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Abstract: This paper analyses an SIRS epidemic model with the vaccination of susceptible individuals
and treatment of infectious ones. Both actions are governed by a designed control system whose
inputs are the subpopulations of the epidemic model. In addition, the vaccination of a proportion of
newborns is considered. The control reproduction number Rc of the controlled epidemic model is
calculated, and its influence in the existence and stability of equilibrium points is studied. If such
a number is smaller than a threshold value Rc, then the model has a unique equilibrium point: the
so-called disease-free equilibrium point at which there are not infectious individuals. Furthermore,
such an equilibrium point is locally and globally asymptotically stable. On the contrary, if Rc > Rc,
then the model has two equilibrium points: the referred disease-free one, which is unstable, and
an endemic one at which there are infectious individuals. The proposed control strategy provides
several free-design parameters that influence both values Rc and Rc. Then, such parameters can be
appropriately adjusted for guaranteeing the non-existence of the endemic equilibrium point and, in
this way, eradicating the persistence of the infectious disease.

Keywords: epidemic models; vaccination and treatment actions; feedback control; equilibrium
points; stability

1. Introduction

The propagation of epidemic diseases within a host population has been studied since
several decades ago. Kermack and McKendrick developed one of the first works in the sub-
ject [1]. They proposed an SIR epidemic model where the host population is split in three
categories depending on the status of the individuals with respect to the disease. In such a
context, S, I, and R denote, respectively, the susceptible, infectious, and recovered subpopu-
lations. Later, a lot of models have been proposed and analysed in the specialised literature.
Such models consider some additional population categories and/or control actions for
eradicating or, at least, diminishing the effects of the disease in the host population [2–5]. In
this sense, the models can include the exposed subpopulation E composed by individuals
without symptoms of the disease and without the capacity of transmitting the infection
to a susceptible individual after a contagion. Such a model is referred to as the SEIR
model [6]. The more usual control actions are the vaccination of susceptible individuals and
the treatment of infectious individuals by antivirals, antibiotics, or other medicaments [7,8].
Additionally, other control actions such as quarantine of infectious individuals have also
been proposed [9]. These control actions give place to include other subpopulations in
the models as vaccinated, treated, and quarantined ones [10–13]. For instance, the authors
in [13] propose a SVEIR model to analyse the impact of vaccination in the control of spread
of poliomyelitis. Moreover, the control actions can be applied in continuous-time or impul-
sive ways during the vaccination campaigns and/or treatment procedures [14–16]. The
social distancing is another alternative way to fight against the propagation of infectious
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diseases [17]. Such a measure may be crucial when there are asymptomatic infectious
individuals and/or neither vaccines nor medicaments are available to maintain the disease
propagation under control. The early phase of the COVID-19 pandemic is a clear example
of such a fact [18]. In such situations, the susceptible subpopulation can be split in several
categories according to its preventive care and responsible behaviour to avoid the disease
contagion. For instance, the study in [19] considers two susceptible subpopulations ac-
cording to its risk aversion. One of the categories contains individuals with self-protection
awareness, and the other one is composed by people without such an awareness. Recently,
new approaches from game theory have been proposed for analysing the spreading of
infectious diseases [20,21]. The studies in [20] introduce the concept of a vaccination game
so as to evaluate provisions other than vaccination, including protective measures as mask
wearing. They also analyse the efficiency of quarantine compared with that of isolation
policies or the efficiency of preventive versus late vaccination. The work in [21] proposes a
double-layer game structure of vaccination and treatment. The vaccination game considers
whether the vaccine is accepted or declined by the individual, while the treatment game
depends on the antiviral resistance evolution and prescribing behaviour. In this way, the
vaccination game deals with the presence of anti-vaccine behaviour, while the treatment
game considers the antibiotic overuse.

In this paper, a controlled epidemic model with vaccination of newborns, vaccination
of the susceptible, and treatment of the infectious individuals, as control actions, is proposed.
The model is composed by a basic SIRS epidemic model and a first-order continuous-time
control subsystem, which is based on the feedback of the state variables. Namely, the inputs
of such a control subsystem are the susceptible, infectious, and recovered subpopulations
so that the control subsystem acts under the knowledge of the state of the disease at
each time. The control subsystem provides several free-design parameters that can be
adjusted to eradicate the persistence of the disease within the host population. Namely,
an appropriately adjustment of the control parameters guarantees the non-existence of
the endemic equilibrium (EE) point of the controlled SIRS model. Such a fact implies
the existence of a unique equilibrium point, namely, the disease-free equilibrium (DFE)
point, which is a very advantageous tool to asymptotically eradicate the disease. Moreover,
the local and global asymptotic stability of this DFE point is analytically proved under
appropriate conditions relative to the adjustment of the control parameters. Under such
conditions, the disease is eradicated from the host population after a transient period of
propagation from the initial state until the DFE point is reached. Several modified SIRS-
type models have been proposed and analysed in the epidemiological research. Some
models study the dynamics of such models under the influence of control actions such as
vaccinations of susceptible and/or the treatment of infectious individuals. Both control
actions are applied either in a time continuous or impulsive way, and the intensity of
each control action is usually proportional to the susceptible and/or infectious individuals.
The SIRS model in our paper also proposes the combined application of vaccination to
the susceptible and the treatment to the infectious subpopulation. The main novelties
of the current paper related to the background literature are (i) the use of first-order
dynamics in the vaccination and treatment controls and (ii) the availability of additional
free-design control parameters to shape such vaccination and treatment actions. The first
novelty provides some additional parameters derived from the fact that the vaccination
and treatment actions are provided by a control subsystem instead of being proportional
to the susceptible and/or infectious individuals. Concretely, two parameters arise from
the dynamics of the control subsystem, and then, the control actions can be designed with
two more free-design parameters than in the conventional research. Moreover, the control
subsystem uses the information of the state of the propagation of the disease since the
subpopulation variables are used as the inputs of such a subsystem. In this way, a feedback
control strategy is used for obtaining the vaccination and treatment variables. In summary,
the control designer can make use of the additional free-design parameters to shape the
vaccination and treatment actions in a desired way, which is the second main novelty, to
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achieved the required objectives. One of the main objectives is to achieve the eradication
of the disease or, at least, to minimise its influence within the host population. In this
context, the control parameters governing the intensity of the vaccination of newborns and
susceptible individuals influence on the control reproduction number Rc of the controlled
SIRS model. Moreover, those parameters shaping the intensity of the treatment of the
infectious individuals influence on a threshold value Rc of interest since if Rc < Rc, then
the EE point does not exist, so that the DFE point is the unique one. Furthermore, such
a DFE point is locally and globally asymptotically stable under that condition. In this
way, an appropriate choice of the control parameters associated with the vaccination
actions allows the control reproduction number to reduce with respect to its value in
absence of vaccination. Namely, Rc decreases by increasing the intensity of the vaccination.
On the other hand, an appropriate choice of the control parameters associated with the
treatment action allows the threshold value Rc to be strictly larger than the Rc value of the
controlled SIRS model to guarantee the inexistence of the EE point and then the existence of
a unique globally asymptotically stable DFE point. Namely, Rc increases by increasing the
intensity of the treatment action. In this context, the infectious disease can be extinguished
under an appropriate choice of the design parameters of the control laws. In summary,
two options are available for such a purpose. The first one is increasing the intensity of
vaccination in order to reduce the control reproduction number Rc, and the second one is
increasing the intensity of treatment in order to augment the threshold value Rc. Obviously,
an appropriate solution to guarantee the extinction of the disease can be obtained by
combining both options so that Rc < Rc.

The rest of the paper is organized as follows. Section 2 describes the basic epidemic
SIRS model as well as the subsystem providing the both proposed control actions, namely,
the vaccination of the susceptible and treatment of the infectious subpopulations, respec-
tively. The positivity of the controlled model, composed by combining the basic SIRS model
with the control subsystem, is analysed. In addition, the study of the equilibrium points, as
the existence as the stability properties, of the controlled model is dealt with in this section.
Concretely, the conditions to be satisfied by the free-design control parameters in order
to guarantee the non-existence of the EE point and then, the local and global asymptotic
stability of the DFE point, which is the unique equilibrium point under such conditions,
are established and mathematically proved. Finally, Section 3 illustrates the theoretical
results by some simulation examples. An extended study of the influence of the control
parameters in the dynamics of the controlled SIRS model is done. The results obtained with
the proposed controlled SIRS model are compared with those obtained by an uncontrolled
SIRS model. In addition, the results of the proposed model are compared with an SIRS
model with only a control action, either the vaccination of the susceptible subpopulation or
the treatment of the infectious one. These comparisons are interesting from the viewpoint
of the available resources relative to the existence of vaccines and/or medicaments to fight
against the propagation of the disease.

2. SIRS Epidemic Model under Vaccination and Treatment Controls

An SIRS epidemic model described by the following equations:

.
S(t) = b(1− q)− β

S(t)I(t)
N(t)

+ ρR(t)− µS(t)− v(t) (1)

.
I(t) = β

S(t)I(t)
N(t)

− (µ + α + γ)I(t)− tr(t) (2)

.
R(t) = bq + γI(t)− (µ + ρ)R(t) + v(t) + tr(t) (3)

with an initial condition given by S(0) ≥ 0, I(0) ≥ 0 and R(0) ≥ 0 is proposed. The model
considers the whole host population split into three categories depending on the state of
the individuals with respect to the infectious disease, namely, susceptible (S), infectious (I),
and recovered (R) subpopulations. Moreover, the model considers a constant recruitment
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rate for the population, which is represented by b [22,23]. The model includes three control
actions: (i) a constant vaccination of newborn individuals defined by the control parameter
q ∈ [0, 1], (ii) a vaccination of the susceptible subpopulation into a vaccination rate v(t),
and (iii) a treatment of the infectious subpopulation into a treatment rate tr(t).

The variables v(t) and tr(t) are the output variables of a first-order control system
whose inputs are the SIRS model state variables. Then, both control actions are synthesised
by the feedback of the epidemic model state. The equations of the control system providing
both actions are as follows:

.
v(t) = −c1v(t) + c2 S(t) + c3 I(t) + c4

S(t)I(t)
N(t)

(4)

.
tr(t) = −c5 tr(t) + c6 I(t). (5)

Concretely, v(t) and tr(t) are the number of vaccinated and treated individuals per
time unit, respectively. Equations (4) and (5) regulate respectively the amount of vaccines
and medicaments to be daily applied according to the time evolution of the disease propa-
gation. In this context, if

.
v(t) > 0 (

.
tr(t) > 0), then the amount of vaccines (medicaments) to

be applied in the current day is larger than those applied in the previous one. Otherwise, if
.
v(t) < 0 (

.
tr(t) < 0), then the amount of vaccines (medicaments) to be applied in the current

day is smaller than those applied in the previous one. The time evolution of the amount of
vaccines and medicaments daily applied to control the propagation of the disease depends
on the current state of the epidemics, as it can be observed in (4) and (5) from the fact that
the subpopulations S(t) and I(t) act as input in the control subsystem. Equations (1)–(5)
compose the controlled epidemic model defined by two sets of parameters. The first set
includes the parameters associated with the transmission of the disease and the features of
the host population, namely:

• b is the natural birth rate of the host population;
• µ is the natural death rate of the host population;
• β is the transmission rate of the disease within the host population;
• ρ is the immunity loss rate within the recovered subpopulation, whose individuals

become susceptible to the disease after losing the immunity;
• α is the death rate by causes related to the disease;
• γ is the recovery rate of the infectious subpopulation.

The second set of parameters is associated to the control actions, namely:

• q ∈ [0, 1] is the proportion of newborn individuals who are vaccinated;
• ci, for i ∈ {1, 2, 3, 4}, are the parameters for designing the vaccination of the sus-

ceptible subpopulation. Such control parameters allow us to weight the vaccination
rate according to the state of the disease propagation considering the number of sus-
ceptible individuals S, infectious ones I, and/or the probability of contacts between
them S(t)I(t)

N(t) at each time t. Such parameters provide the availability of giving more
importance to one term of (4) against the other ones in the design of the law for the
vaccination v(t). The unit of the parameter c1 is (time)−1, usually (day)−1, and that of
the parameters ci, for i ∈ {2, 3, 4} is (time)−2 for coherence in (4).

• ci, for i ∈ {5, 6}, are the parameters for designing the treatment of the infectious
subpopulation. Such control parameters shape the law for the treatment tr(t) accord-
ing to the number of infectious individuals. However, the values allowed for such
parameters are constrained for the potency of the available medicaments. In this sense,
a larger c6

c5
is less the recovery time interval for the treated infectious individuals. The

unit of the parameter c5 is (time)−1, usually (day)−1, and that of the parameters c6 is
(time)−2 for coherence in (5).
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All parameters are non-negative. The dynamics of the whole host population N(t) =
S(t) + I(t) + R(t) can be obtained by summing up Equations (1)–(3). In this way:

.
N(t) = b− µN(t)− αI(t). (6)

The nature of the epidemic models requires the non-negativity of their solutions, so
an analysis of the model positivity is developed in the following.

2.1. Positivity of the Controlled SIRS Epidemic Model

The result below establishes the non-negativity of all the subpopulations of the con-
trolled model as well as the non-negativity of the vaccination and treatment control efforts
under a set of sufficient conditions on the control parameters. The proof is written in
Appendix A.

Theorem 1 (positivity of the model). The solution of the model (1)–(6) is non-negative for all
time and for any initial condition such that S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, v(0) = 0, and
tr(0) = 0 provided that the control parameters ci ≥ 0, for i ∈ {1, 2, . . . , 6}, and q ∈ [0, 1] are
chosen such that:

(i) c1 > µ + β + 2
√

c2 + c4 ; (ii) q ≥ q0 = 1− µ+β
b S(0)

(iii) c3 ≤ b(1−q)(µ+β)
Imax

; (iv) c5 > µ + α + γ + 2
√

c6 ,

where Imax = max
0≤t<∞

{I(t)}.

Remark 1.

(i) The conditions (i)–(iv) of Theorem 1 are only sufficient conditions, since the solutions of
the model can be non-negative even if some of these conditions are not satisfied by the con-
trol parameters.

(ii) The birth rate of a host population b is close to its mortality rate µN(t) for any t ≥ 0 under
normal conditions (in absence of a lethal disease). Then, b− µN(0) is close to zero at the
beginning of the propagation of an infectious disease. Then, typically b− (µ + β)N(0) ≈
−βN(0) < 0. Moreover, in the first stage of any epidemic disease propagation, the infectious
and recovered subpopulations are much smaller than the susceptible one. Then, N(0) ≈ S(0)
and, as a consequence, the condition (ii) is satisfied for any q ∈ [0, 1].

(iii) The condition (iii) of Theorem 1 depends on the maximum value reached by the infectious
subpopulation during the propagation of the disease. Such a value cannot be known ‘a priori’,
and then, one cannot appropriately choose the values of the parameters c3 and q to satisfy it.
However, such a condition is fulfilled if c3 = 0 for any q ∈ [0, 1]. Then, from continuity
arguments, the condition is fulfilled for c3 ∈ [0, c3] with c3 = c3(q, Imax) =

b(1−q)(µ+β)
Imax

. In
summary, a value for c3 small enough has to be chosen in order to satisfy the condition (iii) if
a vaccination provided by (4) is proposed. Note that if q = 1, which means a vaccination of all
the newborns, then c3 = 0 has to be taken to guarantee the non-negativity of all the model
variables for all the time.

(iv) In a real situation, the control actions to fight against an epidemic outbreak are taken after the
disease is detected in the infectious individuals. Then, the constraint v(0) = tr(0) = 0 in the
initial condition for guaranteeing the non-negativity of the variables of the controlled epidemic
model is coherent with such a fact.

Corollary 1. The feasible region Γ defined as:

Γ =

 [S(t) I(t) R(t) v(t) tr(t)] ∈ R5
0+

∣∣∣ 0 ≤ min
{

N(0), b
µ+α

}
≤ N(t) ≤ max

{
N(0), b

µ

}
v(t) ≥ 0
tr(t) ≥ 0

 (7)
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is positively invariant for models (1)–(5) under the conditions of Theorem 1, where N(t) =
S(t) + I(t) + R(t) and R5

0+ denotes the non-negative five-dimension hyper-plane.

Proof. From (6), it follows that:

b− (µ + α)N(t) ≤
.

N(t) ≤ b− µN(t) (8)

from the fact that 0 ≤ I(t) ≤ N(t) ∀t ≥ 0 as a consequence of Theorem 1. Then, by direct
calculations from (8), one obtains:

b
µ + α

+

(
N(0)− b

µ + α

)
e−(µ+α)t ≤ N(t) ≤ b

µ
+

(
N(0)− b

µ

)
e−µt. (9)

From (4), it follows that
.
v(t) ≥ −c1v(t) by taking into account that S(t) ≥ 0, I(t) ≥ 0

and N(t) ≥ 0 ∀t ≥ 0 as a consequence of Theorem 1. Then, v(t) ≥ v(0)e−c1t ≥ 0. Finally,
from (5), it follows that

.
tr(t) ≥ −c5tr(t) by taking into account that I(t) ≥ 0 ∀t ≥ 0 as

a consequence of Theorem 1. Then, tr(t) ≥ tr(0)e−c5t ≥ 0. Equation (9) and the results
v(t) ≥ 0 and tr(t) ≥ 0 ∀t ≥ 0 lead to the conclusion that solutions for the model (1)–(5)
with any initial condition within Γ persist in Γ for all time. �

From the positivity result of Theorem 1, the following assumption is established for
the rest of the paper.

Assumption 1. A choice of the control parameters satisfying the conditions of Theorem 1 is
supposed in order to guarantee the positivity of the controlled SIRS epidemic model.

Remark 2. Assumption 1 mathematically guarantees that the model subpopulations as well as the
control efforts do not take negative values for all time, as the nature of an epidemic model needs to be
well defined. Such a fact justifies the adoption of such an assumption.

2.2. Control Reproduction Number and Equilibrium Points of the Controlled SIRS Model

The controlled epidemic model given by (1)–(5) possesses two equilibrium points.
One of them is a DFE point, and the other one is an EE point. They are obtained by setting
.
S(t) =

.
I(t) =

.
R(t) =

.
v(t) =

.
tr(t) = 0, since the equilibrium points are those at which

the model variables do not change with time. In this way and by direct calculations, one
obtains that the subpopulations and the values of the vaccination and treatment efforts at
the DFE point are given by:

SDFE = bc1[µ(1−q)+ρ]
µ[c1(µ+ρ)+c2]

; IDFE = 0 ; RDFE = b(c1qµ+c2)
µ[c1(µ+ρ)+c2]

vDFE = bc2[µ(1−q)+ρ]
µ[c1(µ+ρ)+c2]

; trDFE = 0.
(10)

One can define the control reproduction number Rc for the model as the number of
new infections that an infectious individual produces in a population at the DFE point.
Such a number can be calculated by using the next-generation method [24]. For such a
purpose, Equations (1)–(3) related to the dynamics of the epidemiological compartments of
the controlled model (1)–(5) can be, equivalently, rewritten as:

.
x = F (x)−W(x) (11)

where x =
[

S I R
]T and F (x) andW(x) are given by:

F =
[

0 β SI
N 0

]T ; W =

 −b(1− q) + β SI
N − ρR + µS + v

(µ + α + γ)I + tr
−bq− v− γI + (µ + ρ)R− tr

. (12)
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Each component of F (x) is the rate of appearance of new infections in the correspond-
ing compartment. The new infections only appear in the infectious compartment; therefore,
only the second component ofF (x) is nonzero. On the other hand, the components ofW(x)
are the difference between the output and input transition rates corresponding, respectively,
to the susceptible, infectious, and recovered compartments. The control reproduction num-
ber can be calculated by analysing the dynamics of the subsystem composed by the infected
compartments. The proposed controlled model only has an infected compartment, namely,
the infectious subpopulation I. The dynamics of such an infected subsystem around the
DFE point is given by the both entries (2,2) of the matrices F = ∂F

∂x

∣∣∣
x=xDFE

∈ R3x3 and

W = ∂W
∂x

∣∣∣
x=xDFE

∈ R3x3, where xDFE =
[

SDFE IDFE RDFE
]T . By direct calculations,

one obtains that such entries are, respectively, f22 = β SDFE
NDFE

and w22 = µ + α + γ. Then,

the next generation matrix, which results a scalar for the current models, is f2,2·(w22)
−1.

Finally, the control reproduction number under control efforts is obtained as the spectral
radius of such a matrix, namely:

Rc = σ
(

f2,2·(w22)
−1
)
=

f22

w22
=

βSDFE

(µ + α + γ)NDFE
=

βc1[µ(1− q) + ρ]

(µ + α + γ)[c1(µ + ρ) + c2]
(13)

where σ(M) denotes the spectral radius of the matrix M and the fact that NDFE = SDFE +
IDFE + RDFE = b

µ and expressions in (10) have been used. Note that if the vaccination
of newborn individuals is not applied, i.e., q = 0, while the vaccination of susceptible
individuals is given by (4) with c2 = 0, i.e., without the forced term depending on S,
then the control reproduction number of the current controlled model is equal to the basic
reproduction number R0 = β

µ+α+γ of a basic SIRS epidemic model. On the contrary, if
c2 6= 0 and/or q 6= 0, then the control reproduction number is smaller than the basic
reproduction number, i.e., Rc < R0, since the control parameters are non-negative by
definition. Such a fact is key to achieve the global stability of the DFE point of the controlled
epidemic model (1)–(5), by means of an appropriate choice of the control parameters c2 and
q, in a situation where the DFE point of an SIRS model without vaccination is not globally
stable. Note also that the control reproduction number depends on neither c5 nor c6, i.e.,
the application of a treatment to the infectious subpopulation does not have influence on
such a number.

On the other hand, one obtains that the subpopulations and the values of the vaccina-
tion and treatment efforts at the EE point are given by:

SEE = bk1(k2k3Rc+k1c4)
k2c5Rc(k2k4Rc+k1k5)

; IEE = bk6[k7(Rc−1)−c6]
k2k4Rc+k1k5

REE =
b(k2

2k8c5R2
c+k1k2k9Rc−k2

1c4)
k2c5Rc(k2k4Rc+k1k5)

; trEE = bk6c6[k7(Rc−1)−c6]
c5(k2k4Rc+k1k5)

vEE =
b(k2

2c3c2
5[µ(1−q)+ρ]R2

c+k1k2k10Rc−k2
1c4(µ+ρ))

k2c5Rc(k2k4Rc+k1k5)

(14)

where:

k1 = c1[µ(1− q) + ρ][c5(µ + α + γ) + c6] ; k2 = (µ + α + γ)[c1(µ + ρ) + c2]
k3 = c1[c5(µ + γ + ρ + qα) + c6] + c3c5 ; k4 = c1(c5[µγ + (µ + α)(µ + ρ)] + µc6) + µc3c5

k5 = µc4 − α[c1(µ + ρ) + c2] ; k6 = c1[µ(1− q) + ρ][c1(µ + ρ) + c2]
k7 = c5(µ + α + γ) ; k8 = c1(c5[γ + q(µ + α)] + c6) + c3c5

k9 = c5[c2 − c3 + c4 − c1(αq + γ)]− c1c6
k10 = c2[c5(µ + γ + ρ + qα) + c6]− c3c5(µ + ρ) + c4c5[µ(1− q) + ρ].

(15)

The following very important result from the disease eradication viewpoint is proved.

Theorem 2 (Non-existence of the EE point). If the control parameters are chosen such that:
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Rc < Rc = 1 +
c6

c5(µ + α + γ)
⇔ R0 < R0 =

[c5(µ + α + γ) + c6][c1(µ + ρ) + c2]

c1c5(µ + α + γ)[µ(1− q) + ρ]
(16)

then the EE point does not exist.

Proof. The condition (16) can be written as Rc < 1 + c6
k7

from the expression of k7 in (15).
Then, one obtains that NI = bk6[k7(Rc − 1)− c6] < 0, where NI is the numerator of IEE.
Then, IEE < 0 unless that DI = k2k4Rc + k1k5 < 0, where DI is the denominator of IEE.
Suppose that DI < 0 so that IEE > 0. Then, DS = k2c5Rc(k2k4Rc + k1k5) = k2c5RcDI < 0
from the fact that c5, k2, and Rc are strictly positive, where DS denotes the denominator
of SEE. Then, SEE < 0, since NS = bk1(k2k3Rc + k1c4) > 0 since b, c4, k1, k2, k3 and Rc are
strictly positive, where NS denotes the numerator of SEE. In summary, one of SEE or IEE is
negative under the condition (16), which implies the non-existence of the EE point. �

Remark 3. The proposed SIRS epidemic model defined by (1)–(3) has a globally asymptotically stable
EE point whenever R0 > 1, as is always the case in SIR-like epidemic models with demography [25].
The proposed control actions, namely, the vaccination of newborns, the vaccination of the susceptible
subpopulation, given by (4), and the treatment of infectious individuals, given by (5), eliminate the
existence of such an EE point under a choice of the control parameters, satisfying the condition (16).
In this way, the SIRS epidemic model coupled with the control actions only has the DFE point,
which is a crucial result in this paper.

2.3. Local Stability of the Disease-Free Equilibrium Point

The study of the local stability of a nonlinear system around an equilibrium point can
be done by analysing the eigenvalues of the Jacobian matrix corresponding to the linearisa-
tion of the system around such a point. For such a purpose, the controlled model (1)–(5)
can be, equivalently, rewritten as

.
xc = f (xc) where xc =

[
S I R v tr

]T is the
extended state vector of the controlled SIRS model after including the control dynamics and:

f =


b(1− q)− β SI

N + ρR− µS− v
β SI

N − (µ + α + γ)I − tr
bq + γI − (µ + ρ)R + v + tr
−c1v + c2S + c3 I + c4

SI
N

−c5tr + c6 I

. (17)

The Jacobian matrix of the model around the DFE point is directly obtained as:

JDFE =
∂ f
∂xc

∣∣∣∣
xc=xc,DFE

=


−µ j12 ρ −1 0
0 j22 0 0 −1
0 γ j33 1 1
c2 j42 0 −c1 0
0 c6 0 0 −c5

 (18)

where xc,DFE =
[

SDFE IDFE RDFE vDFE trDFE
]T j12 = −(µ + α + γ)Rc, j22 =

(µ + α + γ)(Rc − 1), j33 = −(µ + ρ), and j42 = c3 +
c4
β (µ + α + γ)Rc, and the expressions

(10) and (13) for Rc have been used. The following result is proved.

Theorem 3 (Local stability of the DFE point). If the control parameters are chosen such that:

Rc < Rc ⇔ R0 < R0 (19)

then the DFE point is locally asymptotically stable under Assumption 1, where Rc and R0 are given
in (16).
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Proof. The characteristic equation of the linearised model around the DFE point is given
by |λI5 − JDFE| = 0, where I5 denotes the 5th-order unity matrix. By direct calculations,
one obtains that:

|λI5 − JDFE| = (λ + µ)
(

λ2 + p1λ + p0

)(
λ2 + q1λ + q0

)
(20)

where:

p1 = c5 − (µ + α + γ)(Rc − 1) ; p0 = c6 − c5(µ + α + γ)(Rc − 1)
q1 = µ + ρ + c1 ; q0 = (µ + ρ)c1 + c2.

(21)

Then, the eigenvalues of the matrix JDFE are−µ and the roots of P(λ) = λ2 + p1λ+ p0
and Q(λ) = λ2 + q1λ + q0. By applying the Routh–Hurwitz method to Q(λ), one obtains
that the real part of its roots is negative if q1 > 0 and q2 > 0. From (21), both conditions are
satisfied, since the control parameters c1 and c2 as well as the model parameters µ and ρ
are positive by definition. On the other hand, the roots of P(λ) are given by:

r1,2 =
1
2

(
(µ + α + γ)(Rc − 1)− c5 ±

√
(c5 + (µ + α + γ)(Rc − 1))2 − 4c6

)
(22)

from (21), where the sign ‘+’ corresponds to the root r1 and the sign “−” corresponds
to r2. The control parameters c5 and c6 fulfil the condition (iv) of Theorem 1 provided
Assumption 1. Then, it follows that (c5 + (µ + α + γ)(Rc − 1))2 − 4c6 > 0, since Rc > 0
from (13). In this way, both roots r1 and r2 are real, and r2 < r1. By direct calculations
from (22):

r1 < 1
2

(
(µ + α + γ)

(
Rc − 1

)
− c5 +

√(
c5 + (µ + α + γ)

(
Rc − 1

))2 − 4c6

)
= 1

2

(
c6
c5
− c5 +

√(
c5 +

c6
c5

)2
− 4c6

)
= 1

2c5

(
c6 − c2

5 +
√(

c6 + c2
5
)2 − 4c2

5c6

)
= 0

(23)

by using (19), the definition of Rc in (16) and the fact that c6 < c2
5 from the condition (iv) of

Theorem 1. In summary, both roots of P(λ) are strictly negative. Then, all the roots of the
characteristic equation of the linearised model around the DFE point have a negative real
part under Assumption 1, provided that the control parameters satisfy the condition (19).
Then, the DFE point is locally asymptotically stable. �

Remark 4. Note that the DFE point can be locally asymptotically stable although the control repro-
duction number Rc is larger than 1. Namely, such a property is proved if Rc < Rc independently of
the particular value of Rc. Indeed, the local asymptotic stability of the DFE point is guaranteed if
the transition rate from the infectious subpopulation to the recovered one is larger than the transition
rate from the susceptible subpopulation to the infectious one. In this context, the number Rc is
directly proportional to the transition rate from the susceptible subpopulation to the infectious one,
while Rc is directly proportional to the transition rate from the infectious subpopulation to the
recovered one. In this sense, such a transition rate from the infectious to the recovered subpopulation
depends on several factors: potency of medicaments, amount of material and human resources
in the health-care centres to treat the infectious individuals, and so on. Then, the availability of
enough resources is crucial to avoid the persistence of a disease or, at least, diminish its effects on the
population by increasing the value of Rc.

2.4. Global Stability of the Disease-Free Equilibrium Point

For the purpose of analysing the global stability of the DFE point, the controlled
epidemic model is rewritten as [26,27]:{ .

Xn(t) = A(Xn(t)− Xn,DFE) + B(t)XI(t).
X I(t) = C(t)XI(t)

(24)
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where Xn(t) = [S(t)R(t)v(t)]T , XI = [I(t)tr(t)]
T , Xn,DFE = [SDFERDFEvDFE] is the vector

Xn(t) at the DFE point, with its components given in (10), and:

A =

 −µ ρ −1
0 −(µ + ρ) 1
c2 0 −c1

 ; B(t) =


−β

S(t)
N(t) 0

γ 1
c3 + c4

S(t)
N(t) 0


C(t) =

[
β

S(t)
N(t) − (µ + α + γ) −1

c6 −c5

]
.

(25)

The following result about the global stability of the DFE point is proved.

Theorem 4 (Global stability of the disease-free equilibrium point). The DFE point is glob-
ally asymptotically stable under Assumption 1 provided that the control parameters are cho-
sen such that Rc < Rc or, equivalently, R0 < R0 and q ∈ [0, qc) ∩ [0, 1] so that F(q) =

λ1 +
(c5+λ1)µc1qβ

[c1(µ+ρ)+c2](λ1−λ2)
< 0, where qc is such that F(qc) = 0 while λ1 and λ2 are the eigenvalues

of the matrix C0 given by:

C0 =

[
(µ + α + γ)(Rc − 1) −1

c6 −c5

]
. (26)

Proof. The subsystem
.

X I(t) = C(t)XI(t) can be rewritten as:

.
X I(t) = C0XI(t) + C1(t)XI(t) (27)

where C0 is given by (26), and the matrix C1(t) is:

C1(t) =

[
β
(

S(t)
N(t) −

SDFE
NDFE

)
0

0 0

]
(28)

and (13) has been used. From (27), it follows that:[
I(t)
tr(t)

]
= φ(t)

[
I(0)
tr(0)

]
+
∫ t

0
φ(t− τ)C1(τ)XI(τ)dτ ∀t ≥ 0, (29)

with φ(t) = eC0t = L−1
{
(sI2 − C0)

−1
}

. By direct calculations, one obtains that:

φ11(t) =
(c5+λ1)eλ1t−(c5+λ2)eλ2t

λ1−λ2
; φ12(t) = − eλ1t−eλ2t

λ1−λ2
; φ21(t) =

c6(eλ1t−eλ2t)
λ1−λ2

φ22(t) =
[λ1−(µ+α+γ)(Rc−1)]eλ1t−[λ2−(µ+α+γ)(Rc−1)]eλ2t

λ1−λ2
,

(30)

where λ1 and λ2 are the eigenvalues of C0. Note that these eigenvalues are, respectively,
the roots r1 and r2, given in (22), of the polynomial P(λ) defined in the proof of Theorem
3. Under Assumption 1, the condition (iv) of Theorem 1, and Rc < Rc, it follows that the
eigenvalues λ1 and λ2 are real and λ2 < λ1 < 0. From (29) and (30), it follows that:

I(t) = φ11(t)I(0) + φ12(t)tr(0) +
∫ t

0
φ11(t− τ)β

(
S(τ)
N(τ)

− SDFE
NDFE

)
I(τ)dτ ∀t ≥ 0. (31)

The fact that λ2 < λ1 < 0 implies that eλ1t ≥ eλ2t ≥ 0 ∀t ≥ 0. Moreover, c5 + λ2 ≥ 0,

since c6 ≥ 0 from its definition. Then, φ11(t) ≤ (c5+λ1)eλ1t

λ1−λ2
, φ12(t) ≤ 0 ∀t ≥ 0, and one

obtains from (31) that:
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I(t) ≤ (c5 + λ1)I(0)
λ1 − λ2

eλ1t +
(c5 + λ1)β

λ1 − λ2

∫ t

0
eλ1(t−τ)

(
1− SDFE

NDFE

)
I(τ)dτ ∀t ≥ 0, (32)

where the fact that S(t)
N(t) ≤ 1 ∀t ≥ 0 from the positivity of the model has been used.

Moreover, from the definition of SDFE and NDFE given in (10), it follows:

I(t) ≤ c5 + λ1

λ1 − λ2
eλ1t
(

I(0) +
µc1qβ

c1(µ + ρ) + c2

∫ t

0
e−λ1τ I(τ)dτ

)
∀t ≥ 0. (33)

By applying the Bellman–Gronwall Lemma I [28] in (33), one obtains:

I(t) ≤ c5 + λ1

λ1 − λ2
eλ1t

I(0) +
µc1qβ

c1(µ + ρ) + c2

t∫
0

c5 + λ1

λ1 − λ2
I(0)e

∫ t
τ

(c5+λ1)µc1qβ

[c1(µ+ρ)+c2 ](λ1−λ2)
ds

dτ

 (34)

that leads by direct calculations to:

I(t) ≤ c5 + λ1

λ1 − λ2
I(0)e

(λ1+
(c5+λ1)µc1qβ

[c1(µ+ρ)+c2 ](λ1−λ2)
)t
=

c5 + λ1

λ1 − λ2
I(0)eF(q)t (35)

with F(q) = λ1 +
(c5+λ1)µc1qβ

[c1(µ+ρ)+c2](λ1−λ2)
. Note that the eigenvalues λ1 and λ2 depend on Rc,

which depends on q from its definition in (13). Furthermore, one obtains that F(0) =
λ1(0) < 0 since λ1(q) < 0 ∀q ∈ [0, 1] while:

dF
dq

=
2(µβc1)

2c6q

[c1(µ + ρ) + c2]
2
(
[c5 + (µ + α + γ)(Rc − 1)]2 − 4c6

) 3
2

. (36)

Then, dF
dq = 0 for q = 0 and dF

dq > 0 ∀q > 0, since c6 < [c5+(µ+α+γ)(Rc−1)]2

4 from the
condition (iv) of Theorem 1. Such a fact implies that there exists a critical value qc > 0
such that F(q) < 0 ∀q ∈ [0, qc) by continuity of the function F(q) with respect to q. As a
consequence, one obtains that lim

t→∞
{I(t)} = 0 if q ∈ [0, qc) ∩ [0, 1]. From (29) and (30), it

follows that:

tr(t) = φ21(t)I(0) + φ22(t)tr(0) +
∫ t

0
φ21(t− τ)β

(
S(τ)
N(τ)

− SDFE
NDFE

)
I(τ)dτ ∀t ≥ 0. (37)

The fact that λ2 < λ1 < 0 implies that φ21(t) ≤ c6eλ1t

λ1−λ2
∀t ≥ 0. Moreover, from (22), it

follows that λ2 − (µ + α + γ)(Rc − 1) < λ1 − (µ + α + γ)(Rc − 1) < 0 and then:

φ22(t) ≤ −
λ2 − (µ + α + γ)(Rc − 1)

λ1 − λ2
eλ2t ∀t ≥ 0. (38)

One obtains from (37) that:

tr(t) ≤
c6 I(0)

λ1 − λ2
eλ1t +

(µ + α + γ)(Rc − 1)− λ2

λ1 − λ2
tr(0)eλ2t +

c6β

λ1 − λ2

(
1− SDFE

NDFE

) t∫
0

eλ1(t−τ) I(τ)dτ (39)

where the fact that S(t)
N(t) ≤ 1 ∀t ≥ 0 from the positivity of the model has been used.

Moreover, from the definition of SDFE and NDFE given in (10), it follows:

tr(t) ≤
c6

λ1 − λ2
eλ1t
(

I(0) +
µc1qβ

c1(µ + ρ) + c2

∫ t

0
e−λ1τ I(τ)dτ

)
+

(µ + α + γ)(Rc − 1)− λ2

λ1 − λ2
tr(0)eλ2t. (40)
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By introducing (35) in (40), one obtains:

tr(t) ≤
c6 I(0)

λ1 − λ2
eλ1t

1 +
µc1qβ(c5 + λ1)

[c1(µ + ρ) + c2](λ1 − λ2)

t∫
0

e(F(q)−λ1)τdτ

+
(µ + α + γ)(Rc − 1)− λ2

λ1 − λ2
tr(0)eλ2t (41)

and finally:

tr(t) ≤
c6 I(0)eλ1t + [(µ + α + γ)(Rc − 1)− λ2]tr(0)eλ2t

λ1 − λ2
+

µc1c6qβ(c5 + λ1)I(0)

[c1(µ + ρ) + c2](λ1 − λ2)
2(F(q)− λ1)

(
eF(q)t − eλ1t

)
. (42)

Then, one obtains that lim
t→∞
{tr(t)} = 0 if q ∈ [0, qc) ∩ [0, 1] since λ1 < 0 and F(q) < 0

under such a condition. On the other hand, if one applies the variable change Yn(t) =
Xn(t)− Xn,DFE in the first equation of (24), then:

.
Yn(t) = AYn(t) + B(t)XI(t) (43)

whose solution is:

Yn(t) = φA(t)Yn(0) +
∫ t

0
φA(t− τ)B(τ)XI(τ)dτ ∀t ≥ 0 (44)

where φA(t) = eAt = L−1
{
(sI3 − A)−1

}
. The eigenvalues of A are λA

1 = −µ and the roots
of the Hurwitz polynomial Q(λ), which are defined in the proof of Theorem 3, namely:

λA
2,3 =

1
2

(
−(µ + ρ + c1)(Rc − 1)±

√
(c1 − (µ + ρ))2 − 4c2

)
(45)

where the sign ‘+’ corresponds to the root λA
2 and the sign “−” corresponds to λA

3 . Since the
real part of such roots is negative, there exists some norm-dependent real constant KA ≥ 1
such that:

‖Yn(t)‖ ≤ KAeσAt(‖Yn(0)‖+
∫ t

0
eσAτ‖B(τ)‖‖XI(τ)‖dτ) ∀t ≥ 0, (46)

where σA = max
{
−µ, λA

2
}
< 0 is the stability abscissa of A. From (35) and (42), one obtains

that:

‖XI(t)‖ =
√

I2(t) + tr2(t) ≤ I(t) + tr(t) ≤ g1eλ1t + g2eλ2t + g3eF(q)t ∀t ≥ 0, (47)

where the positivity of the model has been used, and:

g1 = c6 I(0)
λ1−λ2

(
1− µc1qβ(c5+λ1)

[c1(µ+ρ)+c2](λ1−λ2)(F(q)−λ1)

)
; g2 = [(µ+α+γ)(Rc−1)−λ2]tr(0)

λ1−λ2

g3 = c5+λ1
λ1−λ2

I(0)
(

1 + µc1c6qβ
[c1(µ+ρ)+c2](λ1−λ2)(F(q)−λ1)

)
.

(48)

From (25), it follows that:

‖B(t)‖ = max
{

1, c3 + γ + (β + c4)
S(t)
N(t)

}
≤ max{1, c3 + γ + β + c4} = KB ∀t ≥ 0 (49)

where S(t)
N(t) ≤ 1 has been used. By introducing (47) and (49) in (46), one obtains:

‖Yn(t)‖ ≤ KAeσAt
(
‖Yn(0)‖+ KB

∫ t

0
e−σAτ

(
g1eλ1τ + g2eλ2τ + g3eF(q)τ

)
dτ

)
. (50)
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By direct calculation from (50), it follows that:

‖Yn(t)‖ ≤ KA‖Yn(0)‖eσAt

+KB

[
g1

λ1−σA

(
eλ1t − eσAt)+ g2

λ2−σA

(
eλ2t − eσAt)+ g3

F(q)−σA

(
eF(q)t − eσAt

)]
.

(51)

Finally, from (51), one obtains that lim
t→∞
{‖Yn(t)‖} = 0 if q ∈ [0, qc)∩ [0, 1], since λ1 < 0,

λ2 < 0, σA < 0, and F(q) < 0 under such a condition. Then, lim
t→∞
{‖Xn(t)− Xn,DFE‖} = 0

and, also, lim
t→∞
{Xn(t)} = Xn,DFE. In summary, the DFE point is globally asymptotically

stable. �

Remark 5. Note the following features:

(i) From Theorems 1–4, the model is positive and only has an equilibrium point, namely, the DFE
point, which is locally and globally asymptotically stable provided that the control parameters
fulfil the conditions of Theorem 1 and that Rc < Rc or, equivalently, R0 < R0.

(ii) The control parameters c1 and c2 influence the components of both the DFE and EE points,
see (10) and (14), (15) respectively.

(iii) The control parameters c3, c4, c5, and c6 influence the components of the EE point.
(iv) The control parameters c1, c2, c5, and c6 influence the stability of the DFE point according to

(19) and, also, they can imply the non-existence of the EE point under an appropriate choice of
their values according to (16).

(v) The threshold value Rc given in (16) depends on the control parameters c5 and c6 associated
with the treatment effort, while the control reproduction number Rc given in (13) depends
on the control parameters q, c1, and c2 associated with the vaccination efforts so that the
non-existence of the EE point can be guaranteed by a treatment strategy adapted to a designed
vaccination campaign.

(vi) Neither Rc nor Rc depend on the control parameters c3 and c4 associated with the effort of the
vaccination of susceptible individuals so that such parameters are not relevant for eradicating
the disease. Such parameters affect the values of the subpopulations at the EE point if such a
point is reached, which is intended to be avoided.

(vii) The expression for Rc can be equivalently written as Rc =
β[µ(1−q)+ρ]

(µ+α+γ)
[
µ+ρ+

c2
c1

] = µ(1−q)+ρ

µ+ρ+
c2
c1

R0.

Then, one can see that Rc is inversely proportional to c2
c1

so that an increment in the value
of c2

c1
results in a decrement of Rc, implying a small incidence of the infectious disease. In

this context, a large value for c2
c1

is interesting for reducing the incidence of the disease on
the host population. A large value for the relation c2

c1
can be obtained by considering small

values for c1. However, the condition (i) of Theorem 1 requires a lower bound for c1, namely,
c1 > µ + β + 2

√
c2 + c4, for some prescribed values for µ, β, c2, and c4, in order to guarantee

the non-negativity of the solutions of the controlled model under any non-negative initial
condition. Then, the only way of increasing the relation c2

c1
is by means of an increment of c2,

which also implies an increment of c1 to guarantee the condition c1 > µ + β + 2
√

c2 + c4 for
some prescribed values for µ, β, and c4. In summary, the only practical way of increasing the
relation c2

c1
is via increasing simultaneously the value of both parameters c1 and c2. However,

a large value for c2 can imply large values for the vaccination control effort, since it affects
directly the forced term of Equation (4) for the dynamics of the vaccination law. In fact, the
vaccination can be constrained to a number of available vaccines in a practical situation, which
implies upper-bounds for the control parameters c2, c3, and c4 of the forced terms of (4).

(viii) One can see that Rc is directly proportional to c6
c5

so that an increment in the value of c6
c5

implies
an increase of Rc. Moreover, note that the EE point of the controlled model does not exist if
Rc < Rc so that an increment of Rc can be interesting in order to guarantee the non-existence
of such an EE point for a prescribed value for Rc adjusted by values for q, c1, and c2 adapted
to the number of available vaccines.

(ix) The influence of the parameter q ∈ [0, 1] on the value of the control reproduction number Rc
is negligible if the value of the natural death rate µ is very small, as it happens in the case of
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humans. In such a case, the influence of q ∈ [0, 1] on the eigenvalues λ1 and λ2 of the matrix
C0 as well as on the function F(q), both defined in the proof of Theorem 4, is also negligible.
Such a fact implies that the DFE point is globally asymptotically stable ∀q ∈ [0, 1], since
qc > 1, provided that the control parameters ci, for i ∈ {1, 2, . . . , 6}, are chosen such that
Assumption 1 and Rc < Rc are satisfied.

3. Simulation Results

Some simulation examples based on a high infectivity disease illustrate the efficacy
of the proposed control strategy. The examples have been developed by using the ver-
sion R2020b of MATLAB. They have been simulated by using the solver “ode3 (Bogacki-
Shampine)” with a fixed step of 1

24 days, i.e., one hour. First, a SIRS model without
vaccination and treatment is considered. Later, the same model with the proposed con-
trol actions is analysed to show their impact in the propagation of the disease within the
host population. As a consequence, a drastic mortality reduction is exhibited due to the
application of the proposed feedback control actions. In addition, a set of examples are
used to analyse the influence of certain control parameters on the evolution of the disease
spreading. Finally, the influence of the immunity loss rate is also studied.

3.1. Example 1: SIRS Model without Vaccination and Treatment

The model (1)–(3) with the values b = 0.0384 d−1, µ = 3.653× 10−5 d−1, β = 0.65 d−1,
γ = 1

22 = 0.0455 d−1, ρ = 1
120 = 0.0083 d−1 and α = 5 × 10−5 d−1, where d means

the unit time “day”, is analysed. In addition, the parameter q = 0 is considered, since
vaccination on the newborn individuals is not applied. The main objective is to show the
time evolution of the subpopulations and that of the whole population under the influence
of the infectious disease. The basic reproduction number of this model is R0 = 14.2728;
that is, each primary infectious individual transmits the disease to more than 14 healthy
individuals. Then, this example describes the propagation of a high infectivity disease. The
DFE point of the model is unstable, while its EE point is globally asymptotically stable,
as Remark 3 points out. Figure 1 shows the time evolution of the susceptible, infectious,
and recovered subpopulations during the first 100 days, while Figure 2 displays that of the
whole population in a very long time period. The considered initial condition is given by
S(0) = 985, I(0) = 10 and R(0) = 5.
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Figure 1. Time evolution of the subpopulations in the SIRS model without control actions.
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Figure 2. Time evolution of the whole population in the SIRS model without control actions.

In the longer simulation, one can see that the model tends to an EE point where the
number of individuals is NEE = 877 with SEE = 62, IEE = 127 and REE = 688 accordingly
to (14), (15) with ci = 0, for i ∈ {1, 2, . . . , 6}. Although the mortality rate due to the
disease α = 5× 10−5 d−1 is not very high, the influence of the disease is very important,
since the whole population notably decreases from 1000 individuals to 877. Moreover, the
percentage of infectious individuals with respect to the whole population in the EE point is
14.48%. In this situation, the application of control measures is crucial in order to eliminate
the infection or, at least, to diminish its effect within the host population while reducing
drastically the mortality.

3.2. Example 2: SIRS Model with Vaccination and Treatment

Models (1)–(3) with the same values for the parameters b, µ, β, γ, ρ and α as those
given in Example 1 are considered. Moreover, a vaccination for newborn individuals
together with the control actions (4) and (5) are applied in order to diminish the effects of
the infectious disease. Concretely, the control actions are (i) a vaccination of a proportion
q = 0.1 of the newborn individuals; i.e., 10% of newborns are vaccinated, (ii) a vaccination
of the susceptible population given by (4) with the values c1 = 25, c2 = 1, c3 = 0.0001 and
c4 = 0.07 for the associated parameters and (iii) a treatment of the infectious population given
by (5) with the values c5 = 2 and c6 = 0.27 for the corresponding parameters. Such values
satisfy the conditions of Theorem 1 so that the model subpopulations and the vaccination
and treatment efforts are non-negative for all time. The initial condition is that of Example
1 together with v(0) = tr(0) = 0 for the initial control efforts. Note that dynamics of the
treatment effort, given by the control law (5), is of first order with a gain that reaches the
value c6

c5
= 0.135 in the stationary regime. Such a gain points out a transition rate from

the infectious subpopulation to the recovered one via applied treatment to be added to
the transition rate γ = 0.0455 between such subpopulations from the natural response of
the immunity system of the individuals against the disease. This fact points out that an
infectious individual under treatment needs an average time of 5.54 days to overcome the
disease. In this way, the average time of recovering is reduced in 16.46 days, since such an
interval time is γ−1 = 22 days if no treatment is applied. Figure 3 shows the time evolution
of the susceptible, infectious, and recovered subpopulations during the first 100 days, while
Figures 4 and 5 display, respectively, that of the whole population during the first 100 days
and along 100,000 days.
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Figure 3. Time evolution of the subpopulations in the SIRS model with vaccination and treatment.
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Figure 4. Time evolution of the whole population in the SIRS model with vaccination and treatment
within the 100 first days.
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Figure 5. Time evolution of the whole population in the SIRS model with vaccination and treatment
along 100,000 days.

In a longer time performed simulation, one can see that the model tends to a DFE
point where the number of individuals is NDFE = 1050 with SDFE = 182, IDFE = 0 and
RDFE = 868. This result is coherent with Theorems 3 and 4, since Rc = 2.4687, Rc = 3.9644
and F(q) = −0.0732 < 0 for the used value q = 0.1 so that the DFE point is locally and
globally asymptotically stable. Moreover, the choice of the control parameters satisfies the
conditions of Theorem 2, which implies the non-existence of the EE point. Then, the DFE
point is the unique equilibrium point for the controlled model. In summary, this example
exhibits the high mortality reduction due to the application of the proposed feedback



Mathematics 2022, 10, 36 17 of 32

control actions in the propagation of an infectious disease of a high basic reproduction
number R0. Figure 6 displays the time evolution of the control efforts. One can see that the
treatment effort reaches a peak value when the number of infectious individuals reaches
its maximum value, and then, such an effort converges to zero as a consequence of the
convergence to zero of the infectious subpopulation. On the other hand, the vaccination
effort converges to a constant value vDFE = 7.
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Figure 6. Time evolution of the control efforts: vaccination and treatment.

The vaccination and treatment efforts can be interpreted as the number of vaccines and
antivirals, or some appropriated medicaments, applied to the susceptible and infectious
individuals, respectively, during the transition from the initial state to the DFE point. In
this context, one can consider that the DFE point is reached when the number of infectious
individuals is less than 1. Moreover, although the vaccination effort has a constant value
vDFE = 7 given by (10) at the DFE point, one can stop the vaccination control effort once
the number of infectious individuals is smaller than 1. In this way, the vaccination can be
set v(t) = 0 once the DFE point is reached since the transition rate from the susceptible
subpopulation to the infectious one is zero in the absence of infectious individuals due
to such a rate depending on β

I(t)
N(t) . In other words, there is no propagation of the disease

in absence of infectious individuals, and then, the vaccination can be stopped. However,
the vaccination with the value vDFE could be maintained as a preventive measure against
possible new outbreaks of the disease due to immigration or other causes. This preventive
measure gives place to a transition from the susceptible subpopulation to the recovered
one with a rate that compensates for the transition rate ρ from the recovered subpopulation
to the susceptible one caused by the immunity loss. In case that the vaccination is stopped
once the DFE point is reached, which is at the 64th day in this example, the number of
vaccines and medicaments applied to control the propagation in the transient from the
initial day until achieving the DFE point are, respectively, 578 and 483. Such numbers
can be interpreted as the control cost to eradicate the persistence of the disease. Figure 7
displays the number of applied vaccines and medicaments each day during the transition
to the DFE point. The numbers of vaccines and medicaments applied each day, respectively
nv(t) and ntr(t), are obtained by evaluating nv(t) =

∫ t
t−1 v(τ)dτ and ntr(t) =

∫ t
t−1 tr(τ)dτ

for all integer t ∈
[
1, 2 . . . , t f

]
with t f denoting the day at which the DFE point is reached.
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Figure 7. Number of vaccines and medicaments applied each day.

3.3. Example 3: SIRS Model with a Defective Vaccination and Treatment

The same values as those used in Example 2 for the parameters of the model are
considered except that for c2, which is replaced by c2 = 0.2. In this way, Rc = 7.2945,
while Rc = 3.9644. Then, the conditions of Theorem 2 are not satisfied, which implies that
the non-existence of the EE point cannot be guaranteed. In fact, the time evolution of the
subpopulations under these conditions is displayed in Figure 8, and one can see that the
EE point given by (14) and (15) is reached. Concretely, the whole number of individuals at
the EE point is NEE = 1022 with SEE = 284, IEE = 21, and REE = 717, and the vaccination
and treatment control signals converge, respectively, to the values vEE = 2 and trEE = 3.

Mathematics 2022, 9, x FOR PEER REVIEW 19 of 33 
 

 

 
Figure 8. Time evolution of the subpopulations in the SIRS model under an insufficient vaccination 
and treatment. 

The time evolution of the control efforts is displayed in Figure 9. 

 
Figure 9. Time evolution of the control efforts under an insufficient vaccination and treatment. 

3.4. Example 4: Study of the Influence of the Control Parameter 𝑐ଶ on the Behaviour of the Con-
trolled Model 

Models (1)–(5) with the same values for the parameters as those given in Example 2, 
except that for 𝑐ଶ, are considered. In this way, 𝑅ത = 3.9644 in all the analysed cases. Con-
cretely, four cases are studied. Each one considers a different value for the parameter 𝑐ଶ 
in order to change slightly the ratio మభ, which implies a different value for the control re-
production number 𝑅. The condition 𝑅 < 𝑅ത as well as the conditions of the Theorems 
1, 2, 3, and 4 are satisfied in the four cases so that the DFE point is the unique equilibrium 
point, and it is locally and globally asymptotically stable, while the solutions of the con-
trolled model are non-negative for all time under any non-negative initial condition. The 
interest of this study is to analyse the influence of the parameter 𝑐ଶ on the transition of 
the controlled model solutions from the initial state to the DFE point by evaluating the 
number of infectious individuals on each day as well as the cost of both vaccination and 
treatment control efforts. For such a purpose, the values for the control parameter 𝑐ଶ and 
then that of 𝑅 in the four studied cases are: (i) 𝑐ଶ = 1, 𝑅 = 2.4687, (ii) 𝑐ଶ = 0.9, 𝑅 =2.6912, (iii) 𝑐ଶ = 0.8, 𝑅 = 2.9579, and (iv) 𝑐ଶ = 0.7, 𝑅 = 3.2832. Note that case (i) is that 
studied in Example 2, and it is used as the reference one for the current analysis. The initial 

0 100 200 300 400 500
Time (days)

0

200

400

600

800

1000

Su
bp

op
ul

at
io

ns

 S(t)
 I(t)
 R(t)

0 100 200 300 400 500
Time (days)

0

10

20

30

40

50

Co
nt

ro
l e

ffo
rts

 v(t)
 tr(t)

Figure 8. Time evolution of the subpopulations in the SIRS model under an insufficient vaccination
and treatment.

The time evolution of the control efforts is displayed in Figure 9.
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Figure 9. Time evolution of the control efforts under an insufficient vaccination and treatment.
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3.4. Example 4: Study of the Influence of the Control Parameter c2 on the Behaviour of the
Controlled Model

Models (1)–(5) with the same values for the parameters as those given in Example 2,
except that for c2, are considered. In this way, Rc = 3.9644 in all the analysed cases. Con-
cretely, four cases are studied. Each one considers a different value for the parameter c2
in order to change slightly the ratio c2

c1
, which implies a different value for the control

reproduction number Rc. The condition Rc < Rc as well as the conditions of the Theorems
1, 2, 3, and 4 are satisfied in the four cases so that the DFE point is the unique equilibrium
point, and it is locally and globally asymptotically stable, while the solutions of the con-
trolled model are non-negative for all time under any non-negative initial condition. The
interest of this study is to analyse the influence of the parameter c2 on the transition of the
controlled model solutions from the initial state to the DFE point by evaluating the number
of infectious individuals on each day as well as the cost of both vaccination and treatment
control efforts. For such a purpose, the values for the control parameter c2 and then that
of Rc in the four studied cases are: (i) c2 = 1, Rc = 2.4687, (ii) c2 = 0.9, Rc = 2.6912, (iii)
c2 = 0.8, Rc = 2.9579, and (iv) c2 = 0.7, Rc = 3.2832. Note that case (i) is that studied in
Example 2, and it is used as the reference one for the current analysis. The initial condition
is that used in Example 2 for all the cases. Figure 10 displays the time evolution of the
infectious subpopulation in the four cases. Figures 11 and 12 show, respectively, the time
evolution of the vaccination and treatment efforts in the four cases.
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Figure 10. Time evolution of the infectious subpopulation for the four considered values of the
control parameter c2.
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Figure 11. Time evolution of the vaccination effort for the four considered values of the control
parameter c2.
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Figure 12. Time evolution of the treatment effort for the four considered values of the control
parameter c2.

One can see in these figures that the peaks in the infectious population, the vaccination
and treatment efforts depend on the value of the control reproduction number Rc, which
is established by the control parameters c1 and c2. Concretely, the peak of the infectious
subpopulation as well as that of the treatment effort increases as Rc increases, while the
peak of the vaccination effort decreases as Rc increases, while maintaining Rc < Rc. Table 1
summarises the most relevant specifications, included the aforementioned ones, about the
four cases studied in this subsection.

Table 1. Specifications of the model behaviour for the four considered values of the parameter c2.

c2 = 1
Rc = 2.4687

c2 = 0.9
Rc = 2.6912

c2 = 0.8
Rc = 2.9579

c2 = 0.7
Rc = 3.2832

Infectious peak 215 229 245 261
Transient duration (days) 64 66 69 72

Vaccination peak 39 35 31 27
Treatment peak 29 31 33 35

SDFE 182 198 218 242
RDFE 868 852 832 808

vDFE 7 7 7 7
Vaccines 578 537 502 467

Medicaments 483 515 542 570

The results show that the duration of the transient from the initial state to the DFE
point increases as Rc increases. However, the number of vaccines applied during the whole
transient period decreases when the value of Rc increases. Such a result is due to the fact
that the peak of the vaccination effort decreases and, also, the number of vaccines used per
day, when Rc increases. In summary, the number of required vaccines decreases while that
of the required medicaments increases as Rc increases. Then, a tradeoff between the cost
of vaccination and the number of infectious individuals with its associated treatment cost
has to be taken into account for adjusting the values for the control parameters c1 and c2.
Such a tradeoff is going to depend on constraints about the number of available vaccines
for the newborns and the susceptible individuals and/or medicaments for treatment of
the infectious subpopulation. Finally, Figures 13 and 14 display the number of applied
vaccines and medicaments each day during the transition to the DFE point for the four
analysed cases.
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Figure 13. Number of applied vaccines each day for the four considered values of the control
parameter c2.
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Figure 14. Number of applied medicaments each day for the four considered values of the control
parameter c2.

One can see by analysing the results in Table 1 and Figures 10–14 that the increase
of the value of Rc, by decreasing the values of c2, and maintaining the rest of the control
parameters in the prescribed values, gives place to a decrease in the vaccination effort but
both the infectious subpopulation and the applied treatment effort increase at the same
time. The best of the studied cases from the viewpoint of the vaccination cost is case (iv),
but it is not good enough from the viewpoint of both the treatment cost and the number
of individuals who experience the infectious disease during the transition from the initial
state until reaching the DFE point. In this context, it also seems interesting to examine the
influence of the control parameter c6, which take part in the dynamics of the treatment
effort, on the specifications of the transient behaviour.

3.5. Example 5: Study of the Influence of the Control Parameter c6 on the Behaviour of the
Controlled Model

In the current example, the same values for the parameters b, µ, β, γ, ρ, α and q and for
the initial condition as those given in Example 4 are considered. Furthermore, the values of
c1 = 25, c2 = 0.7, and then Rc = 3.2832, c3 = 0.0001 and c4 = 0.07 corresponding with the
case of Example 4 with the smallest vaccination cost, concretely case (iv), which requires
the application of 467 vaccines as one can see in Table 1, are considered. Such a case is
the worst scenario in Example 4 from the viewpoint of the time evolution of the infectious
subpopulation and the cost in applied medicaments during the transient from the initial
state to the DFE point; namely, 570 medicaments are required, as Table 1 points out. The
objective is to analyse the influence of the control parameter c6, which acts on the value
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of Rc, on the specifications of such a transient time interval. Concretely, the value c5 = 2
is going to be considered in four proposed cases while the value for the parameter c6 will
be modified in order to change slightly the ratio c6

c5
. In this way, each case has a different

transition rate from the infectious to recovered subpopulation due to the treatment action.
Moreover, such a transition rate is added to the transition rate γ = 0.0455 d−1 from the
infectious to the recovered subpopulation in the absence of treatment, i.e., that derived from
the natural immunity system of the infectious individuals to fight against the disease. Such
a fact implies a reduction in average for the recovering time of the infectious individuals.
The analysed cases are (i) c6 = 0.24, Rc = 3.635, (ii) c6 = 0.27, Rc = 3.9644, (iii) c6 = 0.3,
Rc = 4.2937, and (iv) c6 = 0.33, Rc = 4.6231. Note that Rc < Rc as well as the conditions of
the Theorems 1, 2, 3 and 4 are satisfied in all the cases so that the DFE point is the unique
equilibrium point while being locally and globally asymptotically stable. Note also that
case (ii) of this current example is the same as case (iv) of Example 4, which is used as the
reference one for the current analysis. In case (i), the recovering time is reduced on average

from γ−1 = 22 days, in absence of treatment, to
(

γ + c6
c5

)−1
= 6.04 days if a treatment is

applied following the rule (5). For cases (ii), (iii), and (iv), the recovering time passes from
22 to 5.54, 5.12, and 4.75 days, respectively. The values of SDFE = 242, RDFE = 808, and
vDFE = 7 are reached at the DFE point in the four analysed cases, as it can be deduced
from (10), since all cases have the same values for c1 and c2. Figure 15 displays the time
evolution of the infectious subpopulation, while Table 2 summarises the specifications for
these four studied cases.
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Figure 15. Time evolution of the infectious subpopulation for the four considered values of the
control parameter c6.

Table 2. Specifications of the model behaviour for the four considered values of the parameter c6.

c6 = 0.24
Rc = 3.635

c6 = 0.27
Rc = 3.9644

c6 = 0.3
Rc = 4.2937

c6 = 0.33
Rc = 4.6231

Infectious peak 286 261 237 215
Transient duration (days) 87 72 63 58

Vaccination peak 27 27 27 27
Treatment peak 34 35 35 35

Vaccines 525 467 439 428
Medicaments 573 570 565 554

One can see that the peak of the infectious subpopulation is decreasing as the value of
c6 and then also Rc, increases. In addition, the number of required vaccines and medica-
ments during the transient decreases as the value for c6, and then also Rc, increases. Such a
result is mainly due to the fact that the duration of the transient decreases as the value of c6
increases, since there is a small duration on average for the transition of individuals from
infectious to the recovered subpopulation. Note also that the peak in the vaccination effort
is equal for the four studied cases, since such a peak depends on the values of the parame-
ters c1 and c2, which are the same for the four cases. Case (iv) is the best of the analysed
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ones in the current study. It requires a strong treatment so that an infectious individual
overcomes the infection after an average time of 4.75 days. In such a case, the transient
from the initial state until arriving at the DFE point has the following characteristics:

• The evolution of the infectious population reaches a peak of 215 individuals, i.e.,
approximately 21% of the initial whole population.

• The vaccination cost during the transient supposes 428 vaccines, i.e., the percentage
of the susceptible subpopulation to be vaccinated is around of the 43% of the initial
population, assuming one vaccine per individual.

• The treatment cost during the transient is of 554 medicaments, i.e., the percentage
of infectious subpopulation to be treated is around 55% of the initial population,
assuming one medicament per individual.

If the applied treatment has a lower performance so that the average recovering time
is 5.54 days, corresponding to case (ii), instead of the 4.75 days of case (iv), then the peak of
the infectious population is of 261 individuals, i.e., around the 26% of the initial population.
In such a situation, the costs of vaccination and treatment are, respectively, 467 vaccines
and 570 medicaments. In the considered worst case, i.e., case (i), which requires an average
time of 6.04 days for the transition from the infectious to the recovered subpopulation,
the number of necessary vaccines and medicaments is 525 and 573, respectively. As a
conclusion, the transient duration and the cost in vaccines and medicaments are related
with the performance of the applied treatment. If the applied medicaments have a poor
potency such that the reduction of the recovery time is of a few days, then the duration
of the transient from the initial state until reaching the DFE point can be very long. In
such a case, the transient can be very expensive in relation with the number of required
vaccines and medicaments or, even, the disease evolution can converge to the EE point if
the resources in the number of medicaments and/or vaccines is not enough.

3.6. Example 6: Study of the Behaviour of the Controlled Model under Vaccination

The objective of this subsection is to study the dynamics of the controlled model when
there are not medicaments for treating the infectious subpopulation, and then the only
measure to control the propagation of the disease is the planning of a vaccination campaign
to the newborns and the susceptible subpopulation. For this purpose, models (1)–(5) with
c6 = 0 can be used with the initial condition tr(0) = 0. In this way, tr(t) = 0 for all time.
Moreover, Rc = 1 from (16) such that Rc < 1 is required to guarantee the non-existence
of the EE point, and then, the DFE point is the unique equilibrium point while being
locally and globally asymptotically stable. Since Rc = β[µ(1−q)+ρ]

(µ+α+γ)
[
µ+ρ+

c2
c1

] = µ(1−q)+ρ

µ+ρ+
c2
c1

R0, it

is necessary that c2
c1

>
(

c2
c1

)
min

= [µ(1− q) + ρ]R0 − (µ + ρ) to guarantee that Rc < 1,
and then, the eradication of the infectious disease can be achieved. Table 3 compares the
results obtained for seven different cases of values for the pair c1 and c2, satisfying the
conditions of the Theorems 1, 2, 3, and 4 so that the solutions of the controlled model are
non-negative and the DFE point is the unique equilibrium point while being locally and
globally asymptotically stable. The same values for the parameters b, µ, β, γ, ρ, α, q, c3 and
c4 as those given in Example 2 are used, and the same initial condition is used as well.
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Table 3. Specifications of the model behaviour for seven considered pairs of values of the control
parameters c1 and c2 when there is not treatment to control the disease propagation.

Infectious Peak Transient
Duration (Days) Vaccines DFE Point

Case 1
c1 = 25 ; c2 = 10

Rc = 0.2924
33 120 1869

SDFE = 22
RDFE = 1028

vDFE = 9

Case 2
c1 = 22 ; c2 = 10

Rc = 0.258
29 110 1800

SDFE = 19
RDFE = 1031

vDFE = 9

Case 3
c1 = 19 ; c2 = 10

Rc = 0.2233
25 101 1740

SDFE = 16
RDFE = 1034

vDFE = 9

Case 4
c1 = 25 ; c2 = 15

Rc = 0.1963
22 94 1693

SDFE = 14
RDFE = 1036

vDFE = 9

Case 5
c1 = 25 ; c2 = 17

Rc = 0.1735
20 88 1651

SDFE = 13
RDFE = 1037

vDFE = 9

Case 6
c1 = 25 ; c2 = 20

Rc = 0.1477
18 82 1611

SDFE = 11
RDFE = 1039

vDFE = 9

Case 7
c1 = 25 ; c2 = 25

Rc = 0.1184
16 76 1569

SDFE = 9
RDFE = 1041

vDFE = 9

The results in Table 3 point out that the duration of the transient and also the peak
in the infectious subpopulation decreases as the value for the parameter Rc decreases or,
equivalently, as the ratio c2

c1
increases. Such a decrease in the transient duration implies a

smaller cost in the number of vaccines as Rc decreases. However, even in the cheapest case
shown in Table 3, i.e., case 7, the vaccination cost supposes the use of 1569 vaccines. Such
a cost may be decreased even more by considering small values for Rc. In any case, the
results show that the fight against the disease when there is not treatment and then, only
the vaccination is available, is quite expensive. Moreover, the propagation of the disease
can reach the EE point if there are not enough resources regarding vaccines. Note that
the average rate for the transition from the susceptible subpopulation to the recovered
one is approximately c2

c1
or, equivalently, the average time in the transition of vaccinated

individuals from the susceptible subpopulation to the recovered one is c1
c2

days. In the
cases studied in this subsection, such an average time is constrained between the values of
2.5 days, corresponding to case 1, and 1 day for case 7. Such a fact implies that the effect of
the vaccination in the population is quite fast, less than 3 days, in any case. In this context,
a more realistic scenario can be analysed by considering, for instance, c1 = 25 and c2 = 5.
In such a case, Rc = 0.5731, and the average time in the transition from the susceptible to
the recovered subpopulation is 5 days. The specifications in the transient for this case are
as follows:

• Infectious peak: 92;
• Transient duration: 235 days;
• Number of vaccines: 2559;
• SDFE = 42, RDFE = 1008 and vDFE = 8.

One can see that the transient is very large, as it is the number of vaccines to be applied.
In this context, the slower the effect of the vaccination in the population is, the larger the
value of the parameter Rc is as well as the duration of the transient and the number of
vaccines to guarantee the eradication of the disease. Another alternative to deal with a
more realistic scenario in the absence of treatment action could be the inclusion of a delay,
corresponding to the reaction time of the vaccines, in the epidemic models (1)–(3).
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3.7. Example 7: Study of the Behaviour of the Controlled Model under Treatment

The objective of this subsection is to study the dynamics of the controlled model when
there are not vaccines for the newborns and the susceptible subpopulation, and then, the
only measure to control the propagation of the disease is the application of some treatment
to the infectious subpopulation. For this purpose, models (1)–(5) with q = c2 = c3 = c4 = 0
can be used with the initial condition v(0) = 0. In this way, v(t) = 0 for all time. In
this situation, Rc = R0 = β

µ+α+γ from (13), and such a value cannot be modified by
control. However, a treatment procedure on the infectious population based on law (5)
with appropriate values for the parameters c5 and c6 so that Rc < Rc can be designed. Since
Rc = 1+ c6

c5(µ+α+γ)
, it is necessary that c6

c5
> β− (µ + α + γ) to guarantee that Rc < Rc and

then the non-existence of the EE point and the local and global asymptotic stability of the
DFE point, which is the unique one in that case. In this way, the eradication of the infectious
disease can be achieved. The current subsection compares the results obtained for some
different cases satisfying the conditions of Theorems 1, 2, 3, and 4 so that the solutions of
the controlled models are non-negative and the DFE point is the unique equilibrium point
while being locally and globally asymptotically stable. Note that c6

c5
is the rate of transition

from the infectious subpopulation to the recovered one by means of treatment of infectious
individuals and that such a transition rate is added to the average transition rate γ between
such subpopulations in the absence of treatment. By considering the same values for the
parameters µ, α, γ and β as those used in Example 1, then Rc = R0 = 14.2728, and the
transition rate c6

c5
from treatment actions has to be strictly larger than

(
c6
c5

)
min

= 0.6045 so

that Rc < Rc, and then, the DFE point is the unique equilibrium point while being locally
and globally asymptotically stable. This supposes an average time strictly smaller than(

γ +
(

c6
c5

)
min

)−1
= 1.5387 days for recovering from the infectious disease. Such a situation

is not realistic, since the existence of medicaments with such an extraordinary performance
is improbable. By assuming that the non-existence of the EE point is not secured only with
the applied treatment to the infectious subpopulation, at least, such a treatment campaign
can reduce the effects of the disease in the whole population. Such a result is illustrated by
considering several cases, concretely, those studied in Example 5 but without applying the
vaccination of either the susceptible subpopulation, i.e., c2 = c3 = c4 = 0 with v(0) = 0, or
the newborns, i.e., q = 0. The results are presented in Table 4 below.

Table 4. Specifications of the model behaviour for the four considered pairs of values of the control
parameters c5 and c6 governing the treatment effort.

c5 = 2
c6 = 0.24

Rc = 3.635

c5 = 2
c6 = 0.27

Rc = 3.9644

c5 = 2
c6 = 0.3

Rc = 4.2937

c5 = 2
c6 = 0.33

Rc = 4.6231

Infectious peak 424 395 369 342
Treatment peak 51 53 55 56

SEE 255 280 304 329
IEE 36 32 29 26
REE 710 694 677 659
NEE 1001 1006 1010 1014

IEE
NEE
× 100 3.59% 3.2% 2.87% 2.59%

tr EE 4 4 4 4

One can see the decrease of the value of Rc due to the decrease of the value of c6
c5

,
which implies an increase of the average time that an infectious individual stays in the
infectious subpopulation before passing to the recovered one, leads to a decrease in the
number NEE of individuals in the whole population when the EE point is reached while
increasing the percentage of infectious individuals at such an equilibrium point. In any
case, the application of treatment reduces considerably the effects of the infectious disease if
one compares the results of Table 4 with those of Example 1 where no treatment is applied,
and then, the whole population at the EE point is of 877 individuals with 127 infectious,
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i.e., 14.48% of individuals are infectious. Thus, the application of treatment reduces notably
the high mortality and maintains the percentage of infectious subpopulation in reasonably
small numbers at the achieved EE point.

3.8. Example 8: Study of the Behaviour of the Controlled Model under Different Rates for the Loss
of Immunity

The objective of this subsection is to study the dynamics of the controlled model under
both control actions, vaccination and treatment, with different values of the rate ρ for the
loss of immunity in the recovered subpopulation or, equivalently, different average periods
of immunity for the recovered individuals. For this purpose, case (iv) of Example 4 can
be taken as the reference one for this analysis, since it is one of the most convenient from
the viewpoint of vaccination and treatment costs. The values of the model parameters
are b = 0.0384 d−1, µ = 3.653× 10−5 d−1, β = 0.65 d−1, γ = 1

22 = 0.0455 d−1, ρ = 1
120 =

0.0083 d−1 and α = 5× 10−5 d−1, while those of the control actions are q = 0.1, c1 = 25,
c2 = 0.7, c3 = 0.0001, c4 = 0.07, c5 = 2 and c6 = 0.27 in such a reference case. Other
values for the parameter ρ are considered to analyse the influence of such a parameter on
the transient specifications. Concretely, the following four cases are treated: (i) ρ = 1

100 ,
Rc = 3.7647 (ii) ρ = 1

120 , Rc = 3.2832, (iii) ρ = 1
150 , Rc = 2.7554, and (iv) ρ = 0, Rc = 0.0167.

Note that case (ii) is used as a reference for this study and also note that the value of ρ
has an influence on the value for Rc. In case (i), the average duration of the immunity
is 100 days, and that of case (ii) is 120 days, while that of case (iii) is 150 days. Finally,
there is no loss of immunity in case (iv). All the cases have the same values for Rc, namely
Rc = 3.9644, so that Rc < Rc and then, the DFE point is locally and globally asymptotically
stable for all the analysed cases. The results are presented in Table 5 below.

Table 5. Specifications of the model behaviour for the four considered values of the parameter ρ.

. ρ = 1
100 ρ = 1

120 ρ = 1
150 ρ = 0

Infectious peak 262 261 259 253
Transient

duration (days) 91 72 64 49

Vaccination peak 27 27 27 27
Treatment peak 35 35 35 34

SDFE 277 242 203 1
RDFE 773 808 847 1049
vDFE 8 7 6 0

Vaccines 615 467 400 290
Medicaments 589 570 556 512

One can see that the number of necessary vaccines and medicaments in the transient
from the initial state to the DFE point decreases when the immunity period increases.
Such a fact is mainly due to the transient period decreasing as the immunity period
increases. Moreover, the number of recovery individuals at the DFE point increases when
the immunity period increases.

4. Conclusions

An SIRS epidemic model with the vaccination of newborns and susceptible individuals
and treatment of infectious ones has been investigated. The vaccination and the treatment
are governed by a control subsystem containing several free-design parameters. This control
subsystem provides two more free-design parameters comparing with those available in
the more usual SIRS models with vaccination and treatment. In the proposed model, the
intensity of both control actions is not directly proportional to the susceptible and/or
infectious subpopulation, as it usually happens in the SIRS models. Here, both actions
are provided by the control subsystem, and the parameters defining the dynamics of the
controller are also available to shape the vaccination and treatment actions. This control
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strategy allows the achievement of several relevant results. First, an appropriate adjustment
of the control parameters guarantees the positivity of the controller model, as it has been
mathematically proved in Theorem 1. Note that such a property is required for coherence in
epidemic models where all the subpopulations and the control actions, such as vaccination
and treatment, have to be non-negative. Then, the equilibrium points of the proposed
controlled epidemic model are calculated as a function of the system parameters. There
are two equilibrium points: (i) the DFE point where the infectious subpopulation is zero
and then the whole population is composed by susceptible and recovery subpopulations;
and (ii) the EE point where the three subpopulations of the model are presented. The DFE
one always exists while the existence of the EE point depends on the values of the control
parameters. Moreover, the control reproduction number Rc of the controlled epidemic
model and a threshold value Rc are mathematically obtained as functions of the control
parameters. This result allows us to analyse the influence of the control parameters on
both values Rc and Rc. In summary, the values Rc and Rc and the existence of the EE point
depends on the control parameters. As a consequence, the existence of the EE point can
be related with Rc and Rc. In this sense, values of the control parameters doing Rc < Rc
guarantee the non-existence of the EE point, as it has been mathematically proved in
Theorem 2. In such a situation, the proposed controlled SIRS model only possesses a
unique equilibrium point, namely, the DFE point. On the other hand, the local and global
asymptotic stability of the DFE point are mathematically proved in Theorems 3 and 4,
respectively. Then, an appropriate adjustment of the control parameters so that Rc < Rc
allows guaranteeing the positivity of the controlled epidemic model while ensuring the
non-existence of the EE point. In such a situation, the DFE is the unique equilibrium point
of the model, and then, the eradication of the infectious disease can be guaranteed.

Finally, the influence of the control parameters on the time evolution of the disease
propagation has been studied by several simulation examples. The first example shows the
time evolution of the propagation of the disease without applying control actions. One can
see that the model converges to the EE point, and then, the disease is not eradicated. The
second example shows the time evolution of the propagation of the disease if the proposed
control actions are applied in an effective way, i.e., if the control parameters are chosen
such that Rc < Rc. In this case, one can see that the model converges to the DFE point, and
the disease is eradicated. The third example shows the time evolution of the propagation of
the disease if the proposed control actions are applied in a defective way, i.e., if the control
parameters are chosen such that Rc > Rc. One can see that the model converges to the EE
point, and the disease is not eradicated. The fourth example analyses the influence of the
controller parameter c2 in the evolution of the propagation of the disease. Such a parameter
acts in the vaccination control law, and it has an influence on the value of Rc. Concretely, the
value of Rc is indirectly proportional to c2. This example shows that the model converges to
the DFE point whenever Rc < Rc. The number of vaccines and medicaments associated to
the control efforts obtained from the control subsystem to achieve the DFE point depends on
c2. One can see that by decreasing the value c2, or equivalently increasing the value of Rc but
guaranteeing that Rc < Rc, the number of vaccines applied to the susceptible individuals
decreases while that of medicaments applied to the infectious individuals increases. The
fifth example analyses the influence of the controller parameter c6 in the evolution of the
propagation of the disease. Such a parameter acts in the treatment control law, and it has
an influence on the value of Rc. Concretely, the value of Rc is directly proportional to c6.
This example shows that the model converges to the DFE point whenever Rc < Rc. The
number of vaccines and medicaments associated to the control efforts obtained from the
control subsystem to achieve the DFE point depends on c6. One can see that by increasing
the value c6, or equivalently increasing the value of Rc but guaranteeing that Rc < Rc,
the number of both vaccines and medicaments applied to the respective subpopulations
decreases. Example 6 analyses the behaviour of the model when only the vaccination action
is available. Example 7 analyses the behaviour of the model when only the treatment action
is available. Example 6 shows that the DFE point is not achieved with an appropriate
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number of vaccines. Example 7 requires a treatment with a great potency so that the
recovery of the infectious individuals after being treated is faster than in a real situation.
Finally, Example 8 studies the evolution of the propagation for different rates of loss of
immunity. The number of vaccines and medicaments in the convergence of the model to
the DFE point decreases as the rate of losing immunity decreases.
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Appendix A

First, the non-negativity of S(t) is proved by contradiction. Suppose that the result
is false because there exists some ts > 0 such that S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, v(t) ≥ 0,
tr(t) ≥ 0 for all 0 ≤ t < ts and S(ts) < 0. Equations (1) and (4) can be written as:[ .

S(t)
.
v(t)

]
=

 −µ− β
I(t)
N(t) −1

c2 + c4
I(t)
N(t) −c1

[ S(t)
v(t)

]
+

[
b(1− q) + ρR(t)

c3 I(t)

]

=

[
−(µ + β) −1

c2 + c4 −c1

][
S(t)
v(t)

]
+

 b(1− q) + ρR(t) + β
S(t)[S(t)+R(t)]

N(t)

c3 I(t)− c4
S(t)[S(t)+R(t)]

N(t)

 (A1)

where the fact that I(t) = N(t)− S(t)− R(t) has been used. Then, the subsystem (A1) may
be compactly written as: [ .

S(t)
.
v(t)

]
= ASV

[
S(t)
v(t)

]
+

[
u1(t)
u2(t)

]
(A2)

with:

ASV =

[
−(µ + β) −1

c2 + c4 −c1

]
(A3)

and:

u1(t) = b(1− q) + ρR(t) + β
S(t)[S(t) + R(t)]

N(t)
; u2(t) = c3 I(t)− c4

S(t)[S(t) + R(t)]
N(t)

. (A4)

From (A2), it follows that:[
S(t)
v(t)

]
= φSV(t)

[
S(0)
v(0)

]
+
∫ t

0
φSV(t− τ)

[
u1(τ)
u2(τ)

]
dτ ∀t ≥ 0 (A5)
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with φSV(t) = eASV t = L−1
{(

sI2 − ASV)−1
}

, where L−1 denotes the inverse of the Laplace
transform, I2 is the second-order identity matrix and s is the Laplace variable in the complex
domain. By direct calculations, one obtains that:

φSV
11 (t) = (c1+λSV

1 )eλSV
1 t−(c1+λSV

2 )eλSV
2 t

λSV
1 −λSV

2
; φSV

12 (t) = − eλSV
1 t−eλSV

2 t

λSV
1 −λSV

2

φSV
21 (t) =

(c2+c4)

(
eλSV

1 t−eλSV
2 t
)

λSV
1 −λSV

2
; φSV

22 (t) = (µ+β+λSV
1 )eλSV

1 t−(µ+β+λSV
2 )eλSV

2 t

λSV
1 −λSV

2

(A6)

where:

λSV
1,2 =

1
2

[
−(µ + β + c1)±

√
[c1 − (µ + β)]2 − 4(c2 + c4)

]
(A7)

are the eigenvalues of ASV , with λSV
1 corresponding to the sign “+” and λSV

2 corresponding
to the sign “−”. If the control parameters c1, c2, and c4 fulfil condition (i), then λSV

1 and
λSV

2 are real, and λSV
2 < λSV

1 < 0. From (A4) and (A5), it follows that:

S(t) = (c1+λSV
1 )eλSV

1 t−(c1+λSV
2 )eλSV

2 t

λSV
1 −λSV

2
S(0)− eλSV

1 t−eλSV
2 t

λSV
1 −λSV

2
v(0)

+ 1
λSV

1 −λSV
2

∫ t
0

[(
c1 + λSV

1
)
eλSV

1 (t−τ) −
(
c1 + λSV

2
)
eλSV

2 (t−τ)
]
u1(τ)dτ

− 1
λSV

1 −λSV
2

∫ t
0

[
eλSV

1 (t−τ) − eλSV
2 (t−τ)

]
u2(τ)dτ.

(A8)

From (A4), (A7), (A8), and the condition v(0) = 0, one obtains:

S(ts) ≥
(c1+λSV

1 )eλSV
1 ts−(c1+λSV

2 )eλSV
2 ts

λSV
1 −λSV

2
S(0)

+ b(1−q)
λSV

1 −λSV
2

∫ ts
0

[(
c1 + λSV

1
)
eλSV

1 (ts−τ) −
(
c1 + λSV

2
)
eλSV

2 (ts−τ)
]
dτ

− c3
λSV

1 −λSV
2

∫ ts
0

[
eλSV

1 (ts−τ) − eλSV
2 (ts−τ)

]
I(τ)dτ,

(A9)

where the facts that S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, N(t) ≥ 0, and S(t)
N(t) ≤ 1 jointly to

eλSV
1 t > eλSV

2 t, for all 0 ≤ t < ts, provided that condition (i) is satisfied by the control
parameters, have been used. Then, from (A9) and by direct calculations, one obtains:

S(ts) ≥
(c1+λSV

1 )eλSV
1 ts−(c1+λSV

2 )eλSV
2 ts

λSV
1 −λSV

2
S(0)

+ b(1−q)
λSV

1 −λSV
2

[
− c1+λSV

1
λSV

1

(
1− eλSV

1 ts
)
+

c1+λSV
2

λSV
2

(
1− eλSV

2 ts
)]

− c3 Imax
λSV

1 −λSV
2

[
− 1−eλSV

1 ts

λSV
1

+ 1−eλSV
2 ts

λSV
2

]
,

(A10)

where Imax = max
0≤t<∞

{I(t)} ≥ max
0≤t<ts

{I(t)} ≥ 0. From (A10), it follows that:

S(ts) ≥
(c1+λSV

1 )[|λSV
1 |S(0)−b(1−q)]+c3 Imax

(λSV
1 −λSV

2 )|λSV
1 |

eλSV
1 ts

− (c1+λSV
2 )[|λSV

2 |S(0)−b(1−q)]+c3 Imax

(λSV
1 −λSV

2 )|λSV
2 |

eλSV
2 ts + b(1−q)c1−c3 Imax

λSV
1 λSV

2
.

(A11)

Now, by introducing (A7) in (A11) and since c1 > µ + β from condition (i), direct
calculations lead to:

S(ts) ≥
[(µ+β)S(0)−b(1−q)]

√
[c1−(µ+β)]2−4(c2+c4)

2(λSV
1 −λSV

2 )

(
eλSV

1 ts

|λSV
1 |

+ eλSV
2 ts

|λSV
2 |

)
+

[c1−(µ+β)][(µ+β)S(0)−b(1−q)]+2[(c2+c4)S(0)+c3 Imax ]

2(λSV
1 −λSV

2 )

(
eλSV

1 ts

|λSV
1 |
− eλSV

2 ts

|λSV
2 |

)
+ b(1−q)(µ+β)−c3 Imax

λSV
1 λSV

2
.

(A12)
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Then, S(ts) ≥ 0 from the conditions (i)–(iii) jointly with the facts that λSV
2 < λSV

1 < 0
and eλSV

1 ts > eλSV
2 ts . Such a result contradicts the existence of a time instant ts > 0 such that

S(ts) < 0. Then, the non-negativity of S(t) is proved. Now, the non-negativity of I(t) is
proved by contradiction. Suppose that the result is false because there exists some tI > 0
such that S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, v(t) ≥ 0, tr(t) ≥ 0 for all 0 ≤ t < tI and I(tI) < 0.
Then, Equations (2) and (5) can be compactly written as:[ .

I(t)
.

tr(t)

]
= AIT

[
I(t)
tr(t)

]
+

[
1
0

]
u3(t) (A13)

where u3(t) = β
S(t)I(t)

N(t) and:

AIT =

[
−(µ + α + γ) −1

c6 −c5

]
. (A14)

From (A14), it follows that:[
I(t)
tr(t)

]
= φIT(t)

[
I(0)
tr(0)

]
+
∫ t

0
φIT(t− τ)

[
1
0

]
u3(τ)dτ ∀t ≥ 0, (A15)

with φIT(t) = eAIT t = L−1
{(

sI2 − AIT)−1
}

. By direct calculations, one obtains that:

φIT
11 (t) =

(c5+λIT
1 )eλIT

1 t−(c5+λIT
2 )eλIT

2 t

λIT
1 −λIT

2
; φIT

12 (t) = −
eλIT

1 t−eλIT
2 t

λIT
1 −λIT

2

φIT
21 (t) =

c6

(
eλIT

1 t−eλIT
2 t
)

λIT
1 −λIT

2
; φIT

22 (t) =
(µ+α+γ+λIT

1 )eλIT
1 t−(µ+α+γ+λIT

2 )eλIT
2 t

λIT
1 −λIT

2

(A16)

where:

λIT
1,2 =

1
2

[
−(µ + α + γ + c5)±

√
[c5 − (µ + α + γ)]2 − 4c6

]
(A17)

are the eigenvalues of AIT , with λIT
1 corresponding with the sign “+” and λIT

2 corresponding
with the sign “−”. If the control parameters c5 and c6 fulfill condition (iv), then both
eigenvalues are real, and λIT

2 < λIT
1 < 0. From (A15) and (A16), it follows that:

I(tI) =
(c5+λIT

1 )eλIT
1 tI−(c5+λIT

2 )eλIT
2 tI

λIT
1 −λIT

2
I(0)− eλIT

1 tI−eλIT
2 tI

λIT
1 −λIT

2
tr(0)

+ β

λIT
1 −λIT

2

∫ tI
0

[(
c5 + λIT

1
)
eλIT

1 (tI−τ) −
(
c5 + λIT

2
)
eλIT

2 (tI−τ)
]

S(τ)I(τ)
N(τ)

dτ.
(A18)

Condition (iv) about the control parameters c5 and c6 implies that c5 + λIT
1 > 0.

Under such a condition jointly with tr(0) = 0, one obtains that I(tI) ≥ 0 from (A18) since
eλIT

1 tI > eλIT
2 tI > 0 and S(t)I(t)

N(t) ≥ 0 for all 0 ≤ t < tI . Then, such a result contradicts the
existence of a time instant tI > 0 such that I(tI) < 0. Then, the non-negativity of I(t) is
proved. Now, the non-negativity of R(t) is proved by contradiction. Suppose that the result
is false because there exists some tR > 0 such that S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, v(t) ≥ 0,
and tr(t) ≥ 0 for all 0 ≤ t < tR and R(tR) < 0. From (3), it follows that:

R(t) = e−(µ+ρ)tR(0) +
∫ t

0
e−(µ+ρ)(t−τ)[bq + γI(τ) + v(τ) + tr(τ)]dτ ∀t ≥ 0. (A19)

Then, it follows that R(tR) ≥ 0 for any R(0) ≥ 0. Such a result contradicts the existence
of a time instant tR > 0 such that R(tR) < 0. Then, the non-negativity of R(t) is proved.
Now, the non-negativity of v(t) is proved by contradiction. Suppose that the result is false
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because there exists some tV > 0 such that S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, v(t) ≥ 0, tr(t) ≥ 0
for all 0 ≤ t < tV and v(tV) < 0. From (4), it follows that:

v(t) = e−c1tv(0) +
∫ t

0
e−c1(t−τ)

[
c2S(τ) + c3 I(τ) + c4

S(τ)I(τ)
N(τ)

]
dτ ∀t ≥ 0. (A20)

Then, it follows that v(tV) ≥ 0 for any v(0) ≥ 0. Such a fact contradicts the existence
of a time instant tV > 0 such that v(tV) < 0. Then, the non-negativity of v(t) is proved.
Finally, the non-negativity of tr(t) is proved by contradiction. Suppose that the result is
false because there exists some tT > 0 such that S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, v(t) ≥ 0,
tr(t) ≥ 0 for all 0 ≤ t < tT and tr(tT) < 0. From (5), it follows that:

tr(t) = e−c5ttr(0) + c6

∫ t

0
e−c5(t−τ) I(τ)dτ ∀t ≥ 0. (A21)

Then, it follows that tr(tT) ≥ 0 for any tr(0) ≥ 0, since I(t) ≥ 0 ∀t ≥ 0. Such a
result contradicts the existence of a time instant tT > 0 such that tr(tT) < 0. Then, the
non-negativity of tr(t) is proved. In summary, none of the controlled epidemic model
variables take negative values.
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