 10101, 10121, 10221, 101021, 101221, 1010221} =
{ε, 1, 2, 10, 11, 12, 21, 22, 101, 102, 121, 122, 221, 1010, 1011, 1012, 1021, 1022, 1221, 10101,

10102, 10121, 10221, 101021, 101221, 101022, 1010221}

Now, again using the transition diagram, we compute

δ(A ? B, a)) = {a, b, d, e, f , g, i, j, k, l, m}, (5)

and we can see that δ(B, δ(A, a)) ⊆ δ(A ? B, a) ; in this case, even δ(B, δ(A, a)) = δ(A ? B, a).

Lemma 2. A set H ⊆ H∗ is reflexive in a hypergroup (H∗, ?).

Proof. Reflexivity of a subset H of H∗, where (H∗, ∗) is a hypergroupoid, is defined by
validity of implication x ? y ∩ A 6= ∅⇒ y ? x ∩ A 6= ∅ for all x, y ∈ H∗.

Suppose that x = a1 . . . an and y = b1 . . . bm, where ai, bj ∈ H for all i ∈ {1, . . . , n}
and j ∈ {1, . . . , m}. Obviously, a1 ∈ Spre f (x) and b1 ∈ Spre f (y). Next, thanks to the
fact that ε ∈ H∗, there is Spre f (x) ⊆ x ? y and Spre f (y) ⊆ x ? y. Even though “?” is not
commutative, there is Spre f (x) ⊆ y ? x and Spre f (y) ⊆ y ? x. Thus, we have the two-element
sets {a1, b1} = x ? y ∩ H and {a1, b1} = y ? x ∩ H.

In the end of this section, we are going to discuss nondeterminism, which is caused
by the input structure as stated in Definition 12. In order to do so, we are going to use
the hypergroup constructed using Theorem 4. We want to show that for such a structure,
there exists a nondeterminism that is “controlled” due to the nature of the hyperoperation.
(Recall that in the theory of formal languages, nondeterminism is caused by the transition
function.) In order to do so, we are going to use the hypergroup constructed using
Theorem 4. The following example shall thus be read within the context of Definition 12
and Theorem 4.

Example 11. Regard a string a = a1 . . . an ∈ H∗. The transition function produces

δ(a, r) = δ(a1 . . . an, r) = δ(an, δ(an−1 . . . δ(a1, r)). (6)

If we now regard a nondeterministic quasi-multiautomaton, where the nondeterminism is
provided in the input by hyperoperation (3), the nondeterminism is “controlled” because from
each state in the sequence followed by the automaton, there are at most two paths. Indeed, for
a = a1 . . . an and b = b1 . . . bn, their hypercomposition is a set of strings, which are concatenations
of prefixes of a and b. Thu,s e.g., at the second position (which of course exists), the symbol a1 is
followed by a2 or b1. As Figure 12 suggests, this idea holds for all positions.

Figure 12 shows that the first position of an arbitrary string from a ∗ b (which can be
regarded as input) will be occupied by a1 or b1, the second position by a2 or b1, etc. Thus,
given the input a ∗ b, the quasi-multiautomaton will pass at most 2n paths (where a1b1 is
included in a1b1b2, i.e., these two are counted as one path).

Showing that the big-GMAC condition holds for all strings a ∈ H∗ such as in
Figure 10, where the transition function is given by a diagram (or by a table yet not a
rule) is complicated. There exists Light’s associativity test invented by F. W. Light for test-
ing whether a binary operation defined on a finite set is associative. Miyakawa, Rosenberg,
and Tatsumi [25] generalized this test for semi-hypergroups. We are not aware of any such
test for finite quasi-multiautomata with a transition diagram or table. Finding such tests
might be our next objective and the subject of further research.
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Figure 12. Scheme of possible concatenations of a = a1a2a3a4 and b = b1b2b3.

6. Discussion

Currently, the combinations of algebraic multiautomata into higher entities, using
various rules suggested by Dörfler [20,26], are studied—see, e.g., [27]. Such combinations
seem to be suitable tools for modeling various real-life systems—see, e.g., [16,21,28]—or
are even tools to control such systems [22]. However, two main problems appeared in
this respect:

1. When constructing algebraic quasi-multiautomata of Definition 5, one needs to show
that the GMAC condition (1) is satisfied. This in fact means that one has to prove
that if two arbitrary inputs are applied sequentially to a certain state s1, we obtain
a state that is contained in the subset of states given by the application potential
determined by the hyperoperation of the inputs and the state s1. In this respect, the
proof of validity of the GMAC condition is not always straightforward. In [17], the
proof is computationally demanding. If we consider various combinations of such
quasi-multiautomata, the proofs become even more complicated. For these reasons, in
Section 3, we search for conditions that could facilitate such proofs. Moreover, we
show why, in some previous cases, the GMAC condition of the composition failed
even though each separate quasi-multiautomata fulfilled it. This approach con-
stitutes a sufficiently solid base for further research and the identification of con-
ditions equivalent to GMAC. Note that the way transition number of states (see
Definition 8), or even the whole concept of quasi-multiautomaton, is understood
is similar to considerations of [29], where, in oriented graphs, one of the vertices is
considered as the initial state while selected vertices are final states and the path from
state q0 to state q f (denoted q0 →am

q f ) is simply a sequence of edges in the transition
graph without any specific structure.

2. The abovementioned generalizations of the original concept of automaton have deviated from
the original idea of concatenation of input symbols. In Definition 5, H is a semi-hypergroup,
which is called input alphabet. However, under this consideration, this “alphabet”
cannot create words. Indeed, if a, b are elements of H, i.e., letters, then a ∗ b is a subset
of H; so, it is a set of letters, not words. This might be seen as a weak point of the theory,
which diminishes its applicability. Therefore, in Section 4 and especially in Section 5,
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we construct quasi-multiautomata based on standard techniques of the theory of
formal languages. In Section 4, we modify Definition 5 in such a way that quasi-
multiautomata will work nondeterministically. However, being aware of the fact that
nondeterministic automata are of no real added value, our concept is designed to
include a limited degree of nondeterminism only. Moreover, since this paper deals
with the generalization of the automaton, the quasi-multiautomaton can be further
generalized by considering H to be an arbitrary hypergroupoid. This enhances pos-
sibilities to create input hypercompositional structures reflecting needs of automata
of the theory of formal languages. In other words, weakening requirements of the
input structure provides us a wider range of choices to construct quasi-multiautomata
based on concatenation. For example, consider that (H, ∗) is a hypergroupoid if
x ∗ y = {z, w}, where z is formed by deleting the odd-positioned letters from the
word xy and w is formed by deleting the even-positioned letters from the word xy.
However, one needs to discuss the impact of losing associativity on GMAC, which
is based on it. In Section 5, we show a construction of quasi-multiautomata, which
corresponds to automata of the theory of formal languages and is based on the idea
of concatenation of strings with associativity preserved. For quasi-automata, this is
possible thanks to the free monoid. For quasi-multiautomata, i.e., structures making
use of hypercompositional structures, we concatenate words for input. We present a
specific example. However, thanks to the multivalued nature of the hypercomposition,
a whole range of similar schemes might be thought of.

7. Conclusions

In our paper, we defined conditions that the GMAC condition must satisfy. We
also constructed algebraic a quasi-multiautomaton related to automata of the theory of
formal languages. On top of that, we constructed a quasi-multiautomaton with a limited
degree of nondeterminism. In contrast to nondeterministic automata of the theory of formal
languages, where nondeterminism is caused by the transition function, the nondeterminism
in our construction follows from the input hyperstructure. It is properties of the input
hyperstructure that have the potential to yield interesting results in such nondeterministic
quasi-multiautomata, which suggest a potential line of further research.
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