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Abstract: In this paper, we are concerned with the oscillation of solutions to a class of third-order
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1. Introduction

In this paper, we investigate the oscillation of solutions to a class of third-order half-
linear dynamic equations with a nonpositive neutral coefficient(

r1(t)
((

r2(t)
(

z∆(t)
)γ2
)∆
)γ1

)∆

+ f (t, x(h(t))) = 0 (1)

on a time scale T, which satisfies supT = ∞, where t ∈ [t0, ∞)T = [t0, ∞) ∩T with t0 ∈ T
and z(t) = x(t)− p(t)x(g(t)). We assume that:

(A1) r1, r2 ∈ Crd([t0, ∞)T, (0, ∞)) and∫ ∞

t0

∆t

r1/γ1
1 (t)

=
∫ ∞

t0

∆t

r1/γ2
2 (t)

= ∞;

(A2) γ, γ1, γ2 are quotients of odd positive integers, where γ = γ1 · γ2;
(A3) p ∈ Crd([t0, ∞)T, [0, ∞)) and there exists a constant p0 with 0 ≤ p0 < 1 such that

limt→∞ p(t) = p0;
(A4) g, h ∈ Crd([t0, ∞)T,T), g(t) ≤ t, hσ(t) ≤ t, h∆(t) > 0, limt→∞ g(t) = limt→∞ h(t) =

∞, and there exists a sequence {ck}k≥0 such that limk→∞ ck = ∞ and g(ck+1) = ck;
(A5) f ∈ C([t0, ∞)T ×R,R) and there exists a function q ∈ Crd([t0, ∞)T, (0, ∞)) such that

u f (t, u) ≥ q(t)uγ+1;
(A6) if 0 < γ < 1, then it satisfies that r2(t) = 1 for t ∈ [t0, ∞)T and∫ ∞

t0

q(t)hγ(t)∆t = ∞.
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In what follows, we state some background details that motivate the analysis of (1).
In recent years, numerous significant results for the oscillation of functional differential
equations have been shown in [1–6]. Therein, Džurina et al. [3] and Santra et al. [6] studied
the oscillation of half-linear/Emden–Fowler delay differential equations with a sublinear
neutral term, whereas the papers [1,4,5] were concerned with the asymptotics and oscil-
lation of solutions to (1) and its modifications in the continuous case (i.e., T = R). Chiu
and Li [2] considered the oscillatory behavior of a class of scalar advanced and delayed
differential equations with piecewise constant generalized arguments, which extended
the theory of functional differential equations with continuous arguments to differential
equations with discontinuous arguments.

To unify continuous and discrete analysis (i.e., the theories of differential equations
and difference equations), Hilger introduced the time scale theory in [7,8]. Instead of
repeating here the basic facts of time scales and time scale notation, we refer the reader
to the papers [9,10] and monographs [11,12] for more details on this theory. Recently,
there has been much attention to the study of oscillation of various classes of dynamic
equations on time scales; see, for instance, the papers [13–16] concerning the analyses of
Fite–Hille–Wintner-type criteria, comparison theorems, and Kamenev-type criteria for the
half-linear dynamic equation with deviating argument(

r(t)
(

x∆(t)
)γ)∆

+ q(t) f (x(τ(t))) = 0, t ∈ [t0, ∞)T,

respectively. In particular, Wu et al. [16] used the generalized Riccati substitution

ω(t) = Φ(t)r(t)

((
x∆(t)

x(τ(t))

)γ

+ φ(t)

)
, (2)

where Φ ∈ C1
rd([t0, ∞)T, (0, ∞)) and φ ∈ C1

rd([t0, ∞)T,R), and obtained several oscillation
criteria. In 2004, Mathsen et al. [17] presented some open problems for the study of
qualitative properties of solutions to dynamic equations on time scales. Later on, numerous
researchers analyzed the oscillation and asymptotic behavior of solutions to different classes
of third-order dynamic equations. Agarwal et al. [18,19], Erbe et al. [20], and Hassan [21]
investigated a third-order half-linear delay dynamic equation(

a(t)
[(

r(t)x∆(t)
)∆
]γ)∆

+ f (t, x(τ(t))) = 0,

whereas Yu and Wang [22] studied the third-order half-linear dynamic equation(
1

a2(t)

((
1

a1(t)

(
x∆(t)

)α1
)∆
)α2

)∆

+ q(t) f (x(t)) = 0

in the case when α1α2 = 1. Han et al. [23] investigated a third-order half-linear/Emden–
Fowler neutral delay dynamic equation(

r(t)(x(t)− a(t)x(τ(t)))∆∆
)∆

+ p(t)xγ(δ(t)) = 0.

Qiu [24] considered (1) under the condition

h(t) ≥
{

σ(t), 0 < γ < 1,
t, γ ≥ 1.
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By employing the Riccati transformation

u(t) = A(t)
r1(t)

((
r2(t)

(
z∆(t)

)γ2
)∆
)γ1

zγ(t)
+ B(t), (3)

where A ∈ C1
rd([t0, ∞)T, (0, ∞)) and B ∈ C1

rd([t0, ∞)T,R), the author established several
oscillation criteria for (1). As a matter of fact, it is not difficult to see that the functions φ
in (2) and B in (3) can be deleted, respectively.

Half-linear equations, as the classical nonlinear equations, arise in the analyses of
p-Laplace equations, non-Newtonian fluid theory, porous medium problems, chemotaxis
models, and so forth; see, for instance, the papers [13,14,25–27] for more details. On the
basis of the above discussion, we will establish integral criteria and Kamenev-type criteria
(see, e.g., [15]) for the oscillation of (1) by employing a similar Riccati transformation as (2).
Finally, two examples are presented to show the significance of the conclusions.

2. Auxiliary Results

To establish oscillation criteria for (1), we give the following lemmas in this section;
Lemmas 1–3 are also used in [24].

Lemma 1. Let (A1)–(A5) be satisfied. Suppose that x is an eventually positive solution to (1) and
there exists a constant a ≥ 0 such that limt→∞ z(t) = a. Then,

lim
t→∞

x(t) =
a

1− p0
.

Lemma 2. Let (A1)–(A5) be satisfied and assume that x is an eventually positive solution to (1).
Then, there exists a sufficiently large T ∈ [t0, ∞)T such that, for t ∈ [T, ∞)T,(

r2(t)
(

z∆(t)
)γ2
)∆

> 0,

and either z∆(t) > 0 or z∆(t) < 0.

Lemma 3. Let (A1)–(A5) be satisfied and assume that x is an eventually positive solution to (1).
Then, z is eventually positive or limt→∞ x(t) = 0.

Lemma 4. For 0 < γ < 1, assume that (A1)–(A6) hold. Suppose that x is an eventually
positive solution to (1) and z, z∆ are both eventually positive. Then, there exists a sufficiently large
T ∈ [t0, ∞)T such that, for any t ∈ [T, ∞)T,

1
z(hσ(t))

≥ h(t)
hσ(t)

1
z(h(t))

. (4)

Proof. For 0 < γ < 1, suppose that x is an eventually positive solution to (1), and z, z∆ are
both eventually positive. Then, there exists a t1 ∈ [t0, ∞)T such that z(t) > 0 and z∆(t) > 0,
t ∈ [t1, ∞)T. In view of (A6) and Lemma 2, we have((

z∆(t)
)γ2
)∆

> 0, t ∈ [t1, ∞)T.

Using the Pötzsche chain rule((
z∆(t)

)γ2
)∆

= γ2

∫ 1

0
[hz∆(σ(t)) + (1− h)z∆(t)]γ2−1dh · z∆∆(t),
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we deduce z∆∆(t) > 0, t ∈ [t1, ∞)T. For t ∈ [t1, ∞)T, define

y(t) = z(t)− tz∆(t).

It follows that y∆(t) = −σ(t)z∆∆(t) < 0. We can claim that y is eventually positive.
Assume not; then there exists a sufficiently large t2 ∈ [t1, ∞)T such that y(t) < 0 for
t ∈ [t2, ∞)T. Therefore, we have(

z(t)
t

)∆
=

tz∆(t)− z(t)
tσ(t)

= − y(t)
tσ(t)

> 0, t ∈ [t2, ∞)T.

It is clear that z(t)/t is strictly increasing on [t2, ∞)T. Since limt→∞ h(t) = ∞, there
exists a t3 ∈ [t2, ∞)T such that h(t) ≥ h(t3) ≥ t2 for t ∈ [t3, ∞)T. Hence, we obtain

z(h(t))
h(t)

≥ z(h(t3))

h(t3)
.

By virtue of (A5), we have f (t, x(h(t))) ≥ q(t)xγ(h(t)) ≥ q(t)zγ(h(t)). According
to (1), for t ∈ [t3, ∞)T, we conclude that(

r1(t)
((

r2(t)
(

z∆(t)
)γ2
)∆
)γ1

)∆

= − f (t, x(h(t))) ≤ −q(t)zγ(h(t)). (5)

Note that r2(t) = 1. Integrating (5) from t3 to t, t ∈ [σ(t3), ∞)T, we arrive at

r1(t)
(((

z∆(t)
)γ2
)∆
)γ1

− r1(t3)

(((
z∆(t3)

)γ2
)∆
)γ1

≤ −
∫ t

t3

q(s)zγ(h(s))∆s ≤ − zγ(h(t3))

hγ(t3)

∫ t

t3

q(s)hγ(s)∆s.

It means that

r1(t3)

(((
z∆(t3)

)γ2
)∆
)γ1

≥ zγ(h(t3))

hγ(t3)

∫ t

t3

q(s)hγ(s)∆s→ ∞

as t→ ∞, which is a contradiction. Therefore, y is eventually positive, and so there exists a
sufficiently large T ∈ [t1, ∞)T such that for any t ∈ [T, ∞)T, we have(

z(t)
t

)∆
= − y(t)

tσ(t)
< 0,

which implies that z(t)/t is strictly decreasing on [T, ∞)T. Since h∆(t) > 0, t ∈ [T, ∞)T, we
deduce

z(h(t))
h(t)

≥ z(hσ(t))
hσ(t)

,

which means that (4) holds. The proof is complete.

3. Main Results

In this section, we establish oscillation criteria for (1) by the Riccati transformation and
integral averaging technique.

Theorem 1. When γ ≥ 1, assume that (A1)–(A5) hold. For any t1 ∈ [t0, ∞)T, if there exist a
sufficiently large T ∈ [t1, ∞)T and a function A ∈ C1

rd([T, ∞)T, (0, ∞)) such that
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lim sup
t→∞

{
A(t)

∫ ∞

t
q(s)∆s +

∫ t

T

[
A(s)q(s)− 1

(1 + γ)1+γ

(
r∗2(s)

δ(h(s))

)γ1
(

A∆(s)
)1+γ

(A(s)h∆(s))γ

]
∆s

}
= ∞, (6)

where r∗2(t) = max{r2(ξ) : ξ ∈ [h(t), hσ(t))T} and δ(t) =
∫ t

t1
1/r1/γ1

1 (s)∆s, then every solution
x of (1) is oscillatory or limt→∞ x(t) exists.

Proof. Suppose that (1) is not oscillatory. Without loss of generality, assume that x is an
eventually positive solution to (1). In view of Lemma 3, we deduce that z is eventually
positive or limt→∞ x(t) = 0. If limt→∞ x(t) = 0, then the theorem is proved. When z is
eventually positive, we know that z∆ is eventually positive or eventually negative according
to Lemma 2. If z∆ is eventually negative, then limt→∞ z(t) exists, and limt→∞ x(t) exists on
the basis of Lemma 1. The theorem is also proved.

If z∆ is eventually positive, then there exists a t1 ∈ [t0, ∞)T such that for any t ∈
[t1, ∞)T, we have x(t) > 0, x(g(t)) > 0, x(h(t)) > 0, z(t) > 0, and z∆(t) > 0. Moreover,
there exists a sufficiently large T ∈ [t1, ∞)T such that h(t) ≥ t1, t ∈ [T, ∞)T. Define

w(t) = A(t)
r1(t)

((
r2(t)

(
z∆(t)

)γ2
)∆
)γ1

zγ(h(t))
, t ∈ [T, ∞)T, (7)

where A ∈ C1
rd([T, ∞)T, (0, ∞)). In view of (1) and (A5), for t ∈ [T, ∞)T we have (5).

Integrating (5), by Lemma 2 we obtain

r1(t)
((

r2(t)
(

z∆(t)
)γ2
)∆
)γ1

≥
∫ ∞

t
q(s)zγ(h(s))∆s ≥ zγ(h(t))

∫ ∞

t
q(s)∆s,

which implies that

w(t) ≥ A(t)
∫ ∞

t
q(s)∆s > 0, t ∈ [T, ∞)T. (8)

Then, ∆-differentiating (7) and using (1), we deduce

w∆(t) =
A(t)

zγ(h(t))

(
r1(t)

((
r2(t)

(
z∆(t)

)γ2
)∆
)γ1

)∆

+

(
A(t)

zγ(h(t))

)∆(
r1(t)

((
r2(t)

(
z∆(t)

)γ2
)∆
)γ1

)σ

= − A(t)
zγ(h(t))

· f (t, x(h(t))) (9)

+
A∆(t)zγ(h(t))− A(t)(zγ(h(t)))∆

zγ(h(t))zγ(hσ(t))

(
r1(t)

((
r2(t)

(
z∆(t)

)γ2
)∆
)γ1

)σ

≤ −A(t)q(t) + A∆(t)
(

w(t)
A(t)

)σ

− A(t)
(zγ(h(t)))∆

zγ(h(t))

(
w(t)
A(t)

)σ

.

Since γ ≥ 1, we have

(zγ(h(t)))∆ ≥ γzγ−1(h(t))(z(h(t)))∆,

which yields

w∆(t) ≤ −A(t)q(t) + A∆(t)
(

w(t)
A(t)

)σ

− γA(t)
(z(h(t)))∆

z(h(t))

(
w(t)
A(t)

)σ

.
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If σ(t) = t, then (z(h(t)))∆ = z′(h(t))h′(t). If σ(t) > t, then by Mean Value Theorem
(see [12]), there exists a ξ ∈ [h(t), hσ(t))T such that

(z(h(t)))∆ =
z(hσ(t))− z(h(t))

σ(t)− t
=

z(hσ(t))− z(h(t))
hσ(t)− h(t)

· h∆(t) ≥ z∆(ξ)h∆(t).

Therefore, for t ∈ [T, ∞)T, we obtain

w∆(t) ≤ −A(t)q(t) + A∆(t)
(

w(t)
A(t)

)σ

− γA(t)h∆(t)
z∆(ξ)

z(h(t))

(
w(t)
A(t)

)σ

, (10)

where ξ ∈ [h(t), hσ(t))T. From (A5), we have(
r1(t)

((
r2(t)

(
z∆(t)

)γ2
)∆
)γ1

)∆

= − f (t, x(h(t))) < 0, t ∈ [t1, ∞)T,

which means that r1(t)((r2(t)(z∆(t))γ2)∆)γ1 is strictly decreasing on [t1, ∞)T. For t ∈
[t1, ∞)T, we get

r2(t)
(

z∆(t)
)γ2

= r2(t1)
(

z∆(t1)
)γ2

+
∫ t

t1

r1/γ1
1 (s)

(
r2(s)

(
z∆(s)

)γ2
)∆

r1/γ1
1 (s)

∆s

≥ r1/γ1
1 (t)

(
r2(t)

(
z∆(t)

)γ2
)∆ ∫ t

t1

∆s

r1/γ1
1 (s)

.

Since ξ ∈ [h(t), hσ(t))T, h(t) ≥ t1, and hσ(t) ≤ t for t ∈ [T, ∞)T, it follows that

r2(ξ)
(

z∆(ξ)
)γ2 ≥ r1/γ1

1 (ξ)
(

r2(ξ)
(

z∆(ξ)
)γ2
)∆ ∫ h(t)

t1

∆s

r1/γ1
1 (s)

≥ r1/γ1
1 (t)

(
r2(t)

(
z∆(t)

)γ2
)∆

δ(h(t)).

Then, we have

(
z∆(ξ)

)γ
≥

r1(t)
((

r2(t)
(
z∆(t)

)γ2
)∆
)γ1

(
r∗2(t)

)γ1
δγ1(h(t)),

and so
z∆(ξ)

z(h(t))
≥
(

δ(h(t))
r∗2(t)

)1/γ2
[(

w(t)
A(t)

)σ]1/γ

. (11)

In view of (10) and (11), for t ∈ [T, ∞)T we deduce that

w∆(t) ≤ −A(t)q(t) + A∆(t)
(

w(t)
A(t)

)σ

− γA(t)h∆(t)
(

δ(h(t))
r∗2(t)

)1/γ2
[(

w(t)
A(t)

)σ]1+1/γ

. (12)

For (12), applying the inequality λabλ−1 − aλ ≤ (λ− 1)bλ, with λ = 1 + 1/γ,

aλ = γA(t)h∆(t)
(

δ(h(t))
r∗2(t)

)1/γ2
[(

w(t)
A(t)

)σ]1+1/γ

,
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and

bλ−1 =
γ

1 + γ

(
r∗2(t)

δ(h(t))

)γ1/(1+γ) A∆(t)

(γA(t)h∆(t))γ/(1+γ)
,

we conclude that

w∆(t) ≤ −A(t)q(t) +
1

(1 + γ)1+γ

(
r∗2(t)

δ(h(t))

)γ1
(

A∆(t)
)1+γ

(A(t)h∆(t))γ . (13)

Letting t be replaced by s, and integrating (13) with respect to s from T to t ∈
[σ(T), ∞)T, we obtain

w(t) ≤ w(T)−
∫ t

T

[
A(s)q(s)− 1

(1 + γ)1+γ

(
r∗2(s)

δ(h(s))

)γ1
(

A∆(s)
)1+γ

(A(s)h∆(s))γ

]
∆s.

By (8), we arrive at

A(t)
∫ ∞

t
q(s)∆s +

∫ t

T

[
A(s)q(s)− 1

(1 + γ)1+γ

(
r∗2(s)

δ(h(s))

)γ1
(

A∆(s)
)1+γ

(A(s)h∆(s))γ

]
∆s ≤ w(T),

which is a contradiction to (6). This completes the proof.

Theorem 2. When 0 < γ < 1, assume that (A1)–(A6) hold. For any t1 ∈ [t0, ∞)T, if there exist
a sufficiently large T ∈ [t1, ∞)T and a function A ∈ C1

rd([T, ∞)T, (0, ∞)) such that

lim sup
t→∞

{
A(t)

∫ ∞

t
q(s)∆s +

∫ t

T

[
A(s)q(s)−

(
A∆(s)

)1+γ
(hσ(s))γ

(1 + γ)1+γδγ1(h(s))(A(s)h(s)h∆(s))γ

]
∆s

}
= ∞, (14)

where δ is defined as in Theorem 1, then every solution x of (1) is oscillatory or limt→∞ x(t) exists.

Proof. As in the proof of Theorem 1, for t ∈ [T, ∞)T we obtain (9). Since 0 < γ < 1, in
view of Lemma 4, we have

(zγ(h(t)))∆ ≥ γzγ−1(hσ(t))(z(h(t)))∆

= γ
zγ(hσ(t))
z(hσ(t))

(z(h(t)))∆

≥ γ
h(t)

hσ(t)
zγ(hσ(t))

z(h(t))
(z(h(t)))∆

≥ γ
h(t)

hσ(t)
zγ−1(h(t))(z(h(t)))∆,

which means that

w∆(t) ≤ −A(t)q(t) + A∆(t)
(

w(t)
A(t)

)σ

− γA(t)
h(t)

hσ(t)
(z(h(t)))∆

z(h(t))

(
w(t)
A(t)

)σ

.

The remainder of the proof is similar to that in Theorem 1 and so we omit it here. The
proof is complete.

Remark 1. The term A(t)
∫ ∞

t q(s)∆s can be deleted in (6) of Theorem 1 and (14) of Theorem 2,
respectively. However, it is not difficult to see that conditions (6) and (14) are weaker than those
without A(t)

∫ ∞
t q(s)∆s and easier to be satisfied.
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Next, we give a definition as follows. Let D = {(t, s) ∈ T2 : t ≥ s ≥ t0}. Define

H = {H ∈ C1(D, [0, ∞)) : H(t, t) = 0, H(t, s) > 0, H∆
2 (t, s) ≤ 0, t > s ≥ t0},

where H∆
2 is the partial derivative of H with respect to s. Then, the following results are

obtained.

Theorem 3. When γ ≥ 1, assume that (A1)–(A5) hold. For any t1 ∈ [t0, ∞)T, if there exist
a sufficiently large T ∈ [t1, ∞)T and two functions H ∈ H and A ∈ C1

rd([T, ∞)T, (0, ∞))
such that

lim sup
t→∞

1
H(t, T)

∫ t

T

[
H(t, s)A(s)q(s)

− 1
(1 + γ)1+γ

(
r∗2(s)

δ(h(s))

)γ1
(

H∆
2 (t, s)Aσ(s) + H(t, s)A∆(s)

)1+γ

(H(t, s)A(s)h∆(s))γ

]
∆s = ∞, (15)

where r∗2 and δ are defined as in Theorem 1, then every solution x of (1) is oscillatory or limt→∞ x(t)
exists.

Proof. Suppose that (1) is not oscillatory. Similarly, assume that x is an eventually positive
solution to (1). It is clear that z is eventually positive or limt→∞ x(t) = 0 by Lemma 3.
If limt→∞ x(t) = 0, then the theorem is proved. If z is eventually positive, then in view
of Lemma 2, we obtain that z∆ is eventually positive or eventually negative. If z∆ is
eventually negative, then limt→∞ z(t) and limt→∞ x(t) exist by virtue of Lemma 1, which
also completes the proof of the theorem.

If z∆ is eventually positive, then there exists a t1 ∈ [t0, ∞)T such that for any t ∈
[t1, ∞)T, we have x(t) > 0, x(g(t)) > 0, x(h(t)) > 0, z(t) > 0, z∆(t) > 0, and there exists a
sufficiently large T ∈ [t1, ∞)T such that h(t) ≥ t1, t ∈ [T, ∞)T. Define w as (7). Then, by the
proof of Theorem 1, we arrive at (12).

Replace t by s in (12), and multiply it by H(t, s). Integrating the resulting inequality
from T to t, t ∈ [σ(T), ∞)T, we have

∫ t

T
H(t, s)A(s)q(s)∆s ≤ −

∫ t

T
H(t, s)w∆(s)∆s +

∫ t

T
H(t, s)A∆(s)

(
w(s)
A(s)

)σ

∆s

−
∫ t

T
γH(t, s)A(s)h∆(s)

(
δ(h(s))
r∗2(s)

)1/γ2
[(

w(s)
A(s)

)σ]1+1/γ

∆s

= H(t, T)w(T) +
∫ t

T
H∆

2 (t, s)wσ(s)∆s +
∫ t

T
H(t, s)A∆(s)

(
w(s)
A(s)

)σ

∆s

−
∫ t

T
γH(t, s)A(s)h∆(s)

(
δ(h(s))
r∗2(s)

)1/γ2
[(

w(s)
A(s)

)σ]1+1/γ

∆s

= H(t, T)w(T) +
∫ t

T

{(
H∆

2 (t, s)Aσ(s) + H(t, s)A∆(s)
)(w(s)

A(s)

)σ

−γH(t, s)A(s)h∆(s)
(

δ(h(s))
r∗2(s)

)1/γ2
[(

w(s)
A(s)

)σ]1+1/γ}
∆s.

Using the inequality λabλ−1 − aλ ≤ (λ− 1)bλ, with λ = 1 + 1/γ,

aλ = γH(t, s)A(s)h∆(s)
(

δ(h(s))
r∗2(s)

)1/γ2
[(

w(s)
A(s)

)σ]1+1/γ

,
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and

bλ−1 =
γ

1 + γ

(
r∗2(s)

δ(h(s))

)γ1/(1+γ) H∆
2 (t, s)Aσ(s) + H(t, s)A∆(s)

(γH(t, s)A(s)h∆(s))γ/(1+γ)
,

we conclude that∫ t

T
H(t, s)A(s)q(s)∆s ≤ H(t, T)w(T)

+
∫ t

T

1

(1 + γ)1+γ

(
r∗2(s)

δ(h(s))

)γ1
(

H∆
2 (t, s)Aσ(s) + H(t, s)A∆(s)

)1+γ

(H(t, s)A(s)h∆(s))γ
∆s,

which implies that

1
H(t, T)

∫ t

T

[
H(t, s)A(s)q(s)

− 1

(1 + γ)1+γ

(
r∗2(s)

δ(h(s))

)γ1
(

H∆
2 (t, s)Aσ(s) + H(t, s)A∆(s)

)1+γ

(H(t, s)A(s)h∆(s))γ

]
∆s ≤ w(T) < ∞.

This result contradicts (15). The proof is complete.

By virtue of the proofs of Theorems 2 and 3, it is not difficult to obtain the following
theorem, and so we omit the proof here.

Theorem 4. When 0 < γ < 1, assume that (A1)–(A6) hold. For any t1 ∈ [t0, ∞)T, if there exist a
sufficiently large T ∈ [t1, ∞)T and two functions H ∈H and A ∈ C1

rd([T, ∞)T, (0, ∞)) such that

lim sup
t→∞

1
H(t, T)

∫ t

T

[
H(t, s)A(s)q(s)

−
(

H∆
2 (t, s)Aσ(s) + H(t, s)A∆(s)

)1+γ
(hσ(s))γ

(1 + γ)1+γδγ1(h(s))(H(t, s)A(s)h(s)h∆(s))γ

]
∆s = ∞,

where δ is defined as in Theorem 1, then every solution x of (1) is oscillatory or limt→∞ x(t) exists.

4. Examples and Discussion

Two examples are presented to show the applications of our results. The first example
is given to demonstrate Theorems 1 and 2.

Example 1. Let T =
⋃∞

n=1[2n− 1, 2n]. For t ∈ [5, ∞)T, considert2


r2(t)

((
x(t)− t− 1

2t
x(t− 4)

)∆
)1/5

∆


γ1


∆

+
xγ1/5(t− 2)

t3/2 = 0. (16)

Here, r1(t) = t2, γ2 = 1/5, p(t) = (t− 1)/(2t), g(t) = t− 4, h(t) = t− 2, and f (t, x) =
xγ1/5/t3/2. In view of (A5), we can take q(t) = 1/t3/2.

Case 1: r2(t) = 1/t and γ1 = 7, which means that γ = 7/5 > 1. It is not difficult to see that
the coefficients of (16) satisfy (A1)–(A5). Moreover, we have

r∗2(t) =
1

t− 2
, δ(h(t)) =

∫ t−2

t1

∆s
s2/7 = O(t5/7).
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Taking A(t) = t, it follows that

lim sup
t→∞

{
A(t)

∫ ∞

t
q(s)∆s +

∫ t

T

[
A(s)q(s)− 1

(1 + γ)1+γ

(
r∗2(s)

δ(h(s))

)γ1
(

A∆(s)
)1+γ

(A(s)h∆(s))γ

]
∆s

}

= lim sup
t→∞

{
t
∫ ∞

t

1
s3/2 ∆s +

∫ t

T

[
1

s1/2 −
(

5
8

)8/5(1/(s− 2)
O(s5/7)

)7 1
s7/5

]
∆s

}

= lim sup
t→∞

{
O(t1/2) +

∫ t

T

[
O(s−1/2)−O(s−67/5)

]
∆s
}

= ∞.

Therefore, by virtue of Theorem 1, we conclude that every solution x of (16) is oscillatory or
limt→∞ x(t) exists.

Case 2: r2(t) = 1 and γ1 = 3, which means that 0 < γ = 3/5 < 1. It is not difficult to see
that the coefficients of (16) satisfy (A1)–(A6). Furthermore, we have

δ(h(t)) =
∫ t−2

t1

∆s
s2/3 = O(t1/3).

Letting A(t) = t, it follows that

lim sup
t→∞

{
A(t)

∫ ∞

t
q(s)∆s +

∫ t

T

[
A(s)q(s)−

(
A∆(s)

)1+γ
(hσ(s))γ

(1 + γ)1+γδγ1(h(s))(A(s)h(s)h∆(s))γ

]
∆s

}

= lim sup
t→∞

{
t
∫ ∞

t

1
s3/2 ∆s +

∫ t

T

[
1

s1/2 −
O(s3/5)

(8/5)8/5 ·O(s) · (s(s− 2))3/5

]
∆s

}

= lim sup
t→∞

{
O(t1/2) +

∫ t

T

[
O(s−1/2)−O(s−8/5)

]
∆s
}

= ∞.

Therefore, we conclude that every solution x of (16) is oscillatory or limt→∞ x(t) exists via
Theorem 2.

Now, we give the second example to demonstrate Theorem 3.

Example 2. Let T =
⋃∞

n=0[2 · 3n, 3n+1]. For t ∈ [6, ∞)T, consider1
t


t3

((
x(t)− 1

t2 x
(

t
3

))∆
)5
∆


3/5


∆

+ tλx3
(

t
9

)
= 0. (17)

Here, r1(t) = 1/t, r2(t) = t3, p(t) = 1/t2, g(t) = t/3, h(t) = t/9, γ1 = 3/5, γ2 = 5,
γ = 3 > 1, and f (t, x) = tλx3, where λ ∈ R. In view of (A5), we can take q(t) = tλ. It is obvious
that the coefficients of (17) satisfy (A1)–(A5). Moreover, we have

r∗2(t) =
(

t
9

)3
, δ(h(t)) =

∫ t/9

t1

∆s
(1/s)5/3 = O(t8/3).
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Taking H(t, s) = (t− s)2 and A(t) = 1, we conclude that

lim sup
t→∞

1
H(t, T)

∫ t

T

[
H(t, s)A(s)q(s)

− 1
(1 + γ)1+γ

(
r∗2(s)

δ(h(s))

)γ1
(

H∆
2 (t, s)Aσ(s) + H(t, s)A∆(s)

)1+γ

(H(t, s)A(s)h∆(s))γ

]
∆s

= lim sup
t→∞

1
(t− T)2

∫ t

T

[
(t− s)2sλ − 1

256

(
(s/9)3

O(s8/3)

)3/5 O(s4)

O(s6)

]
∆s

= lim sup
t→∞

1
(t− T)2

∫ t

T

[
O(s2+λ)−O(s−9/5)

]
∆s.

When λ > −1, it follows that (15) holds. Then, by virtue of Theorem 3, we deduce that every
solution x of (17) is oscillatory or limt→∞ x(t) exists.

Remark 2. Due to the fact that the derivative z∆ does not fixed, it is difficult to establish criteria
which ensure oscillation of all solutions of (1). It is interesting to suggest a different method to study
(1) for future research. It would be of interest to investigate (1) with a damping term or a nonlinear
neutral term; see, for instance, the papers [3,15] for more details, respectively.
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