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Abstract: In this paper, we first use the information we have on the patients of an oncology day
hospital to distribute the treatment schedules they have in each of the visits to this centre. To do this,
we propose a deterministic mathematical programming model in such a way that we minimise the
duration of the waiting room stays of the total set of patients and taking into account the restrictions
of the circuit. Secondly, we will look for a solution to the same problem under a stochastic approach.
This model will explicitly consider the existing uncertainty in terms of the different times involved in
the circuit, and this model also allows the reorganisation of the schedules of medical appointments
with oncologists. The models are complemented by a tool that solves the problem of assigning nurses
to patients. The work is motivated by the particular characteristics of a real hospital and the models
are used and compared with data from this case.

Keywords: treatment schedules; medical appointment scheduling; integer linear programming;
stochastic programming; nurse assignment; case study

1. Introduction

Nowadays, a large proportion of diagnosed cancer cases are treated without the need
for hospitalisation of the patient, which in general proves to be a great help in favour of the
patient’s well-being and a better quality of life.

Normally, oncological therapies are performed in day centres where the patient goes
to carry out the different requirements of his or her treatment and then returns home,
where the therapy recovery takes place. On the other hand, during the last decades, the
number of cases of cancer patients increased significantly (an enlargement that we are still
experiencing today) mainly due to improvement in the life expectancy of individuals. It is
particularly older people who are more prone to these diseases.

Greater demand means greater difficulty in maintaining the quality of services offered
to patients. Specifically, we are referring to the capacity to maintain stable waiting times for
patients during their stay in these centres. It should be noted that these types of centres have
quite complex protocols of action that can be prone to generate significant waiting times for
patients. It should be borne in mind that these are high-demand services combined with an
organisation that sometimes has room for improvement. All this means that the planning
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of clinical centres to treat cancer patients is an important task of concern for the various
professionals involved in hospitals and clinics at regional, national and international level.
It should be noted that the existing treatments for this disease are quite expensive, and
therefore, are faced with the obvious (but sometimes infeasible) solution of investing more
money in these centres. However, the question arises as to whether it is possible to improve
the organisation of the different procedures carried out in these units, without necessarily
increasing the resources available. The entire process designed for the care and treatment
of oncology patients comprises various stages to be covered by the patient on the day
he/she comes to the hospital. It involves the collaboration of many professionals from the
team, specialised in very different tasks (nurses, doctors, pharmacists, etc.), and the use of
certain limited resources, both material (appointment rooms, special chairs for treatments,
etc.) and human. Therefore, the existence of an efficient action protocol between all these
agents is a key ingredient in minimising patient waiting time, the creation of the different
appointments and the planning of nursing staff and other professionals involved (see [1]).

2. Motivation: The Problem of the ODH in Santiago de Compostela (Spain)

At the Oncology Day Hospital (ODH) in Santiago de Compostela (a city in north-
western Spain), cancer patients are treated on a daily outpatient basis by providing two
types of medical services, namely consultations with doctors and chemotherapy treatments.
These actions are strongly related, the consultation, i.e., the medical act, being a necessary
antecedent to be able to carry out the treatments later on, albeit during the same day. The
hospital’s current approach is to give patients an estimated appointment time, leaving the
start of the treatment as an undetermined time that will be made known to the patient only
in the moments before the treatment takes place. This creates the problem that the patient
must remain in the hospital waiting room between the two medical services, which often
causes, at the very least, uncertainty and, at times, discomfort for the patients.

Going into more detail, the ODH is a service of the Hospital Clínico Universitario
of Santiago de Compostela (CHUS) where chemotherapy treatments are carried out on
patients with different types of cancer. The health area of Santiago de Compostela (SCHA),
see Figure 1, is large (450,000 inhabitants) and, for this reason, the ODH attends approxi-
mately 20,000 patients per year, which translates into 30,000 consultations with oncologists
and 20,000 treatment sessions. Each patient, depending on the type of cancer they suffer
from and the stage they are at, has a treatment adapted to their own characteristics, but
they all have in common that they are carried out periodically. Specifically, treatments can
be given in cycles of one session every one, two, three or six weeks. Therefore, the number
of patients to be seen at the centre (as well as the type of cancer they suffer from) on a given
day is information that is known in advance.

The circuit that a patient follows in this centre is as follows. First, they are registered
on arrival at the centre and a blood test is performed. When the test results are ready, an
oncologist certifies that they are correct and has a review with the patient. If everything
related to the patient’s health status is in order, the pharmacy is ordered to prepare the
patient’s chemotherapy substances. When the preparation is ready, the patient is transferred
to one of the chemotherapy infusion chairs (if one is available). When the process is finished,
the patient leaves the chair and leaves the centre.

In order to formalise an algorithm that processes the specific circumstances of a
working day and determines appointment times, it is necessary to know two types of
data: permanent data and data specific to the working day in question. Permanent data
are data that remain unchanged over a period of time. Therefore, in this category we
have deterministic data such as the number of chairs available, the number of nurses,
pharmacists and oncologists available and the opening and closing hours of the centre.
These data will generate capacity constraints that need to be taken into account.
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Figure 1. Health Area of Santiago de Compostela, in Spain.

The ODH has the following data: oncologist consultation hours from 8:00 h to 15:00 h,
chemotherapy treatment hours from 8:00 h to 22:00 h, the duration of analyses is between
45 and 60 min, the duration of appointments with oncologists is 45 min for new patients
and 15 min for old patients (on average), nine oncologists work every morning (three
of each of the three specialties or types of cancer under consideration), five nurses work
every morning and two every afternoon with one additional nurse for reinforcement at
certain times, five wards with eight chemotherapy chairs (a total of 40 chairs) and three
pharmacists prepare infusions every day. It is assumed that each nurse needs 15 min to
start each treatment and, in addition, at any given time can be attentive to the performance
of 16 treatments. The average time taken to prepare medicines for treatment is 70 min. We
note that the number of physical and human resources is fixed but the times of the different
stages show variability. The data specific to the working day in question are the number
of patients to be seen and the type of cancer each of them suffers from (the duration of
treatments can vary according to, especially, the type and stage of cancer), as well as how
many of them are new patients and how many are not. The latter significantly affects the
patient’s treatment time, as nurses need additional time to inform the new patient before
starting chemotherapy.

In a preliminary investigation, refs. [2,3] analyzed the time ODH patients waited
from the end of the appointment with the oncologist to the start of the administration of
treatment. They concluded that the time these patients have to spend when they come
to the hospital for intravenous chemotherapy means discomfort and a worsening of their
quality of life, and it is therefore necessary to incorporate new measures to minimize
lost time in an environment such as a hospital. The aim of this work is twofold. Firstly,
by means of a deterministic model, to use the information we have on the patients of
the oncology day hospital in Santiago de Compostela to distribute the different medical
appointments they have in each of their visits to the centre in such a way as to minimise the
duration of the waiting room stays for the total number of patients and taking into account
the restrictions of the circuit. This is expected to improve the quality of life of patients
and make the planning work of the service professionals more manageable. Secondly, we
will look for a solution to the same problem under a stochastic approach. This model will
explicitly take into account the existing uncertainty in the duration of the times affecting
the process, to achieve better planning results, and will also allow the reorganisation of
medical appointment schedules with oncologists. The models are complemented with a
tool that solves the problem of assigning nurses to patients. The work is motivated by the



Mathematics 2022, 10, 62 4 of 31

particular characteristics of the ODH and the model results are used and compared with
data from this real case.

3. Literature Review

Let us take a look at different aspects of current work.
Mathematical tools for decision support in health management. Ref. [4] provides a

review of recent optimisation studies that present decision-support tools for the design and
planning of outpatient appointment systems. In ref. [5], as an aid for healthcare managers
with the COVID-19 patient prioritisation and scheduling problem, a tool was developed
based on artificial intelligence, using the neural networks method, and operations research,
using a mathematical fuzzy interval model. The results of this study indicated that the
combination of both models provides an effective evaluation under conditions of scarce
initial information to select a suitable list. The proposed approach achieves one goal: to
minimise mortality rates under the constraints of available resources in each hospital.
The main objective of [6] is the efficient and balanced use of equipment and resources in
hospital operating theatres. In this context, data sets from one hospital were used through
the methods of goal programming and constraint programming. The main objective of [7]
is the design and application of a binary scheduling model to support the decision making
process, especially with regard to manpower scheduling in organisations with stochastic
demand. The results were applied to the personnel allocation process in the ambulance
service station in Subotica (Serbia).

Optimizing the operation of oncology day centers or primary care clinics. There are
several works addressing the tasks of optimising oncology day centres or primary care
clinics appointment scheduling, with mathematical, artificial intelligence and simulation
scheduling techniques being the most commonly used. Below we describe some of the
works that address problems that are quite similar to the Santiago de Compostela ODH. In
this work we focus on daily optimization of patient circuits, which could be extended to
a weekly planning. Naturally, this task is integrated into a more general problem such as
the schedule corresponding to the instant of initiation of treatment plans, which has been
addressed by different authors, who have highlighted its relevance. Incidents such as a
patient failing to keep appointments and the availability of resources clearly impact on the
problem at hand. Ref. [8], in their work to quantify the association between cancer treatment
delay and mortality, concludes that cancer treatment delay is a problem in healthcare
systems worldwide. It is now possible to quantify the impact of delay on mortality in order
to prioritise and model. Even a four-week delay in cancer treatment—surgical indications,
systemic treatment and radiotherapy—is associated with increased mortality in seven
types of cancer. Policies focused on minimising delays in cancer treatment initiation could
improve population survival outcomes. Ref. [9], following a systematic review, concludes
that a comprehensive strategic approach, including realignment of resources, operational
efficiency and process improvement, holds the most promise for improving the efficiency
and effectiveness of outpatient and ambulatory services, thereby reducing waiting times
and improving health outcomes. These three broad areas identified are complementary
and offer a comprehensive approach to policy improvement in these areas. In research
by [10], they perform a baseline measurement of lung cancer patients’ waiting times for
systemic therapy across the UK. The authors understand that the continued introduction
of new therapies will have a significant effect on service demands and recommend that
health service managers model the likely impact on resource needs, and suggest the
use of the so-called C-PORT tool developed by the UK Department of Health. A study
conducted by [11] at a single radiotherapy cancer treatment centre shows that the majority
of outpatient consultations (80%) were seen within 20 min of their scheduled time. The
reported delays were due to clinic workflow and the coordination of multiple appointments
throughout the day. Findings from such studies, the authors believe, can help formulate
strategies to improve efficiency and patient satisfaction. The problems identified by [12] in
the course of an audit of patient waiting time and physician consultation time in a primary
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care clinic were addressed by the aforementioned paper which has formulated strategies
to improve waiting and consultation time, including increasing staffing, implementing an
algorithm for a staggered appointment system for patient follow-up and improving the
queuing system for walk-in patients attending the clinic. The results shown in [13] provide
some insights into waiting time, which is a barrier to healthcare delivery in mainland
China. The authors show that adopting improvements in outpatient management software,
following detailed analysis of patient data, patient surveys and patient interviews, can be
an effective way to deal with long waiting time.

Applications of deterministic mathematical programming to the optimization of
oncology patient circuits. Ref. [14] presents the situation of a clinical centre to which
patients come to receive chemotherapy sessions with a certain periodicity, forming regular
cycles of treatment sessions. Two objectives are pursued. On the one hand, to reduce as
much as possible the delays in the patients’ cycles, given that excessive delays in the time
between chemotherapy sessions greatly diminish their effectiveness. On the other hand, to
reduce the hospital costs associated with the hours of work that are carried out. Ref. [15]
addresses the problem of minimising patient waiting times during a working day in a
centre offering oncology appointments and chemotherapy treatments in a context where
it is already known how many and what type of patients need to be seen. Initially, a bi-
objective optimisation problem is posed, trying to achieve a balanced workload throughout
the working day both in terms of the use of the chemotherapy chairs and in terms of
the consultations with the oncologists. Once the process has been completed, and a new
method of appointment scheduling has been obtained, the simulation will be used to
corroborate that the desired level of balanced workload can be achieved, as well as to
compare it with the existing method and verify that the new method is more efficient.
In [16], in the context of a centre to which patients come for chemotherapy, the problem
of minimising delays in patient treatments and the total working time of the centre is
addressed. Specifically, the aim is to find the optimal starting day of treatment for each
patient so that their chemotherapy cycle is completed as soon as possible, as well as for the
centre’s professionals to achieve this goal with as few working hours as possible. However,
the problem is also posed by taking the number of resources as a decision variable to find
out what would be the appropriate number of professionals and chairs to achieve optimal
performance (if the hospital were in a position to devote a larger budget to increase such
resources). The modelling in the paper by [17] studies a way to proceed when, for a given
working day, patients in the centre are assigned appointments with their oncologist and
chemotherapy treatments. Furthermore, it is assumed that the appointments with each
patient’s oncologist are scheduled in advance, and the problem faced is to determine the
schedules of each patient’s chemotherapy treatment sessions. Thus, this work is close to
the problem at hand, although the constraints and the objective itself are not identical to
those of ODH. However, it is noteworthy that the work has the great advantage that the
proposed model can be solved exactly and very quickly, for the planning of a working
day with a number of patients around 100, which is a good property inherited by the
models introduced in our paper. In [18], treatments are scheduled for new patients and
nursing needs are taken into account, taking into account last minute cancellations and
multiple objectives. Ref. [19] uses a model similar to those considered in vehicle routing
problems to balance resource use and minimise waiting times. They make simplifications
such as not setting a limit on the number of nurses, although they plan a set of days.
They only accurately solve problems with about 30 patients and generally use a two-stage
heuristic involving a constructive algorithm and a local search. They perform a sensitivity
analysis and use a second model that adjusts appointments robustly to longer than expected
treatments.

Applications of stochastic mathematical programming to the optimization of on-
cology patient circuits. Ref. [20] addressed the problem of adjusting outpatient time and
appointments along with the optimal number of physicians, for an outpatient appoint-
ment system in an individual block/fixed interval class, by using an adaptive penalty
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genetic algorithm. The length of service time for medical consultation, the time required
for laboratory tests, and the time deviation from the appointment time are modelled by
random variables. No-show patients are also included in the system. Using the adaptive
penalty scheme, optimisation constraints are handled automatically and numerically. The
solution methodology is easily applicable to other appointment systems. Ref. [21] presents
a two-stage stochastic integer schedule to design patient appointment schedules under
uncertainty of treatment times. The goal is to minimise a trade-off between the expected
waiting times of patients and the expected total time to treat them. It is shown that solving
this optimisation problem requires prohibitive computational time, so a heuristic algo-
rithm is developed to find approximate solutions. Ref. [22] proposes such a model that is
solved by averaging sample scenarios, which is an approach that can result in affordable
computational times. This approach has served as a source of inspiration for the second
model introduced in this paper. The work is motivated by a multidisciplinary oncology
clinic that communicates the diagnosis and explains the treatment plan to its patients. In
addition, regular patients are also seen by the clinicians. Therefore, all clinicians involved
need a work plan in which various types of patients can be scheduled. These work plans
are designed to optimise the waiting time of the patients and the waiting time of the clini-
cians. In [23], patient waiting times, chemotherapy chair downtime and nurse overtime are
minimised using a stochastic programming algorithm. The work [24] includes stochastic
programming aimed at minimising waiting times and the implementation of the methods
with OpenSolver.

Optimization of oncology patient circuits through simulation techniques. A dis-
crete event simulation model to explore appointment scheduling in a general hospital
outpatient chemotherapy department has been developed by [25]. They consider different
statistical distributions of the times involved in the problem. They identified an efficient
schedule that kept bed utilisation at a tolerable level, restricting excess waiting time in a
clinical setting. The authors suggest a scheduling method based on infusion time for the
outpatient chemotherapy department. The study [26] proposes a feasible solution that
increases resource utilisation without affecting patient service. The proposed simulation
model shows how, with a better balance in the appointment system, the clinic could in-
crease the number of patients seen by 18% while maintaining the same total patient time
in the system. In other words, the model establishes a new schedule for infusion chairs
that would allow more patients to enter the system and maintain the workload of nurses
and pharmacists. The model distributes patients to available slots without exceeding the
capacity of human resources. By means of simulation, waiting times, allocation of wards to
specialists, multiple clinics and the use of resident and senior doctors are simultaneously
considered in [27]. The convenience of computerised data collection is highlighted. Ref. [28]
analyses the effects of possible improvements to the circuit by simulation. Consultation
with the oncologist and pharmacy work are highlighted as key steps. They recommend
citation for all stages and improved information flow between them.

Other methods applied to optimize the management of oncology patient circuits.
Research by [29] addresses an oncology patient admission and allocation problem. The
probability of patient appointment cancellation, as an important indicator of possible future
gaps, is considered by the author in making admission and patient allocation decisions.
The aim of walk-in admission by general outpatient clinics is to reduce the negative impact
of patient absences and cancellations, and to improve the utilisation and accessibility of the
clinic. This study presents a learning-based outpatient management (LGOM) system that
focuses specifically on the management of patient admission and allocation during the day.
The author develops a Markov decision process model to capture the patient admission
decision process in the general outpatient clinic. Admission and patient allocation decisions
are made from the perspective of maximising the long-term benefit of the system. LGOM is
trained with simulation data and then applied to the real situation and the policy is updated
to reflect the actual information. Ref. [30] applied a decision tree analysis to predictors that
were significantly correlated with patient attendance behaviour to assess the probability
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of no-shows. The authors then developed a dynamic appointment scheduling procedure
using different over-demand strategies for different numbers of appointments. A com-
puter simulation was used to evaluate the effectiveness of the dynamic procedure against
two other methods of randomly and uniformly assigning appointments. The dynamic
scheduling procedure resulted in increased scheduling efficiency through overbooking,
but with less than 5% risk of appointment conflicts (i.e., two patients presenting at the
same time). In [31,32], discrete event simulation is incorporated into a kaizen approach
aimed at reducing waiting times and better distributing the workload of hospital staff. The
inclusion of this approach in a lean process has enabled staff to participate in a team-based
problem-solving approach.

4. Contribution of the Paper

Within the field of literature reviewed in the previous section, this work was born as a
consequence of the margin for improvement detected by ODH professionals in Santiago de
Compostela, Spain. The primary objective is to be able to provide day hospital patients
with an appointment as close as possible to the start time of their treatment, once the
consultation with the oncologist has taken place. This would avoid the uncertainty that
currently exists, as the patient leaving the oncology appointment now has to wait to be
called to start oncology treatment without any additional information. Furthermore, it
would be desirable to reduce waiting times, according to [2,3] studies. Therefore:

• The first contribution was to measure the times involved in the circuit for all patients
visiting the centre during a normal working week. Despite the difficulty of this task,
the collaboration of each and every one of the CHUS professionals involved has been
very valuable and has not only served to feed the models developed in the work,
but has also shed light on the true reality of the times of the different stages of the
circuit. This is of great use to the aforementioned professionals and in making different
decisions aimed at improving the service.

• Then, the model proposed in [17] was selected as it represents a problem very close
to that of ODH and solves it very efficiently, and its objective and restrictions were
adapted to fully represent our problem. The data collected have been used for the
definition of the model parameters. A data-driven procedure is used to determine
the ready times at which each patient can receive cancer treatment. While providing
promising initial results, this model is deterministic and is not able to capture the
underlying stochasticity in the mix of patients.

• Thus, a second model is proposed, which generalises the previous one and, following
the [22] approach, it is based on the data driven construction of different scenarios
obtained from cluster analysis methods, that take into account the stochasticity of the
times of the different stages of the process and the consequent variety in the patient
mix. This second model achieves the objective of not only scheduling treatment
appointments but also rescheduling appointments with oncologists from the original
ones. In addition, an improvement in patient waiting times is achieved by comparing
the results provided by the model with the available data. All models are programmed
with the AMPL [33] language and solved with the Gurobi ( https://www.gurobi.com/,
last accessed 20 Decemer 2021) solver in a fast way (seconds). The PC used for this
work was a Lenovo Intel(R) Core(TM) i7-1065G7, 8 GB RAM, Windows 10 64-bit
operating system.

• Finally, the results obtained in both models feed a third and last model created to
assign the nurses in charge of providing the treatment to the patients.

All of this, in short, provides a decision support tool in a healthcare context. It
incorporates a prediction for patients of the start time of their oncological treatments, built
through optimization criteria, resulting in individual and societal benefits measurable
through the objective function of the proposed mathematical models.

Currently, the method used to perform these tasks is human-based. To our knowledge,
no such study has been carried out in the environment close to the ODH.

https://www.gurobi.com/
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5. Materials and Methods

We set out to use mathematical optimisation to obtain an algorithm that, by providing
fully defined patient schedules, (i.e., including an estimate of both oncology review and
chemotherapy treatment), also minimises waiting times between both medical services. To
this end, interviews were arranged with all professionals involved in the circuit experienced
by ODH patients and the existing literature on the topic of mathematical optimisation
applied to outpatient chemotherapy was consulted. Our aim was to have a global under-
standing of how these types of problems are usually attacked mathematically and, from
this knowledge, to be able to offer a solution that is valid for the specific circumstances
of ODH. During the week of 11 January 2021 we collected data in the ODH of Santiago
de Compostela on the duration of the different times related to consultations with oncolo-
gists and chemotherapy treatments. Specifically, we took the time differences between the
theoretical and real times of the beginning of the oncological check-ups, the times of the
durations of these check-ups, the time differences between the end of the check-ups and
the times when the substances are ready to be administered, and finally the times of the
durations of the chemotherapy treatments. From these data we can get an idea of where the
critical stages of the process lie and how to approach the possible modelling of the problem.

5.1. Deterministic Model for Treatment Appointments

Under a deterministic approach and starting from an established schedule for ap-
pointments with the oncologist, the strategy would be to define a certain time as a margin
between the theoretical start of oncology check-ups and the start of chemotherapy treat-
ments that we consider appropriate for a large majority of patients. From this point, we
would have an estimated time for each patient from which they would be ready to receive
chemotherapy treatment and we could establish, for all treatments, optimal schedules with
respect to the estimated waiting time for all patients that day. In this way, the patients
would know in advance not only the estimated time for their check-up with the oncologist,
but also an approximate time to receive their chemotherapy treatment. Thus, in addition to
the optimisation process itself, we introduce the benefit for patients of knowing at what
time (or from what time, in the case of a day with hypothetical delays) they will be called
to start their treatment, allowing them to organise their idle time without the uncertainty of
being called by the ODH at any time.

Once accurate information was obtained, the model of [17] was adapted to the partic-
ularities of our problem as follows.

5.1.1. Parameters

P: it establishes the number of patients with a chemotherapic appointment.
K: it establishes the number of chemotherapic chairs available.
T: it establishes the number of time slots used to split the 14 daily working hours.
lp with p ∈ {1, ..., P}: chemotherapic treatments’ duration of each patient.
rp with p ∈ {1, ..., P}: it establishes, for each patient, the first time slot where his chemother-
apic treatment could be scheduled.
Ndispt with t ∈ {1, ..., T}: number of available nurses inside the chemotherapic room for
each time slot.

5.1.2. Variables

xp,t with p ∈ {1, ..., P} and t ∈ {1, ..., T}: binary variable that is equal to 1 if the p patient
begins his treatment in the time slot t.
Cmax: integer variable that establishes which time slot will be the first one with no treatment
associated.
λ1 and λ2: positive real variables. We will use them in order to ponder both parts of the
bi-objective function.

Now we are prepared to formalize a mathematical model for this situation.
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5.1.3. Mathematical Model

min λ1·
P
∑

p=1

T
∑

t=1
[(t− 1− rp) · xp,t]+λ2 · Cmax

subject to

T
∑

t=1
xp,t = 1, ∀p ∈ {1, ..., P} (1)

rp

∑
t=1

xp,t = 0 provided that rp > 0, ∀p ∈ {1, ..., P} (2)

Cmax ≤ T, (3)

T
∑

t=1
(t + lp − 1) · xp,t ≤ Cmax, ∀p ∈ {1, ..., P} (4)

P
∑

p=1

t
∑

a=max{1,t−lp+1}
xp,a ≤ K, ∀t ∈ {1, ..., T} (5)

P
∑

p=1

t+2
∑

a=t
xp,a ≤ 5, ∀t ∈ {1, ..., 24} (6 )

P
∑

p=1

t+2
∑

a=t
xp,a ≤ 6, ∀t ∈ {25, ..., 84} (7)

P
∑

p=1

t+2
∑

a=t
xp,a ≤ 3, ∀t ∈ {85, ..., 108} (8)

P
∑

p=1

t+2
∑

a=t
xp,a ≤ 2, ∀t ∈ {109, ..., 165} (9)

P
∑

p=1

t
∑

a=max{1,t−lp+1}
xp,a ≤ 16 · Ndispt, ∀t ∈ {1, ..., T} (10)

As we can see, we want to minimize a bi-objective function converted into a single
objective with weights. The first part of that function is an expression that grows while the
sum of the differences between the moments when the treatments could have started and
the moment when then really began increases. The second part references the moment of
the day when the last treatment ends. Minimizing the first objective means reducing the
average waiting time of patients, while minimizing the second implies achieving a working
schedule that finalizes as soon as possible. Since the ODH’s interest is, above all, to provide
an appointment schedule for treatments and to shorten patients’ waits, we have made all
the calculations with λ1 = 0.9 and λ2 = 0.1. In any case, the inclusion of Cmax in the model
results in obtaining, in addition to the appointments for the different patients, the time at
which the last treatment was completed.

Constraint (1) ensures that each patient starts exactly once his or her scheduled treat-
ment. Constraint (2) ensures that no treatment is scheduled before it has been prepared in
the oncology pharmacy. Constraints (3) and (4) make sure that the course of the infusion
of the patient who finishes his treatment last is not later than the closing time of the hos-
pital and, obviously, not earlier than the instant at which any other patient finishes their
treatment. We impose constraint (5) in order to prevent that in any moment the number of
chemotherapeutic chairs is surpassed by the number of ongoing treatments. Constraints
(6)–(9) form a block that ensures that, over the course of the entire working day, at no time
can a nurse initiate more than one treatment in a 15-min period, taking into account how
the number of nurses available will vary over the course of the working day. The purpose
of constraint (10) is to make sure that nurses’ working capacity is not exceeded. In other
words, that no nurse has to deal with more than 16 ongoing treatments at any time.
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In order to use the model, we must substitute the generic parameters of the above
problem with the values determined by the reality of ODH. The chemotherapy sessions are
carried out in the 40 chairs that exist for this purpose between 08:00 h and 22:00 h, so that
5 nurses conduct the chemotherapy sessions between 08:00 h and 10:00 h, 6 between 10:00 h
and 15:00 h, 3 between 15:00 h and 17:00 h and 2 between 17:00 h and 22:00 h. In order to
mathematically model the situation we also need to discretise these 14 working hours into
a certain number of finite time intervals. Doing this represents a loss of precision when
working with the time parameter, and the larger these intervals are, the worse the solution
obtained will be. However, if these intervals are too small, they will not be practical for
creating an organisational scheme with them, as they would assume a timeliness of the
different stages of the process that, in general practice, would not be fulfilled.

We decided that a range of 5 min is an acceptable compromise between accuracy and
manageability of the intervals. This choice is the consequence of an analysis carried out
considering time intervals of different lengths, which we show, in short, in Section 6. We
therefore divided the 14-h working day into 168 5-min intervals.

All of the above determines that K = 40, T = 168, Ndispt = 5 ∀t ∈{1, ...., 24}, Ndispt = 6
∀ t ∈ {25, ...., 84}, Ndispt = 3 ∀ t ∈ {85, ...., 108}, and Ndispt = 2 ∀ t ∈ {109, ...., 168}. Moreover,
nurses working capacity is M = 16.

The value of lp (treatment duration) is obtained in our data acquisition and, finally, the
value of rp (ready time) is obtained by adding a pre-defined time margin to the theoretical
check-up beginning time slot of the p-th patient. We explain below how these ready times
are calculated based on certain time margins between each patient’s appointment with the
oncologist and the start of his or her treatment. Figure 2 shows the three subsequent stages
in the circuit of oncology patients after the theoretical instant of the appointment with
the oncologist and preceding the moment when their treatment begins: delay in starting
the appointment, duration of the appointment, and preparation of the treatment by the
pharmacists. As mentioned, we collected data on these three times for one week at the
ODH. Then, for each patient, we summed the values of these three times, obtaining a total
minimum waiting time for each patient between his or her appointment with the oncologist
and the time his or her therapy begins. With this set of values (minimum margin time for
each patient), we select a sufficiently large one (accumulating a high percentage of values)
that constitutes an approximate upper limit for the minimum time margins between the
theoretical appointment with the oncologist and the start of treatment. As we will see later
in Section 6, we have considered four possible values for these time margins, from most
to least slack, 210, 180, 150 and 120 min, which we will refer to as Models 1, 2, 3 and 4,
respectively. Finally, the ready time value or rp for each patient is obtained by adding to
the instant at which he/she has been scheduled with the oncologist the margin chosen
according to one of the four mentioned models.

Figure 2. Subsequent stages in the circuit of oncology patients after the theoretical instant of the
appointment with the oncologist and preceding the moment when their treatment begins.

Important Differences between the Models of the ODH and Those Presented in Previous
Related Investigations:

Two models for treatment appointment planning in an oncology department are
presented in [17]. In both, the constraints are the same: each treatment is guaranteed to
be carried out, the treatment cannot start until the preparation of the treatment is finished,
and capacity constraints in terms of chairs and nurses must be respected. In the current
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model the restrictions are similar. However, the restrictions on the workload that nurses
can tolerate in our situation are less restrictive than in the aforementioned models, where
these professionals cannot, within the same time slot, start a treatment and simultaneously
see a certain amount of other ongoing treatments. In our case, in each time slot, the nurses
are able to see 16 patients simultaneously and, at the same time, start a new treatment,
as long as a treatment has not been initiated by this professional in the two immediately
preceding intervals and a new one is not planned for the following two intervals (i.e., each
nurse can start a new treatment every 15 min, that is, three time periods according to our
choice of 5-min time periods).

In the objective, ref. [17] considers the sum of patient waiting time from ready time
to start of treatment (using weights according to whether the patient is attributed a high,
medium or low urgency) and a second summand related to the time needed to complete
all treatments and ultimately the use of resources. This objective is addressed in the first
model using only binary variables (which model the decisions to start different treatments)
and defining a weak lower bound for the makespan as well as penalties for exceeding this
bound. The second model uses, together with the binary variables, an integer variable that
represents the makespan along with a parameter that represents the cost of each unit of
time, and the penalties of the first model are no longer used. The present model is also
integer, however it does not consider different emergencies for patients (although it would
be perfectly possible to incorporate weights for the different patients in the first summand
of the objective function, making use, for example, of the duration of their treatments or
the distances to their homes), nor a cost per unit of time (the cost of the makespan is its
own value). We will also modify the objective function slightly, by including a pair of
scalars (λ1 and λ2) that multiply both terms of the objective function. We choose to include
these scalars in our biobjective function in order to have an intuitive and simple way to
determine if we mainly want the optimal solution reduces the waiting time of the patients
or that the working day ends with a significant margin over the official end of working
(22:00 h). An important difference between [17] and our work is that in [17], the main
problem is to finish treatments as soon as possible with the available capacity of nurses and
treatments while the ready times are prefixed being equal to 0 by default, assuming that,
in general, oncological appointment and reception of the treatment are done on different
days. In our case, both tasks are performed on the same day which requires an extra
effort compared to [17] to obtain these ready times. It should be noted that subsequent to
the determination of treatment appointments, ref. [17] assigns nurses to patients using a
heuristic, whereas here a binary linear programming model is built for this purpose and
solved exactly (Section 5.3). Finally, ref. [17] mentions stochasticity in the mix of patient
types, although it does not capture directly that fact in the model. Here we address that
important aspect of stochasticity by building a general model (Section 5.2) that also allows
for the reorganisation of oncologists’ appointments.

5.2. Stochastic Model of Oncologist and Treatment Appointments

Our sample of patients presents a large variability with respect to delays in the start
of the consultation, duration of that consultation and treatment manufacturing time. This
motivates us to think of alternative modelling such as the one we are going to introduce
next, stochastic modelling, which can more adequately represent the ODH problem. Given
the inherent structure of the oncology patient circuit optimization problem, in which ap-
pointments with the specialist are decisions that can be made at a given time while taking
into account uncertainties about the future, a model of the so-called two-stage stochastic
models can be defined. As it is well-known, the following equation establishes a generic
objective function of a two-stage stochastic minimization program, which can be broken
down into two summands:

minimize f (X) + E[g(X, Y, ψ)] (11)
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In Equation (11), X is the set of the so-called first-stage variables, also known as “here-
and-now” decisions (in our case, oncologist appointment times). Y is the set of second-stage
variables, or “wait-and-see” decisions (in this setup, schedules of oncology treatments)
while ψ is the set of random variables. These random variables are modeled as a set of
plausible scenarios with associated probability of occurrence (in our problem, different
scenarios represent different possible daily mixes of patients with respect to the four times
of interest, e.g., patients with high delayed oncology appointment, oncology appointment
duration, treatment preparation and treatment receipt, or patients with medium delayed
oncology appointment, oncology appointment duration and treatment preparation and
fast treatment receipt). The operator (E) calculates the expected value of the function g for
the scenarios considered. The first-stage decisions must be applied at the time of solving
the optimization problem. On the other hand, second-stage decisions are made once the
random variables take values, i.e., in a particular scenario. Thus, the interpretation of the
objective function of a two-stage stochastic problem is to find a set of decisions that are
optimal given various scenarios, with an associated probability of occurrence, that models
uncertainty about the future.

The basic concepts of this type of modelling can be found in [34] or [35]. In this paper
we will make use of a two-stage model and consider several possible scenarios. Each
scenario represents a type of working day in which the flow of patients is generally moving
at a certain speed. In each of these scenarios, the patients’ ready times would be calculated
by adding to the theoretical start times of each patient’s check-up a certain amount of time
according to the aforementioned speed of patient flow. The strategy would be to calculate
the solutions to the problems associated with each of these types, thus obtaining various
times for the start of chemotherapy for each patient. It is left to the ODH professionals
to choose the estimated start of chemotherapy treatment that would be assigned to each
patient, depending on the evolution of the working day. This is linked to the mix of patients,
of one type or another, depending on the magnitude of the times involved in the process. In
this situation, they would wait until the end of the oncology check-up to inform the patient
of the estimated time of their chemotherapy session. On the other hand, this new modelling
also allows the possibility of modifying the schedules of the oncological check-ups. Once all
the possible times for the start of chemotherapy are set, the procedure to follow would be to
establish the start times of the oncological check-ups in such a way that the average waiting
time for all patients is minimised. The weights used for this average are a consequence of
the plausibility of the different scenarios according to the data collected in the hospital for
this paper.

To construct these scenarios, we use the k-means algorithm [36]. We divide the
total sample of patients into a number of subgroups that have the lowest possible internal
variability with respect to the times involved in patient waiting time (less than the variability
of the total sample). We then calculate an upper bound for the sum of these times in each
subgroup (analogous to the procedure used in the deterministic model). After this, we
have as many time margins as scenarios that we can apply to the total of our patients to
calculate their ready times, and thus have a ready time for each patient in each scenario.

Figure 3 illustrates the construction of three scenarios for patients by means of the
k-means algorithm making use of three times involved in waiting times. A fictitious dataset
of 150 patients has been considered. We look at three times (delay of revisions, duration
of revisions and duration of preparation of chemotherapy substances) for each of these
patients. In the image on the left we can see a three-dimensional graph with the 150 points.
Each of these points represents a patient and has three associated coordinates (one for each
time). If we use the “k-means” procedure on this set of patients, we obtain a partition of
our original dataset, consisting of three subgroups of patients (see the right image, where
each point is illustrated with a colour according to the group to which it belongs), each
of dimension 50. Since each subgroup has 50 patients, all scenarios would be considered
equiprobable in this case.
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Figure 3. Illustration of the construction of 3 scenarios for patients by means of the k-means algorithm
making use of 3 times involved in waiting times.

After applying the k-means algorithm to our data set, we have obtained four different
scenarios. In the following, we present the main elements of the stochastic model.

5.2.1. Parameters

The new parameters are listed in Table 1.

Table 1. New parameters of the problem, which are incorporated into the stochastic model.

Scenario Scenario Scenario Scenario
1 2 3 4

Average length of oncology appointments 2.6 4.2 2.2 1.8
% of patients in each scenario 28.7 27.2 36.4 7.7

5.2.2. Variables

y[p, t] with p ∈ {1, ..., P} and t ∈ {1, ..., T}: binary variable, for scenario 1, that is equal to 1
if the p patient begins his treatment in the time slot t.
f [p, t] with p ∈ {1, ..., P} and t ∈ {1, ..., T}: binary variable, for scenario 2, that is equal to 1
if the p patient begins his treatment in the time slot t.
x[p, t] with p ∈ {1, ..., P} and t ∈ {1, ..., T}: binary variable, for scenario 3, that is equal to 1
if the p patient begins his treatment in the time slot t.
z[p, t] with p ∈ {1, ..., P} and t ∈ {1, ..., T}: binary variable, for scenario 4, that is equal to 1
if the p patient begins his treatment in the time slot t.
c[p, t] with p ∈ {1, ..., P} and t ∈ {1, ..., T}: (first stage) binary variable that is equal to 1 if
the p patient is scheduled for the oncologist in the time slot t.

Note that y[p, t], f [p, t], x[p, t] and z[p, t] are the variables associated with the allocation
of the schedules for the patients’ chemotherapy considering that the total set of patients
is an homogeneous group and well represented for the groups 1, 2, 3 and 4, respectively,
obtained through the “k-means” algorithm.

5.2.3. Objective Function of the Mathematical Model

Therefore, we pose the following possible objective function for our stochastic modelling:

min 0.287·
P
∑

p=1
(

T
∑

t=1
(t · y[p, t])-(

T
∑

t=1
(t · c[p, t]))− 2.6) +

0.272·
P
∑

p=1
(

T
∑

t=1
(t · f [p, t])-(

T
∑

t=1
(t · c[p, t]))− 4.2) +
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0.364·
P
∑

p=1
(

T
∑

t=1
(t · x[p, t])-(

T
∑

t=1
(t · c[p, t]))− 2.2) +

0.077·
P
∑

p=1
(

T
∑

t=1
(t · z[p, t])-(

T
∑

t=1
(t · c[p, t]))− 1.8)

Considering the first line of the objective function, for each patient p, in scenario 1:

•
T

∑
t=1

(t · y[p, t]) represents the period in which he starts his treatment,

•
T
∑

t=1
(t · c[p, t]) represents the period in which he is scheduled for the oncologist.

Taking into account row 1 of Table 1,

• (
T
∑

t=1
(t · y[p, t]) − (

T
∑

t=1
(t · c[p, t])) − 2.6) is the waiting time of patient p from the

theoretical exit of the appointment with the oncologist to the start of treatment, and

•
P
∑

p=1
(

T
∑

t=1
(t · y[p, t])− (

T
∑

t=1
(t · c[p, t]))− 2.6) is the total waiting time from the theoretical

exits of the appointment with the oncologist to the start of treatments, in scenario 1.

The last three lines of the objective function of the stochastic model have a similar
interpretation corresponding to the remaining scenarios, respectively. Now taking into
account the second row of Table 1, the objective function represents the average value for
the four scenarios of the total patient waiting time. Note that this objective function does not
include the variable Cmax in order to reduce the number of constraints and achieve a faster
resolution time. All the variables have a series of restrictions associated with them that
we must fulfil. We explain them below. All the restrictions exposed for the deterministic
process are applied to this new model, up to four times, once for each scheduling problem
associated with each of the four scenarios to be considered. Moreover, as in this model we
also face the restructuring of appointments with the oncologist assigned to each patient,
new constraints arise that must be met in order to preserve a distribution of oncology
appointments that is feasible for ODH professionals. Specifically, the way in which patients’
oncology check-ups are distributed is conditioned by the type of cancer they suffer from.
In each individual, this disease may present as type I, type II or type III. These three
groups represent digestive cancers, breast cancers and other cancers, respectively. There
are three specialists available for each of these cancers, which limits the maximum number
of simultaneous oncology reviews for each speciality to three. In addition, we estimate that
each review theoretically lasts approximately 15 min, and therefore the number of patients
seen by each speciality cannot be more than three in any 15-min time slot throughout
the working day. In total, this stochastic modelling has more than 40 constraints. The
Appendix A shows in detail the AMPL code [33] of the stochastic model in extensive form
of our problem.

As a preview of the results, Section 6.3 will show the main information of the four
scenarios we have considered, obtained after applying the k-means algorithm to our data
set. For each scenario, we indicate the percentage of patients in this data set that constitute
the scenario (this percentage will be the probability we assign to the scenario) as well as the
average of the four times of interest (check-ups’ delays, oncological check-ups, substance
preparation and treatments) in that subset of data. It should be noted that scenario three,
which is the most frequent scenario, has the four average values close to the means of
the entire data set. Scenario two corresponds to cases where on average all the times are
lower than the mean, except for the duration of the appointment with the oncologist, but in
any case it is not a significant increase. Scenario one is characterized by significant delays
in the start of the appointment with the oncologist and the fourth scenario is the most
unfavorable, although unlikely, and corresponds to long times in the three most important
cases, delay in the start of the oncology consultation, preparation of drugs and duration of
treatments.
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5.3. Model of Nurse-to-Patient Allocation

Finally, we pose a new mathematical scheduling problem that will serve to obtain
a distribution of work among all the nurses in the chemotherapy ward. In this way,
the responsibility for the start of all the treatments given throughout the day would be
distributed among the 6 nurses who are operational in the ward at any given time.

The parameters and variables of the problem are as follows:

5.3.1. Parameters

P: it establishes the number of patients with a chemotherapic appointment.
T: it establishes the number of time slots used to split the 14 working hours.
Ndispt wth t ∈ {1, ..., T}: number of available nurses inside the chemotherapic room for
each time slot.
yp,t with p ∈ {1, ..., P} and t ∈ {1, ..., T}: binary parameter that is equal to 1 if patient p has
his appointment scheduled for time slot t.

5.3.2. Variables

ei,p,t with p ∈ {1, ..., P}, t ∈ {1, ..., T} and i ∈ {1, ..., Ndispt}: binary variable that is equal to
1 if patient p begins his appointment during time slot t assisted by nurse i.

Therefore, this problem should be solved taking for the parameter yp,t the value of
the variable associated with the appointment for cancer treatment of patient p in period t,
obtained by solving the deterministic model, or obtained by solving the stochastic model.
In the latter case, patients can be assigned to nurses four times, once for each scenario.

The formulation of the model would be as follows.

5.3.3. Mathematical Model

min
P
∑

p=1

T
∑

t=1

N
∑

i=1
ei,p,t

subject to

T
∑

t=1

N
∑

i=1
[i · ei,p,t]=1, ∀p ∈ {1, ..., P} (12)

N
∑

i=1
ei,p,t ≥ yp,t, ∀p ∈ {1, ..., P}, ∀t ∈ {1, ..., T} (13)

P
∑

p=1

min{T,t+2}
∑

a=t
ei,p,t ≤ 1, ∀i ∈ {1, ..., N}, ∀t ∈ {1, ..., T} (14)

ei,p,t = 0, ∀i ∈ {4, ..., 6}, ∀p ∈ {1, ..., P}, ∀t ∈ {85, ..., 108} (15)

ei,p,t = 0, ∀i ∈ {3, ..., 6}, ∀p ∈ {1, ..., P}, ∀t ∈ {109, ..., T} (16)

e6,p,t = 0, ∀p ∈ {1, ..., P}, ∀t ∈ {1, ..., 24} (17)

What is really important here are the constraints of the problem, which guarantee
that the solution will be a feasible workload distribution for all the nurses. The objective
function we select seeks to concentrate work on a subset of the nurses in order to leave the
rest “idle”. This can be useful to elucidate how many staff are essential in the given context,
but as we say the vital part of this problem are the constraints, so that the objective function
can be modified. As for the concrete functions that each of the aforementioned restrictions
fulfil, we have that number (12) ensures that each patient is assigned exactly one nurse.
Number (13) requires that, if a patient has been assigned a treatment for a certain time,
one of the nurses is responsible for initialising it at that time. Number (14) precludes any
nurse from having more than one treatment start assigned in a 15-min period. Finally, the
restriction blocks (15)-(17) mark the availability of the hospital’s pool of nurses in each
period. This is, five nurses between 8:00 h and 10:00 h, six between 10:00 h and 15:00 h,
three between 15:00 h and 17:00 h and, finally, two nurses between 17:00 h and 22:00 h.
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6. Results of the Case Study

After having validated the behavior and efficiency of the previous models, with
numerical examples, we show here the main results obtained by applying them to the ODH
data; a total of 290 patients attended over the 5 days of a week.

6.1. Summary of the Collected Data

We now proceed to summarise the statistical information from the data collected in
the hospital during the week of 11 January 2021. We will show four pairs of boxplots and
histograms, one for each considered time in the data. In terms of the analysis of the data
obtained, it is concluded that the majority of oncological check-ups do not take more than
45 min longer than the estimated start time. However, as we can see in Figure 4 there are
still non-negligible amounts of data above this threshold. Furthermore, the interquartile
range of the sample exceeds 30 min in duration, indicating the large variability involved
in this waiting time. With regard to the duration of appointments with the oncologist, it
seems clear that, in general, the duration of appointments with the oncologist is less than
a quarter of an hour (more than 60% of the data show times of less than 15 min). The
interquartile range is barely more than 10 min and there are relatively few outliers (see
Figure 5). Substance preparation is the most problematic stage of the whole process. As we
can see in Figure 6, duration times tend to cluster between 50 and 100 min. Moreover, the
interquartile range is around three quarters of an hour. Therefore, this is a stage with long
average times and great variability. Finally, the stage of chemotherapy treatments is the
one that shows the greatest variability, presenting significant volumes of data beyond four
hours in duration (see Figure 7). The comparison between the latter times and the data
on the duration of oncology check-ups shows that it is clear that this stage shows much
more variability. Specifically, the data collected in the ODH during the week analysed show
that more than 80% of the oncological check-ups carried out lasted less than half an hour,
while with regard to chemotherapy treatments, 35.35% of the total lasted between 0 and
100 min, 33.44% lasted between 100 and 200 min, 22.29% lasted between 200 and 300 min
and 8.92% lasted more than 300 min. On the other hand, it is worth mentioning that the
chemotherapy treatment stage is the last stage of the process, and therefore the one with
the most uncertainty regarding its possible start time. Much of this uncertainty is explained
by the immediately preceding process: the pharmacy stage. This stage is second only to the
chemotherapy stage itself in terms of variability. All these factors make the planning of
treatment schedules a more delicate task than the planning of oncology consultations.
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Figure 4. Boxplot and histogram of the oncological check-ups’ delays. Axis X: delay time in minutes.
Axis Y: number of patients.
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Figure 5. Boxplot and histogram of the oncological check-ups’ durations. Axis X: check-ups’
durations in minutes. Axis Y: number of patients.
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Figure 6. Boxplot and histogram of the durations of substance preparation. Axis X: durations of
substance preparation in minutes. Axis Y: number of patients.

Looking in detail at the data collected during the week of 11–15 January, we can see
that if we want to take an upper level for the differences between the theoretical and real
start times of the oncological revisions that are fulfilled by 85% of the patients, we should
go to 60 min. On the other hand, to establish an upper limit for the duration of these
check-ups suitable for 85% of the patients, we must go to 60 min. Regarding the time of
preparation of the therapy substances, in order to again obtain a new level that covers
85% of the patients, we need 90 min. Therefore, it may seem wise to take a margin of
210 min over the theoretical starting time of the oncological check-up to determine the
moment from which both the patient and the treatment will be ready for the chemotherapy
session. This framework should be applied indiscriminately to all patients, given that we
do not have any estimate of the specific duration of each patient’s revisions. On the other
hand, we do have an estimate of the duration of the chemotherapy treatments that each
patient will receive. For this purpose, we will run the model with the prudent “ready times”
described above Specifically, apart from the aforementioned 210 min of time between the
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beginning of the theoretical review and the moment when the patient is ready to receive the
chemotherapy, we are going to execute the program with 180, 150 and 120 min of margin.
The 180 min margin is the result of considering 45 min of time for the delay of the oncologic
revision, 45 for the duration of this and 90 for the preparation of the drugs. The 150-min
rate considers 30, 30 and 90 min, respectively. Finally, the margin of 120 considers 15, 15
and 90 min, respectively. We will be able to get an idea of what we could achieve if the
delays in the start of the reviews were mitigated or if the durations of the processes of the
reviews themselves and of the formation of the patient’s therapy substances were reduced.

0
10

20
30

40
50

60
70

0 50 100 150 200 250

Figure 7. Boxplot and histogram of the durations of the treatments. Axis X: durations of the
treatments in minutes. Axis Y: number of patients.

6.2. Results of the Deterministic Model

Table 2 shows the sum of waiting times for all patients for each day of the week of
11 January 2021. The first column shows the waiting times for the current procedure, while
the following columns show the waiting times resulting from applying the deterministic
model with specific ready times. The Model 1 column shows the waiting times obtained
with the model using ready times that are the result of setting a margin of 210 min between
the theoretical start of the review and the time when the patient is ready to receive the
therapy. The Model 2 column represents the analogous data taking a 180-min window.
Column Model 3 shows a margin of 150 min, and finally column Model 4 shows 120 min of
margin.

Table 2. Total waiting minutes over the different ready times considered provided by the deterministic
model.

At Present Model 1 Model 2 Model 3 Model 4 Patients

Monday 7339 9255 7900 6250 4600 56
Tuesday 10,382 13,375 11,675 9275 7115 72
Wednesday 7351 9790 8190 6360 4480 61
Thursday 5906 7790 6360 4860 3360 50
Friday 5810 8075 6615 5085 3555 51
Total 36,788 48,285 40,740 31,830 23,110 290

Note that if we take a margin of 210 min to calculate the “ready times”, we would be
assuming the price of worsening waiting times by an average of 48 min per patient in ex-
change for having a well-defined schedule for both oncology check-ups and chemotherapy
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treatments. It seems debatable whether or not the model is worth applying in these circum-
stances. However, considering small advances in “ready times”, the situation improves
considerably. Thus, by simply reducing the margin of the times with which we generate
the ready times by 30 min (i.e., taking margins of 180 min), we would have a situation in
which we achieve a complete planning of the day, increasing the average waiting time per
patient by less than 20 min. If we consider even greater improvements, taking margins of
150 and 120 min, we would manage to reduce waiting times by an average of 17 and 45 min
per patient, respectively. It should be noted that results are sensitive to the choice of the
length of the time intervals considered. Table 3 gives a comparison of results considering
time intervals of length 5, 10 or 15 min. We see that the results are worse for the values 10
and 15, which justifies our choice of 5 min.

Table 3. Total waiting minutes obtained with the deterministic approach, using Model 1 for the ready
times, with different durations of the considered time intervals.

Duration of the Time Intervals: 5 min 10 min 15 min

Monday 9255 9770 10,815
Tuesday 13,375 14,120 15,420
Wednesday 9790 10,320 10,890
Thursday 7790 8180 8250
Friday 8075 8470 9285
Total 48,285 50,860 54,660

Figure 8 shows how the number of treatments in progress evolves throughout the day
on Monday according to the current procedure and how the model would be applied with
ready times resulting from taking margins of 120 min.

As we can see, when using the mathematical model, the distribution of the treatment
workload tends to shift to earlier hours compared to the current procedure. Specifically, the
model proposes more treatments in progress between 11:30 am and 2:30 pm, but less in
the afternoon, except for a short period between 7:00 pm and 7:30 pm. This distribution
of treatments is consistent with the deterministic model being able to reduce total waiting
times. This is a positive consequence for both patients and ODH professionals: patients in
general would finish their treatments earlier and be able to return home earlier, which we
can translate into a higher quality of service for them, while for the service professionals
there is a greater margin of response to possible delays in order not to have to perform
treatments beyond the official ODH closing time.

Table 2 and Figure 8 show the overall improvement provided by the deterministic
model in terms of patients’ waiting times and the effects on their treatment start times. Next,
Table 4 and Figure 9 show the specific changes or values of the variables in the optimal
situation. Thus, in Table 4 we consider the data for Monday 11 January 2021. Specifically,
for each of the patients, we provide the duration of the application of their treatment, the
actual start time for its application and the start time proposed by the deterministic model
considering a time margin of 120 min, all expressed in time units of 5 min.
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Figure 8. Comparison of the number of oncology treatments in progress actually being performed
and those proposed by the deterministic optimization model (120 min of margin) at each point in
time on Monday, 11 January 2021. Axis X: time of the day between 8:00 am and 10:00 pm. Axis Y:
number of treatments in progress.

Table 4. Treatment duration, actual start time and start time proposed by the deterministic model
with 120 min of margin, expressed in number of 5-min periods, for the 56 patients on Monday
11 January 2021.

Patient Treatment Real Proposed Patient Treatment Real Proposed
Number Duration Time Time Number Duration Time Time

1 29 72 61 29 54 60 50
2 30 65 46 30 44 46 47
3 19 55 49 31 82 65 61
4 23 77 81 32 27 59 57
5 25 56 41 33 18 54 45
6 27 50 57 34 24 66 50
7 37 50 53 35 21 67 45
8 24 46 57 36 45 74 53
9 22 57 57 37 27 84 61

10 30 60 49 38 13 57 41
11 65 43 76 39 39 45 44
12 59 49 72 40 46 42 50
13 82 50 52 41 28 80 49
14 69 51 74 42 33 91 81
15 12 66 53 43 12 80 65
16 9 80 69 44 40 41 44
17 12 53 57 45 49 39 47
18 12 65 43 46 44 60 66
19 40 55 41 47 30 90 67
20 8 82 69 48 84 42 52
21 21 53 42 49 39 81 85
22 35 63 55 50 36 93 69
23 18 65 61 51 30 84 58
24 18 63 65 52 22 68 65
25 46 38 44 53 19 72 53
26 43 38 39 54 26 70 41
27 45 52 47 55 24 84 61
28 8 80 65 56 61 56 73

Figure 9 represents these data, which for clarity are expressed, both in the upper
and lower graph, as a function of the time of day and ordered, from bottom to top, by
the duration of the treatment, from the longest to the shortest. The top graph shows the
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actual data and the bottom graph shows the model proposal. For each patient, the time
elapsed from the opening time of the centre to the start of treatment is shown in blue
and the treatment time in red. We can see in detail how, when applying the deterministic
model, there is a higher number of treatments in progress between 12:30 h and 14:00 h.
However, let us note that its applicability is determined by achieving delay times in the
start of oncology appointments and the duration of oncology appointments themselves
of no more than 15 min, and a treatment preparation of no more than 90 min, i.e., time
margins for receiving treatment, from the scheduled appointment time with the oncologist,
adjusted to 120 min.
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Figure 9. Time elapsed from the opening of the centre to the start of treatment (blue colour) and
treatment duration (red colour) on Monday 11 January 2021: actual data (top) and data proposed by
the deterministic model with time margins of 120 min (bottom). Patients have been ordered from
down to up from the longest to the shortest treatments. X-axis: time of day between 8:00 and 22:00 h.
Y-axis: patient number.
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6.3. Results of the Stochastic Model

Before using the stochastic model we have to divide the patients using the k-means
method. After applying this algorithm on the set of our patients we obtain four subgroups.
Table 5 shows, for each group or scenario, the mean of the four times of interest of the
oncological patient circuit. Next, Table 6 contains the sum of waiting times obtained for all
patients for each day of the week of 11 January 2021. The first column shows the waiting
times for the current procedure, while the following columns show the waiting times
resulting from applying the stochastic model, the percentages of improvement and the
number of patients for each day, respectively. It can be seen that the improvement achieved
in waiting times using the stochastic model is between that achieved by the deterministic
model in its two most optimistic cases (that is, margins). Specifically, waiting times in this
case are reduced by 17%, which translates into mitigating each patient’s wait by an average
of 21 min. The results in Table 6 are expected values, calculated from the realizations of
the randomized experiment and the probabilities of the different scenarios. In Table 7 we
delve into the results, showing for Monday, 11 January 2021, the waiting times obtained
in each of the scenarios, the probabilities of the scenarios, the average already shown in
Table 6 and , additionally, the total computation time with Gurobi. We note that scenario 4
is the one with the longest treatment processing times and translates into longer waiting
times. Figure 10 also shows for Monday, 11 January 2021 the comparison between actual
oncologist appointment times and those proposed by the stochastic model. We see that the
last are less concentrated (i.e., more dispersed) in the early morning hours in the interest of
reducing patient waiting times.

Table 5. Average times (minutes) for each scenario designed to apply the stochastic model.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Check-ups’ delays 49 14 15 41
Oncological check-ups 13 21 11 9
Substance preparation 63 42 90 147
Treatments 125 77 116 197
Patients 59 56 75 16
% Patients 28.6% 27.2% 36.4% 7.8%

Table 6. Waiting minutes provided by the stochastic model and with actual procedure.

At Present Stochastic Model Improvement (%) Patients

Monday 7339 6029 17.74 56
Tuesday 10,382 7544 27.3 72
Wednesday 7351 6392 13.0 61
Thursday 5906 5239 11.3 50
Friday 5810 5344 8.0 51
Total 36,788 30,548 17.0 290

Table 7. Mean value of waiting minutes on Monday, 11 January 2021, waiting time in the randomized
experiment realizations, probabilities of each scenario, actual waiting time and computation time (s).

At Scenario Scenario Scenario Scenario Average Computing
Present 1 2 3 4 Result Time

7339 6550 3585 6385 10,975 6029 215
Probabilities 28.6 27.2 36.4 7.8
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Figure 10. Actual oncologist appointment time and stochastic model proposed appointment time
for patients on Monday 11 January 2021. X-axis: time of day between 8:00 and 13:00 h. Y-axis:
patient number.

7. Discussion, Conclusions and Framework for a Further Research Agenda

From all the literature reviewed, the studies by [15,17] largely inspired our proposed
deterministic model. Ref. [15] solves a problem of scheduling appointments for patients
attending an oncology centre, although the main objective is to achieve a scheduling scheme
that avoids peaks in the workload of the centre’s professionals during the working day,
while [17] mainly aims to reduce patient waiting times and makespan as much as possible.
Therefore, as far as the objective function is concerned, our deterministic model is more
similar to the work of [17], although the set of constraints generated by the context of
this study are quite different from those emanating from the reality of the ODH. While
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the deterministic model provides positive estimated results in terms of reducing patient
waiting times, although it is fairly simple to implement, the relatively random nature
of the problem may be a limitation of this model. For this reason, in this paper, a two-
stage stochastic programming model is also presented ( [34]). We assume uncertainty
with respect to the time duration of the different stages of the patient circuit and consider
several possible scenarios for the flow of the set of patients through the different stages
of the process. Classification techniques were used to design these scenarios. We thus
present a model that offers several possible schedules for the chemotherapy of each patient.
The role of the oncology day hospital professionals is to decide, depending on how the
working day is, which estimate to communicate to each patient for the start of treatment.
Note that this model is a stochastic generalisation of our deterministic model, close to that
of [17]. It should be said at this point that an advance of our work over [17]’s is that it
provides not only a treatment appointment for each patient, which also takes into account
the workflow of the day in question, but also automates and optimises the generation of
appointments with oncologists. It is also worth noting the relationship between the three
models generated in this setup in the sense that we can use the stochastic model to optimise
appointments with oncologists, then use these results in the deterministic model to obtain
treatment appointments, and finally, with the results of the deterministic model to assign
nurses to patients. In terms of resolution of the stochastic model, we adopt the approach
of [22] and, as in this paper, resolution efficiency is achieved. Although the resolution
method we use is close to that of [22], there are important differences in the two studies,
as the latter is motivated by a multidisciplinary clinic and the aim is to minimise patient
waiting time and weighted overtime and downtime of different clinics. The randomness is
attributed to the possible arrival of multidisciplinary patients which is modelled through
the use of the multinomial statistical distribution, however the problem we investigated
concerning appointments for oncological treatment and the randomness in the different
times that make up the circuit of a patient in the day centre is not considered.

At the ODH, the distribution of patients seen each day in the different specialities is
not uncertain and is organised by the doctors themselves.

Ref. [23] is one of the most recent studies that addresses the establishment of appoint-
ments for receiving oncologic treatments by means of a two-stage stochastic model. The
main difference with the present study is that the motivating center performs the consulta-
tion with the physician and the actual infusion of the treatment on different days, so that
only the existence of uncertainty in the duration of treatments is considered. However,
the work of [23] simultaneously plans the succession of patient arrivals at the center, the
appointment time, and the assignment of patients to nurses and chairs. Although the
compact approach is elegant, it is laborious to solve and requires the use of a specific
heuristic algorithm resulting from the adaptation of the Progressive Hedging Algorithm
and a detailed computational study to determine its performance. However, when working
with a number of nurses and chairs similar to that of ODH, computation times in excess of
one thousand seconds are required. In any case, the methodology of both works is different
and it should be noted that [23] proposes as a future line something that we are addressing,
such as the joint planning of treatment schedules and appointments with the oncologist.

To conclude the discussion, we mention the reference of [24], also relatively recent and
close to our study. There too, both deterministic and stochastic approaches are employed.
First, it proposes to develop a method of of oncologist and chemotherapy appointments
with the objective of balancing the workload of nurses and oncologists, to the extent that
the number of chairs occupied, or oncology appointments started, in each unit of time is a
decision variable in the problem.

It uses an integer programming model, nonlinear in fact, which, rather than deter-
mining specific appointments for patients, provides the number of clients initiating their
treatment or consultation in a given time period. The discrete-event simulation method-
ology for modeling the flow of patients in the oncology clinic is used to show that the
proposed scheduling methods can improve the well-being of patients by reducing waiting
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times and improve staff work by providing a more balanced workload. Factors that affect
workload balance, such as patient volume or nurse scheduling, are also studied. As for
the stochastic approach, they address the problem of scheduling chemotherapy patients
with uncertainty in the duration of treatments. They propose a two-stage stochastic pro-
gramming model, which is very difficult to solve due to the large number of scenarios, the
non-linear constraints used and the need for additional variables and constraints. Therefore,
they propose a two-stage algorithm to compute the expected downtime and waiting time.
This two-stage algorithm does not guarantee optimisation with respect to patient waiting
time and downtime and therefore they propose as a future research direction to develop
new methods to solve the proposed stochastic programming model. Results with real data
are also not provided.

With respect to the conclusions, the stochastic model, in addition to appointments for
treatments we obtain defined schedules for patients with respect to their medical appoint-
ments, making the minimisation of patient waiting times between medical appointments
more effective. This model has an estimated improvement in waiting times of 17%. Note
that the scheduling of check-up times respects minimum restrictions to ensure that the
schedules are manageable for the oncologists in charge of the first stage of the process. It
would be up to the service professionals to select one model or the other.

While the use of the deterministic model is simpler and allows the automation of
the allocation of treatment appointments, thus improving on the current system and
relieving the nurses of this responsibility, the stochastic model takes into account more
information about the timing of the process and allows the initial oncology appointments
to be rescheduled. However, this model requires daily coordination of all involved staff on
the work progress to select the appointment provided to patients. Other strategies are also
possible, such as choosing the earliest appointment among all possible appointments, for
each patient, or the later one.

If we analyse Table 2 in detail, we can see that the result of applying our deterministic
model with the 210 and 180 min quotas is to increase patients’ waiting times, but in
exchange for offering them in advance a specific timetable for both their oncology check-up
and their chemotherapy session. It should be noted that this increase, in the case of the
180 min quota (the most realistic), is less than 4000 min over the total of all patients in
the week in which the data was collected. This represents an increase in waiting time
on average of less than a quarter of an hour per patient, which does not seem too much
considering that the average waiting time per patient with the current procedure is close
to two hours (110 min). Therefore, it might seem worthwhile to apply the algorithm and
assume this increase in waiting time in order to obtain fully defined schedules in advance.
Moreover, we also have to take into account that the distribution of treatments obtained
with the algorithm offers professionals a greater capacity to react to unforeseen events, as
we mentioned when analysing Figure 8. On the other hand, it had also seemed interesting
to explore the option of reducing the second stage waiting times of patients by a reasonable
investment of resources or by other strategies. As we can see in Table 2, just by reducing
the average margin time by 30 min, a complete organisational scheme for patients can
be obtained without increasing waiting times compared to the current situation. On the
contrary, waiting times will be reduced compared to the current baseline. With respect to
the stochastic model, in addition to achieving defined schedules for patients with respect to
the two medical commitments they have, this model provides an estimated improvement
in waiting times of 17%, a measure obtained from the available data. The stochastic model
is complemented by a tool that solves the problem of assigning nurses to patients, which
uses directly the results of the stochastic model as parameters. Finally, we agree with [27]
or [28], among others, about the convenience of computerised data collection and efficient
information flow among the stages of a circuit of oncology patients.
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Framework for a Further Research Agenda

As is typical of the used methodology, the models can provide a post-optimality
analysis that would allow us to see the effect of modifications in the parameters of the
model. Note that we make use of deterministic (fixed) parameters such as number of
nurses, pharmacists, doctors, or also consulting rooms, or chemotherapy chairs. We also
have stochastic (variable) parameters: the time distributions of the various stages of the
circuit. Therefore, one possibility for future study is to analyse in depth the effect of changes
in both fixed and random parameters.

Regarding the computational aspects of the work, we should mention that all the mod-
els studied were solved with the mathematical programming language AMPL ( [33]) and
using the Gurobi solver. The computation times, considering a time horizon corresponding
to a working day, never exceeded 30 s (an important aspect for the application of the model
in the health sector) in the deterministic case, and those needed to solve the stochastic
model were also acceptable (about 200 s). It is worth noting that the Gurobi solver provides
a single optimal solution, although the values of the variables in the optimum need not
be unique. Further study of different optimal solutions may lead to the choice of one or
the other depending on additional properties, such as more or less balanced workloads.
In relation to this issue, a possible extension of the presented models could consider, by
means of weightings, priorities for certain types of patients such as longer treatments, those
living far from the ODH or those with a delicate health condition, and thus have a stronger
impact on aspects that in some cases are already taken into account at present. Another
open problem would be to carry out a deeper computational study of the scope of both
models beyond the case studied in this paper, which is limited to the dimension of the daily
problem of the ODH of Santiago de Compostela.

Some additional future study questions have been also proposed by the ODH pro-
fessionals themselves. Firstly, it will undoubtedly improve results and be more efficient
to consider ready times for groups of patients according to their characteristics (mainly
type of cancer and stage) instead of setting a common ready time for all of them. On the
other hand, the planning of oncological appointments is done on a weekly basis, therefore,
thinking especially of the stochastic model, but also the deterministic one, it would be
reasonable to test its performance by working with a weekly time horizon. This implies
working with a larger number of patients, which would increase the computation time and
make it difficult to obtain an exact solution in reasonable time, although it would open
the door to the design of an algorithm, possibly of a heuristic type that would allow fast
solutions to be obtained, even if they were not exactly optimal. It is clear that the real
implementation of the system requires its integration into the set of computing tools used
by the hospital. Finally, there are other possibilities for handling the randomness of times
in the oncology patient circuit such as chance constraint programming [37], which can be
explored further.

Author Contributions: Conceptualization, A.G.-M., E.B.-V., B.C.-M., R.L.-L., R.L.-R. and F.R.-S.;
methodology, A.G.-M., E.B.-V., B.C.-M., R.L.-L., R.L.-R. and F.R.-S.; software, A.G.-M., B.C.-M. and
F.R.-S.; validation, A.G.-M., E.B.-V., B.C.-M., R.L.-L., R.L.-R. and F.R.-S.; formal analysis, A.G.-M.,
B.C.-M. and F.R.-S.; investigation, A.G.-M., E.B.-V., B.C.-M., R.L.-L., R.L.-R. and F.R.-S.; resources,
A.G.-M., E.B.-V., B.C.-M., R.L.-L., R.L.-R. and F.R.-S.; data curation, A.G.-M., E.B.-V., B.C.-M., R.L.-L.,
R.L.-R. and F.R.-S.; writing—original draft preparation, A.G.-M., B.C.-M. and F.R.-S.; writing—review
and editing, A.G.-M., E.B.-V., B.C.-M., R.L.-L., R.L.-R. and F.R.-S.; visualization, A.G.-M., E.B.-V.,
B.C.-M., R.L.-L., R.L.-R. and F.R.-S.; supervision, A.G.-M., E.B.-V., B.C.-M., R.L.-L., R.L.-R. and F.R.-S.;
project administration, A.G.-M., E.B.-V., B.C.-M., R.L.-L., R.L.-R. and F.R.-S.; funding acquisition,
A.G.-M., E.B.-V., B.C.-M., R.L.-L., R.L.-R. and F.R.-S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research has been funded by the ERDF, the Government of Spain/AEI [grant MTM2017-
87197-C3-3-P] and the Xunta de Galicia [Grupos de Referencia Competitiva ED431C2017/38, and ED431C
2021/24].



Mathematics 2022, 10, 62 27 of 31

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data can be provided by the authors on request.

Acknowledgments: The authors would like to thank the help, knowledge and support provided for
this work by different professionals from the University Clinical Hospital of Santiago de Compostela,
in particular to Beatriz Bernárdez Ferrán and Nieves Mayo Bazarra. They also appreciate the positive
criticism of the reviewers for their help on improving the contents and presentation of the work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AMPL A Mathematical Programming Language
CHUS Hospital Clínico Universitario of Santiago de Compostela
ODH Onco-haematological Day Hospital
IDIS Healt Research Institute of Santiago de Compostela
LGOM Learning-based outpatient management
ONCOMET Translational Medical Oncology Group
OpenSolver Excel add-in for solving optimization models
SCHA Santiago de Compostela Health Area
SERGAS Galician Health Service

Appendix A. The Two-Stage Stochastic Model in Extensive Form

This section shows the two-stage stochastic programming model in extensive form
that has been presented in this paper, being an extension of the (deterministic) modification
of the [17] model introduced in Section 5.1. The model of the current section has been
written using the AMPL modeler and therefore could be used directly if accompanied by
a data file and using a solver such as Gurobi, for example. Explanatory comments are
incorporated next to the formulation itself.

Parameters and sets

param P > 0; #Number of patients assigned to the working day
param l{p in 1..P}; #Duration of patients’ chemotherapy treatments
param T > 0; #Number of time intervals that constitute the working day
param Ndisp{t in 1..T}; #Number of available nurses during each time interval
param q ≥ 1 integer; #Minutes consumed by delay of appointments, their duration and
preparation of chemotherapy substances (scenario 1)
param u ≥ 1 integer; #Idem scenario 2
param v ≥ 1 integer; #Idem scenario 3
param s ≥ 1 integer; #Idem scenario 4
param K > 0; #Number of available chemotherapy chairs
param N > 0; #Number of nurses working during the day
param M; #Number of treatments that a nurse can simultaneously supervise
set E1; #Cancer type I patients
set E2; #Cancer type II patients
set E3; #Cancer type III patients

Variables

var c{p in 1..P, t in 1..T} binary; #Medical check-ups schedule
var y{p in 1..P, t in 1..T} binary; #Chemotherapy treatments schedule at scenario 1
var f{p in 1..P, t in 1..T} binary; #Idem at scenario 2
var x{p in 1..P, t in 1..T} binary; #Idem at scenario 3
var z{p in 1..P, t in 1..T} binary; #Idem at scenario 4
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Objective function

minimize obj:
0.287* sum {p in 1..P}((sum{t in 1..T}(t*y[p,t]))-(sum{t in 1..T}(t*c[p,t]))- 2.6)
+0.272*sum {p in 1..P}((sum{t in 1..T}(t*f[p,t]))-(sum{t in 1..T}(t*c[p,t]))-4.2)
+0.364*sum {p in 1..P}((sum{t in 1..T}(t*x[p,t]))-(sum{t in 1..T}(t*c[p,t]))-2.2)
+0.078*sum {p in 1..P}((sum{t in 1..T}(t*z[p,t]))-(sum{t in 1..T}(t*c[p,t]))-1.8);

Constraints

subject to restriction0 {p in 1..P}:
sum{t in 1..15} c[p,t]= 0; #Impossible to program medical check-ups before 09:20
subject to restriction0b {p in 1..P}:
sum{t in 61..T} c[p,t]=0; #Impossible to program medical check-ups after 13:00
subject to restriction0c {p in 1..P}:
sum{t in 16..60} c[p,t]=1; #Each patient has his medical check-up programmed
subject to restriction1 {p in 1..P}:
sum{t in 1..T} y[p,t]=1; #At scenario 1, each patient begins his treatment
subject to restriction1b {p in 1..P}:
sum{t in 1..T} f[p,t]=1; #At scenario 2, idem
subject to restriction1c {p in 1..P}:
sum{t in 1..T} x[p,t]=1; #At scenario 3, idem
subject to restriction1d {p in 1..P}:
sum{t in 1..T} z[p,t]=1; #At scenario 4, idem
subject to restriction2 {p in 1..P}:
(sum{t in 1..T}(t*y[p,t]))-(sum{t in 1..T}(t*c[p,t]))-q-1≥ 0;
#Each chemotherapy treatment begins after substances are ready and after the medical
check-up is finished (scenario 1)
subject to restriction2b {p in 1..P}:
(sum{t in 1..T}(t*f[p,t]))-(sum{t in 1..T}(t*c[p,t]))-u-1≥0; #At scenario 2, idem
subject to restriction2c {p in 1..P}:
(sum{t in 1..T}(t*x[p,t]))-(sum{t in 1..T}(t*c[p,t]))-v-1≥0; #At scenario 3, idem
subject to restriction2d {p in 1..P}:
(sum{t in 1..T}(t*z[p,t]))-(sum{t in 1..T}(t*c[p,t]))-s-1≥0; #At scenario 4, idem
subject to restriction3 {t in 1..T}:
sum{p in 1..P, a in max(1,t-l[p]+ 1)..t} y[p,a]≤K; #At scenario 1, there aren’t more ongoing
treatments than chairs
subject to restriction3b {t in 1..T}:
sum{p in 1..P, a in max(1,t-l[p]+1)..t} f[p,a]≤K; #At scenario 2, idem
subject to restriction3c {t in 1..T}:
sum{p in 1..P, a in max(1,t-l[p]+1)..t} x[p,a]≤K; #At scenario 3, idem
subject to restriction3d {t in 1..T}:
sum{p in 1..P, a in max(1,t-l[p]+1)..t} z[p,a]≤K; #At scenario 4, idem
subject to restriction4 {t in 1..T}:
sum{p in 1..P}((1-1/M)*y[p,t])≤Ndisp[t]; #At scenario 1, nurses can begin one treatment
for time interval
subject to restriction4b {t in 1..T}:
sum{p in 1..P}((1-1/M)*f[p,t])≤Ndisp[t]; #At scenario 2, idem
subject to restriction4c {t in 1..T}:
sum{p in 1..P}((1-1/M)*x[p,t])≤Ndisp[t]; #At scenario 3, idem
subject to restriction4d {t in 1..T}:
sum{p in 1..P}((1-1/M)*z[p,t])≤Ndisp[t]; #At scenario 4, idem
subject to restriction5 {t in 1..T}:
sum{p in 1..P}((1/M)*(sum{a in max(1,t-l[p]+1)..t}y[p,a]))≤Ndisp[t];
#At each time interval, it is not possible to have more than 16 ongoing treatments for each
available nurse (scenario 1)
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subject to restriction5b {t in 1..T}:
sum{p in 1..P}((1/M)*(sum{a in max(1,t-l[p]+1)..t}f[p,a]))≤Ndisp[t]; #At scenario 2, idem
subject to restriction5c {t in 1..T}:
sum{p in 1..P}((1/M)*(sum{a in max(1,t-l[p]+1)..t}x[p,a]))≤Ndisp[t]; #At scenario 3, idem
subject to restriction5d {t in 1..T}:
sum{p in 1..P}((1/M)*(sum{a in max(1,t-l[p]+1)..t}z[p,a]))≤Ndisp[t]; #At scenario 4, idem
subject to restriction6 {t in 16..60}:
sum{p in E1, a in t..t+2} c[p,t]≤3; #Cancer type I medical specialists can only handle 1
patient per 15 min
subject to restriction6b {t in 16..60}:
sum{p in E2, a in t..t+2} c[p,t]≤3; #Cancer type II idem
subject to restriction6c {t in 16..60}:
sum{p in E3, a in t..t+2} c[p,t]≤3; #Cancer type III idem
#Following constraints ensure that every 15 min the number of starting treatments do not
exceed nurses working capacity:
subject to restriction7 {t in 1..24}:
sum{p in 1..P, a in t..t+2} y[p,a]≤5;
subject to restriction7b {t in 1..24}:
sum{p in 1..P, a in t..t+2} f[p,a]≤5;
subject to restriction7c {t in 1..24}:
sum{p in 1..P, a in t..t+2} x[p,a]≤5;
subject to restriction7d {t in 1..24}:
sum{p in 1..P, a in t..t+2} z[p,a]≤5;
subject to restriction8 {t in 25..84}:
sum{p in 1..P, a in t..t+2} y[p,a]≤6;
subject to restriction8b {t in 25..84}:
sum{p in 1..P, a in t..t+2} f[p,a]≤6;
subject to restriction8c {t in 25..84}:
sum{p in 1..P, a in t..t+2} x[p,a]≤6;
subject to restriction8d {t in 25..84}:
sum{p in 1..P, a in t..t+2} z[p,a]≤6;
subject to restriction9 {t in 85..108}:
sum{p in 1..P, a in t..t+2} y[p,a]≤3;
subject to restriction9b {t in 85..108}:
sum{p in 1..P, a in t..t+2} f[p,a]≤3;
subject to restriction9c {t in 85..108}:
sum{p in 1..P, a in t..t+2} x[p,a]≤3;
subject to restriction9d {t in 85..108}:
sum{p in 1..P, a in t..t+2} z[p,a]≤3;
subject to restriction10 {t in 109..165}:
sum{p in 1..P, a in t..t+2} y[p,a]≤2;
subject to restriction10b {t in 109..165}:
sum{p in 1..P, a in t..t+2} f[p,a]≤2;
subject to restriction10c {t in 109..165}:
sum{p in 1..P, a in t..t+2} x[p,a]≤2;
subject to restriction10d {t in 109..165}:
sum{p in 1..P, a in t..t+2} z[p,a]≤2;
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