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Abstract: Applications for facial recognition have eased the process of personal identification. How-
ever, there are increasing concerns about the performance of these systems against the challenges of
presentation attacks, spoofing, and disguises. One of the reasons for the lack of a robustness of facial
recognition algorithms in these challenges is the limited amount of suitable training data. This lack of
training data can be addressed by creating a database with the subjects having several disguises, but
this is an expensive process. Another approach is to use generative adversarial networks to synthesize
facial images with the required disguise add-ons. In this paper, we present a synthetic disguised
face database for the training and evaluation of robust facial recognition algorithms. Furthermore,
we present a methodology for generating synthetic facial images for the desired disguise add-ons.
Cycle-consistency loss is used to generate facial images with disguises, e.g., fake beards, makeup,
and glasses, from normal face images. Additionally, an automated filtering scheme is presented
for automated data filtering from the synthesized faces. Finally, facial recognition experiments are
performed on the proposed synthetic data to show the efficacy of the proposed methodology and
the presented database. Training on the proposed database achieves an improvement in the rank-1
recognition rate (68.3%), over a model trained on the original nondisguised face images.

Keywords: disguised face; synthetic database; synthetic faces; generative adversarial networks;
CycleGAN; style transfer; data augmentation; Sejong Face Database; Synthetic Disguised Face Database

1. Introduction

Facial recognition (FR) has been a topic of interest for the last few decades. Among
the computer vision domains, FR is the widely adopted solution in the industry and is
considered a solved problem in controlled environments. A controlled environment is
defined as one in which the images are captured in the frontal pose, with good illumination,
and a neutral expression, and in which the subject is not trying to avoid recognition.
However, in circumstances such as a spoofing scenario, the subject might try to hide his/her
identity by using a disguise. Such scenarios pose a challenging problem for applications
of FR. FR algorithms are trained on facial features, which are unique for each subject. If
those features are hidden by the subject, the algorithm might fail to perform. There can
be different outcomes in such a scenario, such as the failure to recognize, recognizing a
different identity, or the failure to detect the face altogether.

Earlier FR research has been focused on the challenges of pose, illumination, and
expression. However, recently the focus of research has diverted towards more complex
issues, such as face alterations due to plastic surgery [1], twins [2], single-sample facial
recognition [3], sketch-to-photo matching [4,5], multispectrum matching [6–8], facial ex-
pression recognition [9,10], and disguise [11–14]. As more and more systems are relying
on automated FR algorithms, there is an increasing need to solve the challenges of facial
disguise because of the emerging security threats.
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Convolutional neural networks (CNN) have been used to solve the problem of dis-
guised FR. However, current CNN models require a large amount of training data to
achieve high performances on specialized tasks, such as person classification. While nor-
mal facial images can be acquired through the web, social media, and other online resources,
the collection of disguised face datasets require a more methodological approach. The
collection of face images with required disguises is a resource-intensive process. There are
several ways in which individuals can disguise themselves by utilizing add-ons, such as
masks, glasses, caps, scarfs, etc. Apart from these, fake but realistic-looking add-ons, such
as fake mustaches, fake beards, and facial makeup, can be used to spoof an FR application.
To create a comprehensive database of disguised faces, images need to be captured with the
subjects wearing a wide array of disguise add-ons in various combinations. Additionally,
the privacy concerns of subjects make the collection of a large-scale face database a difficult
process. Because of these difficulties, there are limited publicly available databases (DBs)
that feature face images with disguises capable of demonstrating real-world scenarios.
The research in the domain of disguised facial recognition is faced with the issue of a lack
of suitable training data. Currently, the available disguised face DBs are not sufficient
for the training of FR algorithms. IIITD In, and the Beyond Visible Spectrum Disguise
database, I2BVSD [15], contain celebrity images with a limited set of disguises, but no
labeling information for the disguises is provided. There are also some multispectral DBs,
such as visible-depth [16], visible-thermal [17], and visible-infrared [18], which feature
disguise images. However, as the focus of these databases is multispectral FR, there are
insufficient variations of disguises. Even when a database with a focus on disguise add-ons
is constructed, it is practically impossible to include all possible add-ons. Furthermore,
from an applicability viewpoint, it is challenging to collect such a dataset. This constraint
motivated us to design a system capable of generating disguised face images for scenarios
where these are not available.

Generative adversarial networks (GANs) [19] have achieved breakthrough perfor-
mances in the domain of synthetic image generation [20–22]. State-of-the-art GANs can
generate realistic images that are identical to photographs. Among the several applica-
tions of GANs, style transfer has garnered significant interest from the computer vision
community. Style transfer techniques enable the transfer of the style of one image to that
of another while maintaining the context. This enables the reproduction of art pieces by
great artists by synthesizing current-era pictures in a specific artist’s style. CycleGAN [23]
is one of the significant works in the recent literature, and it has been used in numerous
applications. We aim to utilize this image style transferability to focus on specific facial
regions and to generate images with the desired features while retaining the subject’s
identity features. We propose a methodology for disguised face synthesis and present a
synthetic facial disguise database for the development of robust FR algorithms. A disguised
face synthesis, based on generative adversarial networks (GAN) [19] and cycle-consistency
loss [23], is performed in order to extend the available Sejong Face Database [13]. The
proposed method for disguised face synthesis uses the SFD as its seed database. As the
method requires disguised sample images, the synthesized database contains the same
add-on variations and subject identities as the SFD. The number of face images for each
disguise is extended from the original 5250 to 12,600 in the proposed database.

The data used in this study are categorized into three categories on the basis of their
natures: The facial images of subjects without any face add-ons or accessories are referred
to as “normal” images. Facial images with face add-ons, such as glasses, masks, caps, etc.,
are referred to as “disguise” images. Facial images that are captured through a camera
are referred to as “real” images, whereas face images that are synthesized through the
proposed method are referred to as “Gen.” (generated) images. Similarly, the term “real
normal” refers to the images without any face disguise add-ons captured by the camera.
The term “real disguise” refers to the images where there is a disguise add-on, and the
images are captured by the camera. The term “Gen. disguise” refers to the images digitally
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generated using the proposed methodology. For simplicity, these terms are used in the rest
of the text, as shown in Table 1.

Table 1. This table represents the data splits that were used in the facial recognition experiments.

Source Add-On Abbreviation

Photographed No Real normal

Photographed Yes Real Disguise

Synthetically generated Yes Gen. Disguise

Contributions

1. A synthetic disguised face database, namely, the “Synthetic Disguised Face Database”,
is presented as a training and evaluation resource for the robustness of FR algorithms
to disguise. The presented DB features facial images with 13 synthetically generated
disguise variations;

2. A methodology employing a GAN and cycle-consistency loss is proposed for synthetic
disguised face generation, which will allow future research to extend the existing
facial databases. The methodology can be applied to generate disguise add-ons not
covered in this study;

3. The proposed method can be employed for runtime data augmentation during the
training of facial recognition algorithms. Our experimental works prove the value of
the proposed methodology over traditional methods of data augmentation;

4. A comprehensive analysis is presented by benchmarking the proposed “Synthetic Dis-
guised Face Database” using the state-of-the-art FR method for different experimental
configurations. Improved FR performance is achieved using the proposed data on
real add-on images;

5. An automated filtering scheme is presented that filters out the low-quality image
samples from the generated pool of synthetic images. The efficacy of the filtering is
shown through the experimental results.

The rest of the manuscript is organized as follows: First, the proposed disguised face
synthesis and the automated filtering methodologies are presented in Section 2. The details
of the proposed database are discussed in Section 3. Section 4 presents the results of FR
experiments using the proposed database and proves the efficacy of the methods and data.
Finally, the manuscript is concluded in Section 5.

2. Related Work

We review the related works on the currently available disguised face databases, the
currently proposed methods for facial synthesis, and, finally, the available methods for
image synthesis. Our review analysis shows a need for disguised face databases, as well as
the inability of the current methods to be adapted for disguised face synthesis.

2.1. Face Databases

In this study, various publicly available disguised face DBs are reviewed, along with
their advantages and disadvantages. Only the databases pertaining to disguise or artificially
synthesized face databases are discussed in this study.

2.1.1. Databases with Disguised Facial Images

A large variety of disguise add-ons and sufficient training data are required for the
training of modern CNNs. I2BVSD [15,17] contains frontal pose images with neutral
expressions captured under constant illumination. Several disguise variations, such as
fake facial hair, caps, wigs, masks, and glasses, are included in the database. A total of
75 subjects of South Asian ethnicity are included in the DB, of which 60 are male and 15 are
female. There are five distinct variations of disguises available in the DB, namely, variations
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in hairstyles, beards, and mustaches, glasses, caps, and masks. Another variation is a combi-
nation of two or more disguises. However, the DB does not provide disguise labels, which
makes it difficult to use it for the development of disguised FR models. There are a total of
681 images for each modality, with at least one frontal face image, and from five to nine
frontal disguised images per subject. The BRSU Spoof Database [24,25] is a multispectral
DB, with images captured in visible and infrared modalities at frequencies of 935, 1060,
1200, and 1550 nm. There are several variations in the DB that render it challenging, such as
expression, makeup, 3D masks, fake beards, glasses, fake noses, and presentation attacks.
However, the DB features only five subjects, with nine to thirty disguise add-ons per subject.
The emphasis of the BRSU Spoof DB is towards the multispectral domain. The Spectral
Disguise Face Database [26] is a collection of 54 male subjects with normal and disguised
face images. The DB features images captured in the visible and near-infrared spectrums
ranging from 530 nm to 1000 nm. This DB is further divided into two categories; one is the
bona fide set with natural images without disguise, and the second set has two disguise
variations. However, the disguise set is limited, as it only features fake normal-length-beard
and fake-long-beard variations. A total of 22 subjects in the bona fide set have natural
beards, and the rest have natural mustaches. This DB lacks variation in disguises in order
to properly train an inclusive disguise detection model. The CASIA SURF Database [18]
is a large-scale multimodal facial presentation-attack database. It features 1000 Chinese
subjects in three modalities: RGB, Depth, and Infrared. There are six attack categories in the
database; however, the attacks used in the database are mainly the subjects holding a face
photo, printed on a paper with six different configurations. As such attacks are irrelevant in
public-domain facilities, such as in airport security, this data cannot be used for the training
of a public FR application. The Sejong Face Database (SFD) [13] is a multimodal disguised
face database, featuring 100 subjects, with 13 variations of facial disguises. The database
contains caps, scarfs, wigs, and fake beards, etc., as common face add-ons. It consists of two
subsets, namely, subset-A and subset-B. Subset-A contains the face images of 30 subjects,
with 16 males and 14 females. Subset-B contains images of 70 subjects, with 5–10 images
for each disguise. Sample images from the discussed databases are shown in Figure 1.
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A summary of disguised face databases, compared with the proposed Synthetic
Disguised Face Database, is presented in Table 2.

Table 2. A summary of the currently available disguised face databases and the proposed Synthetic
Disguised Face Database (Syn-DFD).

Database Total No. of
Subjects

Total No. of
Images

(Visible)

No. of Disguise
Images/Subjects

(Visible)

Disguise
Labels

Gender
Male:Female

No. of
Add-Ons

Combination
Add-Ons

I2BVSD [15] 75 681 5–9 8 60:15 5 4

BRSU [24] 5 35 4–12 4 4:1 4–12 4

SDFD [26] 54 285 10 4 54:0 3 4

SFD-A [13] 30 390 13 4 16:14 13 4

SFD-B [13] 70 5250 75 4 44:26 13 4

Proposed
Database

(Syn-DFD)
70 12,600 180 4 44:26 13 4

2.1.2. Synthetic Face Databases

Of the previous works that have proposed methods for the construction of synthetic
face databases, few methods propose 3D morphable models to replicate the frontal facial
surface to generate facial images. Most prominent is the MIT-CBCL Face Recognition
Database [27], which consists of frontal-, half-profile-, and profile-view synthetic images
rendered from the 3D head models of 10 subjects. The head models are generated by
fitting a morphable model to the high-resolution training images. The database features
a total of 324 images per subject. Another database constructed from a 3D morphable
model is the Basel Face Model (BFM) [28]. The BFM is a 3D morphable face model that is
constructed from 100 male and 100 female subject images. It consists of a 3D shape model,
covering the face surface from ear to ear, and a texture model. The database can also be
considered a metadatabase, which allows for the creation of accurately labeled synthetic
training and testing images. Apart from 3D morphable models, other synthetic databases
are also available. The VMU (Virtual Makeup) Dataset [29] contains the face images of
51 Caucasian female subjects. The images are gathered from the FRGC (Face Recognition
Grand Challenge) dataset [30], and makeup is applied synthetically. There are three types
of makeup variations in the dataset: (1) The application of lipstick; (2) The application
of eye makeup; (3) The application of full makeup. The dataset contains four images per
subject, i.e., one before makeup, and one image for each makeup type. Another synthetic
database is the Specs on Faces (SoF) Dataset [31], which is a collection of 42,592 images
for 112 subjects (66 males and 46 females) who wear glasses, under different illumination
conditions. In addition to glasses, the nose and mouth are occluded using a white block. A
sample of these databases is shown in Figure 2.

As can be seen from Figure 2, the disguise variations contained in these databases are
limited, which makes them insufficient for the realistic challenges of FR spoofing. Moreover,
current methods utilize conventional computer vision techniques, which are difficult to
generalize, in order to generate a range of face disguise variations, whereas the focus of
this study is to present a method for disguised facial synthesis that can be generalized to a
wide variety of applications.



Mathematics 2022, 10, 4 6 of 28

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 28 
 

 

of makeup variations in the dataset: (1) The application of lipstick; (2) The application of 
eye makeup; (3) The application of full makeup. The dataset contains four images per 
subject, i.e., one before makeup, and one image for each makeup type. Another synthetic 
database is the Specs on Faces (SoF) Dataset [31], which is a collection of 42,592 images for 
112 subjects (66 males and 46 females) who wear glasses, under different illumination 
conditions. In addition to glasses, the nose and mouth are occluded using a white block. 
A sample of these databases is shown in Figure 2. 

As can be seen from Figure 2, the disguise variations contained in these databases are 
limited, which makes them insufficient for the realistic challenges of FR spoofing. Moreo-
ver, current methods utilize conventional computer vision techniques, which are difficult 
to generalize, in order to generate a range of face disguise variations, whereas the focus 
of this study is to present a method for disguised facial synthesis that can be generalized 
to a wide variety of applications. 

 
Figure 2. Sample images from various synthetic face databases: (a) Specs on Faces; (b) the Virtual 
Makeup Database; (c) the MIT CBCL Face Recognition Database; and (d) the Basel Face Model. 

2.2. Image Synthesis Based on Generative Adversarial Networks 
Earlier image-to-image translation methods are limited by the paired image require-

ment, i.e., the 𝑋 and 𝑌 images need to be paired such that the positioning and orienta-
tion of the objects in both images should match, pixel-to-pixel. The most prominent 
method among paired image-to-image translation is pix2pix [32]. This method deals with 
synthesizing photos from label maps, reconstructing objects from edge maps, and color-
izing images. This proposed work is motivated by the idea of generalizing tasks at a 
higher level. For instance, if a network is dictated to minimize a specific loss, the weights 
are trained such that the network learns to only minimize that specific loss function. 

The critical problem is that the hand-engineered loss functions are not comprehen-
sive; they are the mathematical approximations of what could be the best way to formu-
late (describe) a problem. Hence, problems, such as blurry output images, are common-
place in image-to-image translation methods, which use Euclidean distance as a loss. The 

Figure 2. Sample images from various synthetic face databases: (a) Specs on Faces; (b) the Virtual
Makeup Database; (c) the MIT CBCL Face Recognition Database; and (d) the Basel Face Model.

2.2. Image Synthesis Based on Generative Adversarial Networks

Earlier image-to-image translation methods are limited by the paired image require-
ment, i.e., the X and Y images need to be paired such that the positioning and orientation of
the objects in both images should match, pixel-to-pixel. The most prominent method among
paired image-to-image translation is pix2pix [32]. This method deals with synthesizing
photos from label maps, reconstructing objects from edge maps, and colorizing images.
This proposed work is motivated by the idea of generalizing tasks at a higher level. For
instance, if a network is dictated to minimize a specific loss, the weights are trained such
that the network learns to only minimize that specific loss function.

The critical problem is that the hand-engineered loss functions are not comprehensive;
they are the mathematical approximations of what could be the best way to formulate
(describe) a problem. Hence, problems, such as blurry output images, are commonplace in
image-to-image translation methods, which use Euclidean distance as a loss. The authors
of pix2pix suggest that, instead of designing task-specific losses for various image-to-image
translation applications, the loss function should be left to be learned by the network
itself. This is the most intuitive way of solving problems using neural networks, moving
forward from hand-engineered features to feature learning. The next thing after feature
learning is to let the network formulate its loss, or design networks, automatically [33].
The main idea behind GANs is their ability to learn the loss function. Before GANs, the
CNNs were only good at minimizing the problem formulated in the shape of the employed
loss function. However, the discriminator network in a GAN is responsible for predicting
whether the image is real or fake. The network finds that images that are blurred, or
otherwise inappropriate, cannot be classified as real.

Several methods have been explored in the domain of image style transfer. The key
improvements in the domain of image-to-image translation arrived after the advent of
GANs. The most prominent of such works are pix2pix [32] and CycleGAN [23]. Pix2pix is
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limited by the condition that paired images are required. One-to-one paired images are
challenging to obtain in many domains. Moreover, in some domains, they do not exist.
For instance, the horse-zebra is an example of object transfiguration, which deals with
the transformation of one object to a similar, but different, object. In such a scenario, the
output is not even well-defined, so the availability of the paired input–output images is
out of the question. The case is similar with the disguised faces, in the sense that it is
not a texture or style transfer but, rather, a variation of object transfiguration. In object
transfiguration, the whole object’s texture is replaced by the target object’s texture. However,
while generating disguised facial images from normal faces, a specific (disguised) region
needs to be transfigured while preserving the normal face regions (to preserve identity).
Recently, there have been studies with regard to spoofing neural networks by introducing
noise to the test images.

It is interesting to note that the noise artifacts invisible to the human eye can cause
neural networks to misclassify with high confidence [34]. Such artifacts are also generated
by GANs, which can play an adversarial role in the classification model. All these factors
make synthetic disguised face generation a complex and challenging problem. One solution
is to extract the facial regions manually, or by employing face-landmark-based methods
to point the transfiguration algorithm to specific regions. However, such methodologies
cannot be generalized for all disguises, and worse, most of the disguises obscure the key
points deemed essential for landmark recognition.

3. Proposed Methodology

We propose to solve the problem of the lack of disguised face databases by employing
image-to-image translation. The image-to-image translation is a domain of computer vision
where the goal is to find the mapping between an input and output image. Various large-
scale face databases are publicly available for the training of facial recognition systems. If a
disguised face DB of the same scale is to be constructed, it will require significant resources
and time. However, by virtue of the state-of-the-art image-to-image style transfer methods,
the generation of synthetic disguised faces is possible by finding a mapping, G : X → Y ,
between existing disguised and nondisguised facial images.

In this study, the use of cycle-consistency loss is proposed, which allows us to learn
the mapping function from one domain to another, rather than from one sample image to
another. This transferability of the cycle-consistency loss eliminates the necessity of paired
input–output images for training. The goal is to transfer only the disguise features from the
X domain to the Y domain, while preserving the identity features of the X domain, given
samples x and y with the data distributions, x ∼ pdata(x) and y ∼ pdata(y), respectively.
The pdata(x) can be defined as a set containing data distributions of the disguise features,
pdisguise(x), and the identity features, pid(x), as shown in Equation (1). The problem
can be formulated to find a mapping, G, that preserves the pid(x) while transferring
pdisguise(y) from Domain X to Y. Therefore, the data distribution of a face image, denoted
by x ∼ pdata(x), can be formulated as follows:

pdata(x) = [pid(x), pdisguise(x)] (1)

pdata(y) = [pid(y), pdisguise(y)] (2)

Find G : X → Y (3)

such that pdata(G(x)) = [pid(x), pdisguise(y)] (4)

where pdata(·), pid(·), and pdisguise(·) are the feature data distributions for the image,
subject identity, and disguise add-on, respectively. X is the input domain and Y is the
output domain, and G is the learned mapping function. Simply, the data distribution of an
output sample, G(x), generated by applying a mapping, G, on sample x, shall be bounded
by the data distribution of the disguise features of Domain Y and the data distribution of
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the identity features of Domain X. The mapping can be defined by Equation (3), where it
fulfills the criteria defined in Equation (4).

Finally, an automatic filtering method is proposed, which allows us to filter out the
poor-quality samples from the pool of synthetically generated images. An overall pipeline
of the proposed work is shown in Figure 3.
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Figure 3. An overview of the proposed methodology. The right side of the figure depicts the
disguised facial synthesis module, and the left portion presents the schematic of the proposed
automated filtering algorithm.

3.1. Training the Disguised Face Database

In this study, the SFD [13] is used to demonstrate that the CycleGAN can be effectively
used for generating disguised facial images from nondisguised facial images in an unpaired
input–output setting. The SFD was chosen in light of an analysis of various publicly
available disguised face databases. It can be observed, in Table 2, that the diversification
provided by the SFD is comparatively significant. Moreover, this allows for performing
experiments with various add-ons, a feature missing in other databases. Subset-B from the
SFD was used in this study. Sample images from the SFD are shown in Figure 4.
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Figure 4. Sample real disguised face images from the Sejong Face Database that are used as seed
images for training the synthetic disguised face generation model: (a) normal face; (b) scarf; (c) cap;
(d) fake beard; (e) glasses and mask; (f) cap and scarf; (g) cap and fake beard; (h) real face with a
beard; (i) mask; (j) glasses; (k) fake mustache; (l) glasses and scarf; and (m) glasses and fake beard.

In the SFD, the data are available such that paired input–output training samples are
available and can be fed to the network. However, this will lead the model to fit on the
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identity of the subjects, whereas our goal is to train a generalized model that can learn a
disguise add-on while distilling the identity information. Therefore, the data are divided
on the basis of the disguised add-ons, regardless of the subjects. All 13 add-ons from the
SFD were used to generate the disguised facial images.

3.2. Disguised Face Synthesis

Among previous style transfer methods, CycleGAN seems promising because of the
transitive nature of cycle-consistency loss. Instead of complicating the problem by defining
several loss terms related to faces and nondisguised faces, a simple loss is employed, which
verifies the generated images by generating nondisguised facial images from the generated
disguised facial images. The complete loss formulation is described in this section.

The goal of the CycleGAN is to learn two mappings, G : X → Y and F : Y → X ,
between two domains, X and Y, given the training samples, {xi}N

i=1, where xi ∈ X and
{yi}M

j=1 where yi ∈ Y. Additionally, two adversarial discriminators, namely, DX and DY,
are also part of the CycleGAN. The discriminator, DX, is responsible for distinguishing
the real samples, {x}, from the generated samples, {F(y)}, and, similarly, DY aims to
differentiate between the real samples, {y}, and the generated samples, {G(x)}. Hence,
the adversarial loss is computed as shown in Equation (5), such that the data distribution
of the generated samples matches the data distribution of the real samples:

LGAN(G, DY, X, Y) = Ey[log(DY(y))] + Ex[log(1− DY(G(x)))] (5)

where LGAN is the computed loss; G is the mapping function applied by the generator for
the X → Y translation; D· is the classification function applied by the discriminator; X is
the input domain; and Y is the output domain. Ey and Ex are the expected values over all
the instances of X and Y. Since there are two GANs integrated to generate samples in both
directions, i.e., X → Y and Y → X , the adversarial loss is also calculated for the generator,
F (for Y → X translation), as shown in Equation (6):

LGAN(F, DX , X, Y) = Ex[log(DX(x))] + Ey[log(1− DX(F(y)))] (6)

Both generators try to minimize their respective objectives against their respective
adversaries, i.e., G tries to minimize the objective, LGAN(G, DY, X, Y), against DY, and
F tries to minimize the objective, LGAN(F, DX , X, Y), against DX . Mathematically,

G∗ = argminGmaxDY (LGAN(G, DY, X, Y)) (7)

F∗ = argminFmaxDX (LGAN(F, DX , X, Y)) (8)

Theoretically, it is possible to learn the mappings, G and F, such that the generated
samples have a distribution that is an identical distribution to that of the original samples.
However, with sufficient network capacity, the generated samples are probably a random
permutation of images in the target domain, due to the infinitesimally large solution space.
Therefore, cycle-consistency loss is used to reduce the solution space such that the generated
samples should be cycle-consistent. In other words, the generator, F, should be able to
produce the original samples used by the generator, G, and vice versa. In other words:

x → G(x)→ F(G(x)) ≈ x (9)

y→ F(y)→ G(F(y)) ≈ y (10)

The authors refer to Equation (7) as “forward” cycle-consistency loss, and to Equation (8)
as “backward” cycle-consistency loss. This ensures that the generated sample is not a
random permutation. The cycle-consistency loss is defined as follows:

LCycle(G, F) = Ex[||F(G(x))− x||1] + Ey[||G(F(y))− y||1] (11)
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The complete loss function can be formulated by combining all four losses, as follows:

L(G, F, DX , DY) = LGAN(G, DY, X, Y) + LGAN(F, DX , X, Y) + µLCycle(G, F) (12)

where µ controls the significance of the cycle-consistency loss over the adversarial losses. Es-
sentially, it is a minimax objective optimization problem, where generators aim to minimize
the distance between the probability distributions, whereas discriminators aim to maximize
it. Formally, the minimax objective optimization problem can be defined as follows:

G∗, F∗ = argminG,FmaxDX ,DY (L(G, F, DX , DY)) (13)

The generators, G and F, try to minimize the objective function, and the discriminators,
DX and DY, try to maximize it.

The proposed method is different from the traditional GANs in that traditional GANs
take the input noise, z, to learn the distribution of pdata(x) by iteratively updating the
distribution of the generator, pG. In the proposed methodology, the input, x, belongs to
Domain X, where the goal of Generator G is to learn the data distribution, pdata(y), and
the goal for Generator F is to learn pdata(x), given input y. It is important to note here
that the mapping is not to find a relation between samples; rather, its goal is to find a
relation between the two domains. The overall architecture of the synthetic disguised face
generation method is shown in Figure 5. The property of cycle-consistency loss allows
for performing image-to-image translation without needing paired input–output training
samples to generate images, as shown in Figure 6.

Convergence Analysis

Here, we provide proof of convergence for one direction, G : X → Y , which simplifies
the problem to a single generator, G, and a discriminator, D, to demonstrate the optimality
of the proposed method. To learn Generator G’s distribution, pG, over data Y, we define a
prior distribution on the input data, pdata(x), then represent a mapping to the data space
as G(X; θG), where G is the learnable mapping function, with parameters, θG. Secondly,
another function, D(Y; θD), is defined, which outputs a 0 or 1 depending upon its estimation
of whether the input, y, came from pG or pdata(y).

The global optimality can be defined as:

pG = pdata(y) (14)

where pG is the distribution of Generator G, and pdata(y) is the data distribution of
Domain Y.
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Figure 6. Sample generation results of synthetic disguised face add-ons. All images are generated
from a real nondisguised facial image to: (a) beard; (b) cap; (c) fake beard; (d) fake mustache;
(e) glasses; (f) mask; (g) scarf; and some combination add-ons, such as: (h) cap and fake beard;
(i) glasses and fake beard; (j) glasses and mask; and (k) glasses and scarf.
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Proposition 1. For a given generator, G, the optimal discriminator, D∗Y, can be defined as follows:

D∗Y(y) =
pdata(y)

pdata(y) +pG(y)
(15)

Proof. The training criterion for the discriminator, DX , given Generator G, is to maximize
the quantity, L(G, DY, X, Y):

L(G, DY, X, Y) =
∫

y pdata(y) log(DY(y))dy +
∫

x pdata(x) log(1− DY(G(x))dx

=
∫

y pdata(y) log(DY(y)) +pF(x) log(1− DY(y))dy
(16)

Here, we can use the proof from [19] for G : X → Y . For any (a, b) ∈ R2{0, 0}, the function
y→ a log y + b log(1− y) achieves its maximum in [0, 1] at a

a+b . The discriminator, DY,
does not need to be defined outside of Supp(pdata(y) ∪ Supp(pG), and the same holds for
the discriminator, DX , i.e., Supp(pdata(x) ∪ Supp(pF), thus concluding the proof. �

The training objective for DY can be interpreted as maximizing the log-likelihood for
estimating the conditional probability, P(S = s|y), where S indicates whether y comes from
pdata(y), i.e., y = 1, or from pG, i.e., (y = 0). The minimax problem in Equation (6) can be
reformulated as:

C(G) = maxDYL(G, DY, X, Y)

= Ey∼pdata(y)
[
log
(

D∗Y(y)
)]

+ Ex∼pdata(x)
[
log
(
1− D∗Y(G(x))

)]
= Ey∼pdata(y)

[
log
(

D∗Y(y)
)]

+ Ey∼pG

[
log
(
1− D∗Y(y))

)]
= Ey∼pdata(y)

[
log pdata(y)

pdata(y)+pG

]
+Ey∼pG

[
log pG(y)

pdata(y)+pG

] (17)

Theorem 1. The virtual training criterion defined as C(G) in Equation (17) achieves the value of
− log 4at global minimum.

Proof. For the global optimality proven in Proposition 1, i.e., pG = pdata(y), the optimal
discriminator is D∗Y(y) =

1
2 (Equation (15)). Solving Equation (17) for D∗Y(y) =

1
2 , we get

C(G) = log 1
2 + log 1

2 = − log 4. It can be seen that this is the best possible value of C(G),
reached only for pG = pdata(y). Observe that:

Ey∼pdata(y)[− log 2] + Ey∼pG [− log 2] = − log 4

Moreover, by subtracting this expression from C(G) = L(G, DY, X, Y), we obtain:

C(G) = − log 4 + KL
(
pdata(y) ‖

pdata(y) +pG
2

)
+ KL

(
pG ‖

pdata(y) +pG
2

)
(18)

where KL is the Kullback–Leibler divergence. In the previous expression, the Jensen–
Shannon divergence can be observed between the generator’s distribution and the data-
generating process:

C(G) = − log 4 + 2·JSD(pdata(y) ‖ pG) (19)

Since the Jensen–Shannon divergence between two distributions is zero only when they
are equal and always non-negative, it is shown that C∗ = − log 4 is the global minimum of
C(G), and that the only solution is pG = pdata(y). That is, the generator model perfectly
replicates the generating process. �
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Proposition 2. If Generator G and Discriminator D have enough capacity, and the discriminator
is allowed to reach its optimum at every training iteration given G, and pG is updated according to
the criterion:

Ex[log(DX(x))] + Ey[log(1− DX(F(y)))]

then pG converges to pdata(y).

Proof. Consider the function, L(G, DY, X, Y) = Q(pG, DY, X, Y), as a function of pG,
as performed in the aforementioned criterion. It is to be noted that Q(pG, DY, X, Y) is
convex in pG. The derivative of the function is included in the subderivatives of a supre-
mum of convex functions at the point where the maximum is attained [19]. In other
words, if f (x) = supαεA fα(x) and fα(x) is convex in x for every α, then ∂ fβ (x)ε ∂ f if
β = argsupαεA fα(x) . This is equivalent to computing a gradient descent update for pG
at the optimal DY, given the corresponding generator, G. supDY U(pG, DY) is convex in
pG, with a unique global optimum, as given in Theorem 1. Hence, with sufficiently small
gradient updates of pG, it can converge to pdata(y). Hence, the proof is concluded. �

The convergence analysis is provided for G : X → Y . Similarly, the proof of conver-
gence can be derived for the mapping, F : Y → X . Furthermore, the cycle-consistency
loss is calculated for the mappings, G : F(Y)→ Y and F : G(X)→ X , by alternating the
generator inputs between real samples, [X, Y], and generations, [F(Y), G(X)]. Equation (16)
can be written for the complete loss function mentioned in Equation (12) as follows:

L(G, F, DX, DY) =
∫

y pdata(y) log(DY(y))dy +
∫

x pdata(x) log(1− DY(G(x))dx

+
∫

x pdata(x) log(DX(x))dx +
∫

y pdata(y) log(1− DX(F(y))dy

+
∫

y pdata(y) log(DY(y))dy +
∫

F(y)pdata(F(y)) log(1− DY(G(F(y))))d(F(y))

+
∫

x pdata(x) log(DX(x))dx +
∫

G(x)pdata(G(x) log(1− DX(F(G(x))))d(G(y))

=
∫

y pdata(y) log(DY(y)) +pF(y) log(1− (DY(y))dy

+
∫

x pdata(x) log(DX(x)) +pG(x) log(1− (DX(x))dx

+
∫

F(y)pdata(F(y)) log(DX(F(y))) +pG(G(x)) log(1− (DX(F(y)))d(F(y))

+
∫

G(x)pdata(G(x)) log(DY(G(x))) +pF(F(y)) log(1− (DY(G(x)))d(G(x))

(20)

Propositions 1 and 2 also hold for Equation (20), as the additional terms for cycle-
consistency loss simply use the generated output for the same mapping. Given the in-
finite capacity for all the generators and discriminators, it can theoretically converge to
the optimum.

3.3. Automated Filtering Algorithm

GANs have shown the capability to produce realistic photos; however, in certain
circumstances, they fail to generate lifelike images. In this study, it is observed that when
the features that are desired to be transferred over a major proportion of the image, the
algorithm renders inferior images and, in some cases, fails to preserve the identity of the
subject. For instance, notice the “scarf and glasses” add-on; the complete face is hidden
under disguise with a small portion of the nose visible, which obfuscates the model, thus
resulting in subpar image-to-image translations.

Therefore, we present an automated filtration scheme that allows us to remove low-
quality images from the pool of generated images to avoid any degradation during facial
recognition model training. An overall pipeline of the algorithm is shown in Figure 7.

The approach is straightforward to implement, as it utilizes common modules used for
FR. First, a SqueezeNet-based facial recognition model is trained on a combination of real
nondisguised facial images (real normal), and real disguised facial images (real add-ons).
This model is then used to test all the synthetically generated disguise images (Gen. add-
ons). The trained model has not seen the generated images beforehand; however, the data
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distribution is similar between the generated disguise images and the real disguise images
because of the cycle-consistency loss. Therefore, it is hypothesized that the images that
share the same distribution as the real images will be correctly recognized by the trained
FR model. Hence, this FR model can be used to differentiate between good generations
and bad generations of the synthesized facial images. In the first iteration, the generated
images that are correctly predicted are saved and included in the training data for the
second iteration. For the second iteration, the model is trained on a combination of real
nondisguised facial images (real normal), real disguised facial images (real add-ons), and
synthetic disguise face images (generated add-ons). This trained model is tested on the
images that were falsely recognized in the first iteration. The images that are correctly
recognized in the current iteration are saved, and the rest of the images are discarded.
This way, the generated images can be filtered efficiently without human interference.
The process is only repeated once because CNN models are vulnerable to overfitting and,
if further iterations are performed, the model may start to learn on subpar generations,
causing overfitting and thereby degrading the overall performance of the system.
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Figure 7. A schematic of the automatic filtering algorithm, which utilizes the concept of incremental
learning. First, an FR model is trained on a combination of nondisguised real facial images and
disguised real facial images. This model is then tested on the synthetically generated data, where
the correctly recognized images are added to the training set. Then, the model is trained on the
new training set. This newly trained model is again tested on the remaining synthetic images. The
images correctly recognized in both iterations are retained, while the ones that are falsely recognized
are discarded.
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4. Experimental Work and Results

The details of the proposed method and the database are presented in this sec-
tion. Additionally, the effects of manually filtering the generated images, and the merits
of the automated filtering scheme and the synthetic data, are shown through our FR
experimental results.

4.1. Disguised Face Synthesis

A separate image generator is trained for each disguise add-on. To ensure that the
model learns only the disguise features, all the images from a single add-on belonging to
all of the subjects are used as one domain, and all of the nondisguised images from all
of the subjects are used as the other domain. For instance, if it is desired to generate a
cap-disguise generator, all the images with cap disguises are used as class A, and all the
images without cap disguises are used as class B. Eventually, two generators are trained as
a result, i.e., a generator responsible for the A→ B transformation, and a generator for the
B→ A transformation. However, the results of removing the disguise add-on, i.e., B→ A ,
are not useful. It is improbable to generate the identity of a person without first training on
the same subject because of overfitting and confusion between identities.

To generate images for the presented Synthetic Disguised Face Database, each nondis-
guised image from the Sejong Face Database was used as an input for the generator, A→ B .
This resulted in disguised facial images with the specific add-on that the generator was
trained on. Each real image was used to generate 15 disguise images. Sample generator
images are shown in Figure 8. It is to be noted that some disguise add-ons, such as fake
beards and fake mustaches, are only translated for male subjects. Similarly, makeup and
wig add-ons are only used for female subjects.
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Figure 8. The proposed methodology for disguised facial generation at the inference phase. As shown
in the figure, a separate generator is trained for each add-on. Each generator can generate disguised
facial images while preserving subject identity.

The experiments for the facial synthesis were performed using PyTorch, an open-
source deep learning framework, in a Linux environment. The training was performed
using one Nvidia 3080 GPU. A simple resize and crop preprocessing was used, where the
training data was first resized to 286× 286, and was then cropped to 256× 256 pixels. The
images were categorized on the basis of the disguise add-on. One class contained images
from all subjects with the specific disguise add-on. The other class contained normal facial
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images of all the subjects. The CycleGAN network was trained using two adversarial
losses and a cycle-consistency loss, as described in Section 3 The number of filters in the
last convolutional layer of both generators was set to 64. For both discriminators, the best
results were achieved by setting the number of filters of the first convolutional layer to 64.
Because of memory constraints, a single image batch was used for training for 200 epochs
because four networks are being trained at a time. The Adam optimizer was used for
training all the networks, with a learning rate of 2× 10−3. For the first 100 epochs, the
learning rate was kept constant, and was then linearly decayed for every 50 epochs. As
each epoch took an average of 94 s to complete, the model was trained for one disguise
add-on in approximately five and half hours. The Fréchet inception distance (FID) [35]
was used for evaluating the quality of the generated images, which was an improvement
of the inception score (IS) [36]. The FID calculates the Fréchet distance, with the mean
and covariance between the real and the fake image distributions. To further analyze
the convergence of the proposed method, the Kernel inception distance (KID) [37] was
calculated between the real and synthetically generated images. The KID is the squared
maximum mean discrepancy between inception representations and is an improved metric
for measuring the GAN convergence and quality.

It is observed that the proposed image generation method learns the within-add-on
variations that exist in the base database and applies them while generating new samples.
Examples can be seen in Figure 9a, where the synthesized images contain different types of
glasses, whereas the original subject is captured with a single type of glasses. Therefore, it is
shown that the proposed method not only learns subject-specific variations, but also learns
to translate the disguise variations from other subjects as well. In Figure 9b, the images are
shown from the category, “fake beard”; here, it is shown that the model generates different
types of fake beards for different seed images. Figure 9c is taken from the category of
“wig and glasses”. Here, it is seen that the seed database images of that subject contain a
single type of “wig and glasses”, whereas we are able to generate images of the subject
with two different types of wigs. Finally, in Figure 9d, the subject is seen to be wearing a
golden-colored “fake beard” in the seed database, whereas the proposed method adds two
more variations of the “fake beard”, while preserving the subject’s identity.
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Figure 9. Sample result images from the Synthetic Disguised Face Database. An example of generated
samples with variations in (a) glasses, (b) fake beard, (c) wig and glasses, and (d) fake beard.
Interestingly, the generator learns the variations from other subjects and translates them to different
subjects while preserving identity. This means that the proposed method generates variations within
a disguise add-on class.
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The FID and KID metrics were computed between the real and synthetically generated
images, as shown in Table 3. For the sake of comparison, the same metrics were computed
between two sets of original data, which served the purpose of a baseline quality measure.
It is to be noted that the distribution within the seed database is high, i.e., an FID of 30.967.
Therefore, the FID value of 38.177, which was calculated between the generated synthetic
database and the seed database, is acceptable. This is also evident from the qualitative
results presented in Section 4.3.

Table 3. Quantitative results of the presented study on normal-to-disguised-face generation. The KID
means and standard deviations are provided.

Data FID KID
(Mean ± Standard Deviation)

Real data splits (baseline) 30.967 0.01128 ± 0.00059

Synthetic Images 38.177 0.01684 ± 0.00037

The presented database contains a total of 12,600 images. The seed database contains
a total of 75 disguise images per subject, while the proposed database contains 180 disguise
images per subject, which is 2.4 times higher than the seed database. Complete details are
provided in Table 4. The sample-generated results are shown in Section 4.3. For the sake of
comparison, the same subject images are used to present the sample images from the seed
database and the proposed Synthetic Disguised Face Database.

Table 4. The types of disguised add-ons available in the SFD [13] and Syn-DFD, along with the total
number of images, and information about the gender of subjects. It is to be noted that some add-ons
are gender-specific.

Add-On Add-On Name

Number of Images Gender

Sejong Face
Database

Proposed
Database Male Female

No Add-on
Natural Face 15 - 4 4

Real Beard 10 15 4 8

Accessory
Add-on

Cap 5 15 4 4

Scarf 5 15 4 4

Glasses 5 15 4 4

Mask 5 15 4 4

Makeup 5 15 8 4

Fake Add-on
Wig 10 15 8 4

Fake Beard 5 15 4 8

Fake Mustache 5 15 4 8

Combination
Add-on

Wig + Glasses 5 15 8 4

Wig + Scarf 5 15 8 4

Cap + Scarf 5 15 4 4

Glasses + Scarf 5 15 4 4

Glasses + Mask 5 15 4 4

Fake Beard + Cap 5 15 4 8

Fake Beard + Glasses 5 15 4 8

However, GANs are prone to outputting poor-quality results, as shown in Figure 10.
Such poor generations can lead to the degradation of the FR system if they are not removed
from the FR training data before the training phase. Such problems arise when there is
insufficient information for the generator, as seen in Figure 10. When the subject identity is
hidden to a greater extent, it is challenging for the human evaluator to correctly identify
subjects. This problem is common in combination add-ons, such as “scarf and glasses”,
“scarf and wig”, “mask and glasses”, and “fake beard and cap”.
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Figure 10. An example of the poor-quality samples generated. Such sample generation is inevitable
because transfiguration is a complex problem because of the varying subject identities and the
challenging nature of the disguise add-ons, e.g., “wig and scarf”, and “glasses and scarf”.

4.2. Manual Filtering

To filter out the bad samples from the pool of generated images, a human evaluation
was performed. An interface was designed that shows two images at once. One is the “real
normal” image, while the second is the “Gen. add-on” image. The observer is asked to
accept or reject the sample on the basis of the following criteria:

• Both images must be recognizable as the same person;
• The image quality must be lifelike;
• There should be no discrepancy between the original and generated samples, such as

in the normalcy of the facial features;
• Ensuring the face is not completely hidden by the generated disguise add-on.

The interface used for the manual filtering is shown in Figure 11, where (a) is an ex-
ample of a scenario where the generated sample accorded with the criteria set for acceptance,
and Figure 11b represents a rejected sample, which accorded with the aforementioned criteria.
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4.3. Automated Filtering Algorithm

As mentioned in Section 3.3, the proposed image-generation method is prone to
outputting subpar images because the generator finds a mapping between two domains.
Noise, blur, identity transfer, and pixilation are some of the artifacts observed in the
synthesized data. Therefore, there is a chance that the model finds a mapping (random
permutation) that is translatable between domains, but that does not match the visual
context. This can result in rendering an imperceptible face or image, where the identity is
not preserved. Such failed generations can significantly degrade the performance of the FR
system. To mitigate the effects of bad generations, two filtered subsets of the dataset are
also provided. The pseudocode of the filtration process is provided in Algorithm 1.
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Algorithm 1: Pseudocode of the proposed automated filtering algorithm.

1. Initialization:
2. Real_Normal[]
3. Real_Addons[]
4. Normal_to_Addon_Generator()
5. filtered_Gen_Addons[]
6. false_predictions[]
7. Gen_Addons = Normal_to_Addon_Generator(Real_Normal, Real_Addons)
8. FR_model = SqueezeNet.train(Real_Normal, Real_Addons)
9. predictions[] = FR_model.predict(Gen_Addons)
10. if predictions[x] == ground_truth[x]:
11. filtered_Gen_Addons.append(predictions[x])
12. else:
13. false_predictions.append(predictions[x])
14. FR_model_2 = SqueezeNet.train(Real_Normal, Real_Addons+fi ltered_Gen_Addons)
15. predictions[] = FR_model.predict(false_predictions)
16. if predictions[x] == ground_truth[x]:
17. filtered_Gen_Addons.append(predictions[x])
18. Gen_DB.save(filtered_Gen_Addons)
19. else:
20. false_predictions.append(predictions[x])
21. false_predictions = Null

Figure 12 presents some sample images from the final generated samples after the
automated filtering.

The first set was manually filtered, where each image was observed by a human and
a decision was made to retain or discard the image. The second filtered set was filtered
through the automated process, explained in Section 3.3. Table 5 presents the number of
images, before and after filtration.

Table 5. The number of synthetically generated images, before and after applying the automatic
filtering algorithm.

Method Total Number Images Images/Subjects

No Filtering 12,600 180
Manual Filtering 6780 88

Automatic filtering 4158 60
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for the female subjects.

4.4. Facial Recognition Experiments and Results

The experiments for the face classification were performed using PyTorch, an open-
source deep learning framework, in a Linux environment. The training was performed
using one Nvidia 3090Ti GPU. The training data, as described in Section 4.4.1, was first
resized to a size of 224× 224 pixels, and the labels contained the subject identity only.
SqueezeNet, a recently popular network for FR and other image classification tasks, was
used, along with the softmax layer and binary cross-entropy loss. The network was trained
using an Adam optimizer [38], with an initial learning rate of 3e−4, and the learning rate
was reduced by a factor of 0.8 when the error plateaued. The network was trained using
a mini-batch size of 64 until the loss plateaus. The training process took an average of
4 h for each setting. Data augmentation was performed to mitigate overtraining and to
increase the training size such that all configurations ended up being trained at the same
number of images. Geometric transformations for rotation, shift in both axes, brightness
shift, shear, and horizontal flip were applied to the training data as standard augmentation
techniques. Image normalization was performed using feature-wise centering and feature-
wise standard normalization, calculated on the entire training dataset.
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4.4.1. Experiment Configurations

To validate the utility of the presented synthetic database, FR experiments were
performed using five different training configurations. The configurations were categorized
on the basis of the type of data used for training, as shown in Table 6. Configuration 0
in Table 6 served as a baseline, where the network was trained on “real normal” images,
which have up to 15º variations in the pose. This model mimics the scenario where the
training data only contains images taken in a controlled real-world scenario, such as for
identification documents. Configuration 1 is the network trained on a combination of “real
normal” plus “real add-on” images. This configuration shows the baseline results for the
scenario, where the training data contains add-on facial images. Realistically, capturing
subject faces with a large variety of add-ons is unfeasible, unless the data is acquired
for specific purposes, such as collecting a specialized database. Configuration 2 utilized
“real normal” images and “Gen. add-on” facial images from the proposed database. The
model trained on this data shows the utility of the presented synthetic database and
the image-generation method. It is hypothesized that this model has a better chance of
outperforming Configuration 0, as this model was trained on synthetically generated
disguised images. Configuration 3 and Configuration 4 serve the purpose of comparison,
so that further analysis can be drawn to understand the synthetic data and how it can be
improved. In Configuration 3, the model was trained on a combination of all the available
training data, i.e., real normal, real add-on, and Gen. add-ons. This will help to realize
the importance of synthetic data in circumstances where real disguised face images are
also available. The results of this configuration helped test the hypothesis that asserts
that, even when real disguised face images are available, the proposed methodology can
improve the performance of an FR system. Configuration 4 is the model trained on the
proposed synthetic data only; it shows the effectiveness of the proposed methodology
for data generation and the images as standalone resources for training FR algorithms.
Configuration 5 uses the “real normal” facial images from the original SFD dataset and
manually filtered (MF) “Gen. Add-on” images from the proposed dataset. Configuration 6
uses the “real normal” facial images from the original SFD dataset and autofiltered (AF)
“Gen. Add-on” images from the proposed dataset.

4.4.2. Facial Recognition Results

Using the proposed dataset shown in this section, the FR results prove the efficacy of
the proposed synthetic face database. The models trained using different configurations
were tested on two test sets, i.e., “real normal” and “real add-on”. The information
regarding the test sets is shown in Table 7. It is to be noted that, for the training of
Configuration 0, the testing was performed on a limited set of images because a larger
portion of “real normal” images were used as the training data.

The results for different training configurations, tested on normal faces and disguised
faces, are presented in Table 8. Configuration 0 serves as an example of a system trained
only on nondisguised faces. When tested with similar facial images, the system performs
well, achieving an overall FR accuracy of 99.6%. However, when presented with disguised
facial images, the system’s performance drops down to a 26% recognition rate, as shown in
Table 8. This shows that an FR system is not robust against the unseen challenges of FR.
Configuration 1, a system trained on “real normal” plus “real add-on” images, shows a
smaller gap between its FR performance on the normal and add-on facial images: 69% and
88%, respectively. Configuration 1 achieves a 30% lower accuracy than Configuration 0;
this could be because the training data for Configuration 1 contains only four normal facial
images per subject, which are not sufficient for the network to learn the identity-related
features of a nondisguised face. Configuration 2 is the network trained on the “real normal”
images, available in the original SFD database, and the “Gen. add-on” images from the
proposed synthetic face database. This configuration shows the efficacy of the proposed
method for synthetic disguised face generation. Compared with Configuration 1, training
on synthetic data improves the FR accuracy of normal facial images, from 69% to 86%.
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This shows that the presented data increases the amount of training data, and also that the
synthetic images are able to retain the identity features. Similarly, Configuration 2 achieves
72% recognition accuracy for “real add-on” images, compared with the 36% accuracy of
Configuration 0. This shows that the presented synthetic data are an effective methodology
for improving the robustness of FR algorithms against the challenges of disguise.

The filtration process removes the noisy and nonclassified synthetic images from the
generations, as described in Sections 3.2 and 3.3. An improved recognition rate on the real
disguised facial images is expected with the improvement in the quality of the training
data. The hypothesis is validated by the increased recognition rate of Configuration 5,
where manually filtered training data achieves a higher recognition rate: 77.8% over
Configuration 2.

The automatically filtered data was used for training Configuration 6. Configuration 6
achieves the highest recognition rates among all the training experiments. It can be con-
cluded that, as the automation is performed using a CNN, the images that create issues,
or that have nonidentity features, are filtered out during the filtration process. As a result,
ideal training data is retained, which makes Configuration 6 surpass even the performance
of Configuration 1, where real disguised facial images are used for training.

Table 6. This table presents the configurations of the facial recognition experiments conducted to
demonstrate the efficacy of the synthetically generated disguised faces. Different data configurations
were used in experiments for the sake of comparison and were tested on the set of real add-ons.

Training
Configuration Training Data Type Total Images Images Per

Subject Subjects Disguise
Add-Ons

Configuration 0 Real normal 685 10

All All

Configuration 1 Real normal
+ Real Add-on 986 15

(4 + 11)

Configuration 2 Real normal
+ Gen. Add-on 1240 19

(4 + 15)

Configuration 3
Real normal

+ Real Add-on
+ Gen. Add-on

1276 20
(4 + 8 + 8)

Configuration 4 Gen. Add-on 1486 23

Configuration 5 Real normal
+ Gen. Add-on (Manual Filtering) 1240 19

(4 + 15)

Configuration 6
Real normal

+ Gen. Add-on (Automatic
Filtering)

1240 19
(4 + 15)

Table 7. The test data used for evaluation of facial recognition models trained with the presented
training configurations.

Test Set Data Description Number of Total Images Number of Images Per
Subject

Real Normal * Photographed images of nondisguised faces
(reduced set used for Configuration 0) 251 4

Real Normal Photographed images of nondisguised faces 564 9

Real Add-on Photographed images of disguised faces 2272 36

* Real Normal used for testing Configuration 0 has less test images.
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Table 8. This table presents the facial recognition results achieved on the real nondisguised (real
normal) and the disguised (real add-on) faces by the models trained using the training configurations
mentioned in Table 6.

Training
Configuration Training Data Type

Accuracy (%)

Real Normal Real Add-On

Configuration 0 Real normal 99.6 * 26

Configuration 1 Real normal
+ Real Add-ons 69 88

Configuration 2 Real normal
+ Gen. Add-ons 86 72

Configuration 3
Real normal

+ Real Add-ons
+ Gen. Add-ons

62 89

Configuration 4 Gen. Add-ons 74 71

Configuration 5 Real normal
+ Gen. Add-ons w/Manual Filtering - 77.8

Configuration 6 Real normal
+ Gen. Add-ons w/Automatic Filtering - 94.3

* Real Normal used for testing Configuration 0 has less test images, as shown in Table 7.

Figure 13a presents the results from three models having the same architecture, but
that were trained on different datasets. The model trained on the “real normal” set (Config-
uration 0) performs well for nondisguised images, whereas the accuracy drops significantly
when the same model is tested on “disguised” images. The model trained on a combination
of “real normal” and “real add-on” (Configuration 1) performs worse than the first model;
however, it achieves an improved accuracy as compared to the model trained on “real nor-
mal” data only. This result provides evidence that the use of disguised facial images during
the training phase in order to achieve satisfactory results is beneficial. On the other hand,
the model trained on a combination of “real normal” and synthetic data (Configuration 2),
generated by using the proposed scheme, achieved the best recognition rate for the test set
of the “disguised” images.

Figure 13b presents an ablation analysis of the proposed generation methodology. The
accuracy of the three models, having the same architecture but different training data, is
compared on “real disguised” facial images. First, accuracy is reported where the model
is trained on all the generated samples (Configuration 2), including bad generations for
the sake of comparison. The model achieved an approximately 72% rank-1 recognition
rate. The next model was trained on a set of generated samples that were manually cleaned
(Configuration 5) by following a set of rules, as described in Section 4.3. This model
achieved a 6.8% improvement in the recognition rate, as compared to the model trained
on raw generated data. Finally, the model was trained on a set of autofiltered images
(Configuration 6). This model achieved the highest accuracy, 94.3%, for the disguised
facial images.

Figure 13c presents a comparison that was performed to signify the importance of
the generated disguised images: two models having the same architecture trained on
two different data. First, the model was trained on a combination of “real normal” and
“Gen. add-on” images (Configuration 2). Second, the model was trained on only the “Gen.
add-on” images (Configuration 4). It can be observed that the models achieved comparable
accuracy. The similar inference accuracy of these models shows that the inclusion of “real
normal” facial images does not significantly impact the performance of the trained models
on disguised faces.
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model achieved a 6.8% improvement in the recognition rate, as compared to the model 
trained on raw generated data. Finally, the model was trained on a set of autofiltered im-
ages (Configuration 6). This model achieved the highest accuracy, 94.3%, for the disguised 
facial images. 

Figure 13c presents a comparison that was performed to signify the importance of 
the generated disguised images: two models having the same architecture trained on two 
different data. First, the model was trained on a combination of “real normal” and “Gen. 
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Figure 13. (a) Facial recognition results of three models trained on different training data on “real
normal” and “real disguised” facial images. (b) A comparative analysis was performed to realize
the importance of generating synthetic images and the proposed filtration scheme when tested on
disguised facial images. (c) The efficacy of generated images compared with nondisguised images,
and how they can be utilized for improved facial recognition, results in specialized scenarios.

5. Discussion

The qualitative analysis of the proposed framework for disguised facial synthesis
shows the usefulness of the method to the synthesis of disguised faces where the original
data is not available. Synthetic images can also be useful for human facial recognition. Our
quantitative FR experiments show that the usage of the proposed synthetic data improves
the robustness of FR models for disguised face scenarios, proving the merits of the proposed
method and database.

The proposed facial synthesis model preserves identity in the majority of the scenar-
ios; however, when the majority of facial features are hidden by disguise, it becomes a
challenging problem. Well-suited examples for this scenario are combination add-ons,
such as “scarf and cap”, which completely hide the subject’s face. In such a scenario, the
model fails to learn the identity features and generates samples with the identities of source
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domain subjects. However, integration with the proposed automated filtration scheme can
eliminate such cases.

The filtering of the synthetic data was performed to remove the low-quality samples.
Consequently, the FR experiments show that the filtered training data improves the quality
of the model and that improved recognition rates are achieved using the manual- and
automatic-filtered synthesized data. Manual filtering is subjective and is prone to human
error compared to automatic filtering. Two major factors yield a lower performance when
manual filtering is applied:

1. Human error

During the manual filtration method, described in Section 4.2., a human evaluator
accepts or rejects on the basis of defined criteria. However, human bias can result in in-
consistencies in the filtered data. For instance, the operator is prone to reject a bad, but
acceptable generation after viewing 10 to 15 good samples. Similarly, in the opposite sce-
nario, the operator is prone to accept a bad generation after having observed worse samples
immediately before. After viewing multiple bad samples, even a slight improvement in the
generated image has an increased chance of being accepted because of the bias set by the
previous samples. However, the automatic filtration system is not affected by such biases.

2. The way a model perceives an image is very different than humans

The automatic filtering algorithm is based on the FR algorithm, which is trained on
“real normal” and “disguised” facial images. Therefore, the images filtered by the automatic
algorithm are more likely to be appropriate for the further training of FR models in the next
step, as compared to the ones filtered by the human evaluator. Essentially, the perceptions
of humans and machines rely on different components of an image.

Furthermore, the computational complexity of the proposed methods is analyzed
by calculating the theoretical number of multiply-add operations in the four models that
are part of the CycleGAN method, whereas the model sizes are presented on the basis of
the number of trainable parameters in the model. A unit of Mac states one multiplication
operation and one addition operation, also knowns as the multiply-accumulation operation.
The computational complexity and the number of parameters are presented in Table 9.

However, during inference time, our method only utilized a single generator,
i.e., Generator G, and, therefore, the inference computational complexity was significantly
lower, which made it suitable for runtime data augmentation as well.

Table 9. Computational complexity and model sizes of the proposed methodology are presented in
the form of the number of multiple-add operations and the number of trainable parameters. It is to
be noted that, during the inference phase, only one generator is used; therefore, the computational
complexity during inference time is only based on Generator G.

Models Computational Complexity
(GMac)

Number of Parameters
(Million) Training Inference

Generator G 56.89 11.38 4 4

Generator F 56.89 11.38 4 8

Discriminator DX 3.15 2.76 4 8

Discriminator DY 3.15 2.76 4 8

Total (Training) 120.08 28.28 - -

Total (Inference) 56.89 11.38 - -

6. Conclusions

This work presents a GAN-based methodology for unsupervised disguised facial
synthesis. A disguised facial image database is presented using the proposed algorithm.
Additionally, an automated data filtration scheme is proposed for valid image selection.
The proposed methodology synthesizes disguised facial images using nondisguised facial
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images, while preserving the identity and the representative features in the synthesized
image. The methodology is used to present an extended synthesized face database for the
significant increase in the number of disguised facial images. The automated filtration
scheme removes the poor GAN generations, improving the synthesized data quality for the
training of FR algorithms. The merits of the proposed algorithm and database are shown
through the results of our FR experiments.

The FR experiments on the synthesized data show that the proposed method is
effective at transferring facial disguises while preserving the identity information of the
subject. Additionally, comparative results with networks trained on nondisguised facial
images prove the utility of the synthesized disguised data for making FR algorithms more
robust to spoofing and disguise attacks. The experiments on the autofiltered data improve
the FR rates on “real disguised” images, further reinforcing the merits of the proposed
work. The proposed method can be employed to synthesize the disguise variations of facial
images where only nondisguised facial images are available. Additionally, the synthesized
disguised face database provides a larger number of training images, which can be used
to train more robust FR algorithms for practical applications. In the future, we plan to
extend the proposed method’s additional conditional attributes to generate disguised
add-ons with desired variations, such as color, size, texture, etc. The proposed method
can also be optimized for other imaging modalities to synthesize, for example, infrared
thermal images.
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