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Abstract: This paper provides a brief overview of modern applications of nonbinary logic models,
where the design of heterogeneous computing systems with small computing units based on three-
valued logic produces a mathematically better and more effective solution compared to binary models.
For application, it is necessary to implement circuits composed of chipsets, the operation of which
is based on three-valued logic. To be able to implement such schemes, a fundamentally important
theoretical problem must be solved: the problem of completeness of classes of functions of three-
valued logic. From a practical point of view, the completeness of the class of such functions ensures
that circuits with the desired operations can be produced from an arbitrary (finite) set of chipsets. In
this paper, the closure operator on the set of functions of three-valued logic that strengthens the usual
substitution operator is considered. It is shown that it is possible to recover the sublattice of closed
classes in the general case of closure of functions with respect to the classical superposition operator.
The problem of the lattice of closed classes for the class of functions T2 preserving two is considered.
The closure operators R1 for the functions that differ only by dummy variables are considered
equivalent. This operator is withiin the scope of interest of this paper. A lattice is constructed for
closed subclasses in T2 = { f | f (2, . . . , 2) = 2}, a class of functions preserving two.

Keywords: three-valued logic application; three-valued logic; closure operator; lattice structure;
closed subclasses; substitution operator

1. Introduction

The efficiency of a coding scheme per symbol is defined by the relation y = log b/b,
where b is the base of a numeral system. It is easy to see that the value of b for which this
function is a maximum is e ≈ 2718. Thus, the optimal base is three because e cannot be used
for a rational representation of numbers, and it is quite close to b = 3; a ternary system is the
most optimal from the point of view of information density [1]. In applications where high
data density is of critical importance, the ternary logic gates are the only optimal solution.
With ternary logical gates, we can obtain close to an order of magnitude improvement in
data density, and a reduction in switching speed by a factor of 13 over the logic of other
orders [2].

Extensive research addressing ternary logic has demonstrated that ternary logic gates
are the simplest and most economical to implement in comparison to higher-order logic
systems, see, for example [3,4]. In these papers, the authors proposed a new approach to
design ternary reversible multipliers and demonstrated that ternary computational units
are better than other designs, providing about 3% and 11% improvements, respectively, in
terms of performance, cost, and energy loss.

Ternary logic systems are optimal for modern computing machines in terms of balance
between simplicity and performance. The simplicity of implementation distinguishes
ternary logic solutions from those based on other models, for example, from fuzzy logic
models, which allow the consideration of a more complete description of systems with more
complicated control. Certainly, strong proven results are available for fuzzy logic [5], which
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can be much more efficient than classical logic, especially at a high level of implementation,
in algorithms for machine learning, artificial intelligence, natural languages processing,
image analysis [6], analysis of financial risks [7], and in specialized devices. However, the
large number of parameters, states, inputs and outputs, and adding extra variables can
exponentially increase the computational complexity of fuzzy logic models. Real-time
computing requires special hardware, the development of which is already expensive
in contrast to ternary functions. Moreover, one methodology based on carbon nanotube
field-effect transistors allows synthesizing inexpensive and low-power consuming circuits
exactly for ternary functions [8]. For a four-valued logic function, this process is already
somewhat more complicated and becomes more expensive, and research in this direction
is also important for the future of computational machines [9,10].

Ternary logic circuits are flexible enough to realize almost all basic logic gates (NAND,
NOR, AND, and OR gates) and even some more complicated cascaded logic functions,
which are potentially the basis in high-order logic. Ternary logic circuits have advantages
in terms of nonvolatility, load capacity, compactness of circuit construction, high efficiency,
good robustness with both constant voltages on the input and output, and lacking signal
degradation [11].

Ternary logic is the generalization for multivalued logic [12,13]. Furthermore, with-
out loss of generality, instead of multivalued cases, a ternary logic model may be considered.
In ternary logic, a statement is assigned one of three values: “true”, “false”, or “unde-
fined” [1,12,14]; in binary logic, one of two is assigned: “true” or “false”. Some features of
the operation logic of a ternary computer, for example, the realization of ternary arithmetic
operations and, in particular, the representation of negative numbers [15,16], provide pos-
sibilities for designing more high-performance modern ternary circuits [17] and devices
that will be useful for many modern applications.

Hubs, switches, routers, and other network equipment can be realized on ternary
circuits, which will provide notable improvements over binary circuits in terms of inter-
connects, increases in bandwidth (transmission of trits instead of bits per unit time), and
propagation delay [18,19].

Mathematically, ternary logic is more efficient than binary logic [1,12,14,20]. Research
and development of algorithms based on three-valued logic are relevant [21], for exam-
ple, in telecommunications [22,23], in reliability assessment and analysis [24–27], in the
symbolic analysis of complex systems [28], in software development and detecting design
errors [29], in the field of artificial intelligence (AI) and machine learning [30,31], quantum
computing [22,32–34], in e-health systems for the diagnosis of various diseases [35,36], and
in physics [37]. This is confirmed by the significant increase in the number of scientific
publications in leading scientific journals related to various applications of three-valued
logic over the past few years [20].

A Brief Overview of Nonbinary Logic Model Application

In recent years, three-valued logic has been most applied in the fields of assessing
the reliability of complex technical systems and of telecommunications, in the simulation
of processes and modern design languages, and in the design of data transmission and
processing systems.

In [24], the authors employed a multivalued logic technique to construct explicit
functions of the multivalued inputs of the system to analyze its reliability. The various
expressions were then compiled in a multivalued Karnaugh map that served as the natural
map for a multistate system. Furthermore, the authors showed how to use the multivalued
Karnaugh map for coherent multistate system representation to illustrate its features of
causality, monotonicity, and relevancy, and to obtain a detailed solution for a standard
commodity-supply multistate chain. Additionally, this algebraic technique of multiple-
valued logic was applied successfully for reliability analysis of nonrepairable multistate
k-out-of-n with multiple levels of system output [25].
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The same authors suggested a procedure for converting the minimal symbolic logic
expression of the network system’s success into a probability-ready expression [28]. This
was achieved in terms of multivalued component successes, and it was obtained in minimal
form as the disjunction of particular prime implicants or minimal paths of the pertinent
network. This function successfully extrapolates the probability-ready expression to the
multivalued logical domain. This result is important for applications since it allows the
direct transformation of a random logical symbolic expression, on a one-to-one basis, to its
statistical expectation form by replacing all logic variables by their statistical expectations,
and by substituting arithmetic multiplication and addition for their logical AND and OR
operators [28].

In [27], a new mathematical tool for the reliability analysis and evaluation of multistate
system reliability was constructed. The proposed method extends a standard Boolean alge-
bra approach used in reliability analysis and allows the construction of the structure function
that more exactly describes the investigated system. The authors also developed a new
method for the investigation of critical system states and all possible changes to any system
component or group of components based on multivalued logical differential calculus.

Additionally, three-valued logic models allow us to take into account qualitative in-
stead of quantitative variables. Quantitative indicators (factors) are discretized by mapping
into a certain three-interval scale [38].

This approach allows combining quantitative and qualitative indicators within a
single model. The reliability of the factors decreases minimally with such discretization.
This allows us to investigate the model as fully as possible. This is especially effective
in situations where there it is not possible to quantify the impact of a particular factor
on the process. The use of qualitative variables provides additional opportunities for
assessing factors.

Simulation is the only available method to check the quality and reliability of com-
plicated and expensive technical systems at their design stage. Automated design tools
allow us to assess quality based on real-world operating conditions. Temporary simu-
lation of circuits in an automated simulation system is often based on the principles of
three-valued logic.

Ternary logic is effective in constructing computing units for the equipment of data
transmission networks. Potentially, the transmission of three states instead of two bits
at a time can increase the data transfer rate 1.5 times. With an increase in the number
of trits (instead of bits), the speed of the transmission can grow exponentially [23,39,40].
It is possible to implement solutions for data aggregation and transmission based on
three-valued logic. These solutions provide a single high-dimensional space for network
addressing, both for standard data transmission purposes [41] and for new tasks for
controlling robotic devices for the Internet of Things [22]. Several examples of developing
a solution for telecommunication systems can be found in [38,42]. An example of building
a traffic aggregation scheme based on a k-valued logic model for high-speed transport
systems was provided in these papers.

Three-valued logic is also effective for solving both problems of image processing [43]
and of cryptography. Quantum computing for data security is the most effective method
for protecting mobile robots, the Internet of Things (IoT), and the security of distributed
applications, which also uses three-valued logic models. With the rapid advances in
quantum computers, ternary computing has become relevant again [33,34,43]. The leading
IT companies have introduced their quantum computers operating on several dozens
of qubits in the last decade: IBM quantum processors consist of 65 qubits, Google has
72 qubits [44]. The developers plan to release a 1112 qubit processor called Condor by 2023,
which should bring quantum technologies to a new commercial level [44].

Additionally, at present, the three-valued logic toolkit is widely used in tasks related
to data analysis and the construction of AI models, for example, for tasks of hierarchical
data clustering for arbitrary complicated data sets [22,30]. Interpretation models via three-
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valued logic allow us to overcome existing limitations on the ability to create fully automatic
program-analysis algorithms [45].

2. Theoretical Aspects of Designing Computing Systems Based on Three-Valued Logic

All the applied problems considered above are reduced to the problem of determining
the factors that influence the process and considering a countable set P3 of states of these
factors. Any countable number of states can be approximated by three states [46]: 0, 1, and 2.

For decision making, someone needs to find the value of the output function Y that
depends on this set. Accordingly, the output function Y can be represented as a combination
of predicates on the set P3 [47]. For this purpose, complicated predicates and superpositions
of these predicates on P3 are considered.

These predicates can be implemented (from a practical point of view) as circuits of
chips, the operation of which is based on three-valued logic.

Problem of Completeness of Function Classes of Three-Valued Logic

A fundamentally important problem—the problem of completeness of classes of
functions of three-valued logic [47]—must be solved to make this implementation possible.
From the practical point of view, the completeness of the class of functions guarantees that
a circuit with the desired functional diagram can be produced based on an arbitrary finite
number of chipsets. For two-valued logic, this problem was solved by Post, which led to
the explosive growth of electronics [48].

Post’s classical theorem describes five precomplete classes in the set of Boolean func-
tions [48]:

– The class of functions preserving 0;
– The class of functions preserving 1;
– The class of self-dual functions;
– The class of monotone functions;
– Class o linear functions.

For the case of three-valued logic, the problem was solved by Yablonsky in 1958 [46,47].
He proved that there are 18 precomplete classes of functions of three-valued logic:

– classes preserving the sets T0, T1, T2, T0,1, T0,2, and T1,2;
– the class of self-dual functions;
– the class of linear functions;
– classes of monotone functions;
– the class preserving the partition;
– central precomplete classes preserving one of the relations

(
0 1 2 0 0 1 2
0 1 2 1 2 0 0

)
,
(

0 1 2 1 1 0 2
0 1 2 0 2 1 1

)
,(

0 1 2 2 2 0 1
0 1 2 0 1 2 2

)
;

– Precomplete Slupecki class—the set of all inessential functions.

The precomplete classes for ternary functions differ from precomplete classes for
binary functions only by the preservation classes of partitions, central precomplete classes,
and the precomplete Slupecki class. Moreover, the preservation classes of partitions are
just a method of reducing to the two-valued case. Thus, only the precomplete Slupecki
class is fundamentally new for the three-valued logic case [49].

For three-valued logic, it was proved that the completeness problem cannot be solved
in a general case [46]: it can be proved only for precomplete classes of the functions [50].
For k > 2, there is a continuum set of precomplete classes [51]. If the lattice of closed classes
is countable in the case of two-valued logic, then it is exponential (continuous) in the case
of three-valued logic. The construction of finite lattice is impossible in this case. However,
its closure operators on the set of three-valued logic functions can be considered, which are
a strength of the common substitution operator.

Solving the completeness problems for this new closure operator and finding the
structure of the lattice of closed classes will help not only to restore the sublattice of closed
classes in the general case of closure of functions with respect to the classical superposition
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operator, but also to optimize the possible industrial production of chips for functional
circuits for solving the problem described in the Introduction.

In the next section, I prove the existence and possibility of constructing a lattice for
the closure operator in several lemmas and theorems. The novelty of the obtained results is
that a special class of operators on functions of three-valued logic is considered, which is a
less general case, but it allows obtaining a finite lattice, which is essential for applications.

3. Main Results
3.1. Lattice of Closed Subclasses T2 with Respect toR∞

Denote P3 as all 3-valued logic functions. The function f (x1, . . . , xi−1, xi, xi+1, . . . , xn)
essentially depends on a variable, xi, if there exists a1, a2, . . . , ai−1, ai+1, . . . , an ∈ Ek, such
that h(x) = f (a1, . . . , ai−1, x, ai+1, . . . , an) is not constant. This variable xi is called essential
for function f .

Functions f1 and f2 are equal if we can derive f1 from f2 via deleting essential variables.
Let |X f | be the number of essential variables in f .

Definition 1. Let M be the set of functions from P3. DenoteR∞(M) as the result of the closure
of the set of functions from M with respect to operations of substitution of the function g to the
equivalent function f ∼ g, where

f ∼ g⇔ ∀~x [ ( f (~x) = g(~x)) ∨ ( f (~x), g(~x) ∈ {0, 1}) ].

Consider a variant of the closure operatorR∞, for which functions that differ only in
dummy variables are considered equivalent. Let us construct a lattice for closed subclasses
in T1 = { f | f (1, . . . , 1) = 1} in the class of functions preserving two.

Definition 2. Let f (x1, . . . , xi, . . . , xn) ∈ P3, |X f | = n; then, xi is called R∞-essential for f
if there are sets αn

1 = (a1, . . . , ai−1, b1, ai+1, . . . , an), αn
2 = (a1, . . . , ai−1, b2, ai+1, . . . , an) such

that f (αn
1 ) ∼ f (αn

2 ).

Completeness in T2

Definition 3. The following notation is used:

T02 def
= { f |∃i ∈ {1, X f } : α = (a1, . . . , aX f ), ai ∈ {0, 2} ⇒ f (α) = 2}

T12 def
= { f |∃i ∈ {1, X f } : α = (a1, . . . , aX f ), ai ∈ {1, 2} ⇒ f (α) = 2}

T02 def
= { f |α = (a1, . . . , aX f ); ai ∈ {0, 2}, i ∈ {1, X f } ⇒ f (α) = 2}

T12 def
= { f |α = (a1, . . . , aX f ); ai ∈ {1, 2}, i ∈ {1, X f } ⇒ f (α) = 2}

Lemma 1. The class T02− isR∞-closed.

Lemma 2. The class T12− R∞ is closed.

Proof of Lemma 1. Note that neither the permutation of variables nor the identification or
addition of inessential (dummy) variables affects the property functions belonging to the
class T02. This follows clearly from the class definitions.

It is also obvious that if f ∈ T02, then for any function g( f ∼ g), it is true that g ∈ T02.
Now, I show that the superposition of functions from the class T02 will also lie in class

T02.
Let f ∈ T02, f = f (x1, . . . , xn). Consider the function h = f (g1, . . . , gn), where gi− are

either free variables or functions from the set T02.
By contradiction, let h /∈ T02; then, there is a set α = (a1, . . . , a|Xh |), ai ∈ {0, 2}, 1 ≤ i ≤

|Xh|, such that it is true that h(α) 6= 2.
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By the construction of the function h, and under the condition that f ∈ T02, there is i
such that the function gi(β) 6= , where β = (b1, . . . , b|Xgi |

), 1 ≤ bi ≤ |Xgi | is the projection
of vector α on the coordinate axes corresponding to free variables of the function gi.

Thus, the function gi /∈ T02, but this contradicts the choice of function gi. Thus,
h ∈ T02.

Lemma 1 is proved.

Lemma 2 can be proved by repeating the sketch of the proof of Lemma 1 (by formally
replacing T02 with T12).

Lemma 3. The class T02− R∞ is precomplete in class T2.

Proof. Note that the class T2 = R∞({, }), where f (|X f | = 2)&( f (α) = 2 if and only if,
when α = (2, 2)), g(|Xg| = 1)&(g ∈ T2)&(g /∈ T∼).

Let there be a function w(w /∈ T02). Then, by definition, there is a set α = (a1, . . . , a|Xw |),
ai ∈ {0, 2}, 1 ≤ i ≤ |Xw| such that w(α) 6= 2.

Let us move from function w to function w′, derived from w by identifying variables
according to the set α. Namely, the variables in the α set are identified with the same
values. Thus, the whole set of variables of the function w may be split into two groups:
with respect to 0 and with respect to 2. By identification, that produces the function
w′(|Xw′ | = 2)&(w′ /∈ T02).

Without loss of generality, let w′(0, 2) = 1. If this is not true, then, by rearranging
the variables and moving to the function w′′(w′′ ∼ w′), the function with the specified
property can be easily obtained.

If the vector α does not contain elements equal to 2, then the function where ∼ is a
function w′ and satisfies the required properties may be considered.

Note that a function g(g ∈ T02)&(|Xg| = 1)&(g /∈ T∼) exists. Consider a function
w′′(w′′ ∼ w) such that:

w′′(α) =


1, α = (2, 0)
2, w′(α) = 2
0, otherwise.

Consider a function v1(x, y) = g(w′′(x, y)). The property v1(α) = 1 for this function
holds if and only if α = (0, 2). Additionally, consider a function v2 = v2(x, y) = v1(y, x). It
is easy to see that, by construction, it produces {v1, v2} ⊆ R∞(T ′∈ ∩w).

Consider a function d such that:

d(α) =
{

2, ai ∈ {0, 2}, 1 ≤ i ≤ 2
1, otherwise.

, α = (a1, a2).

It is obvious that d ∈ T02. Let us construct a function m:

m(x, y) = d(d(v1(x, y), d(x, y)), v2(x, y))

m(α) =

{
2, a1 = 1, 1 ≤ i ≤ 2
1, otherwise.

, α = (a1, a2).

As function 2 ∈ T02, a function f can be constructed such that:

f (x, y) = m(m(x, 2), m(y, 2))

f (α) =
{

2, ai = 2, 1 ≤ i ≤ 2
1, otherwise.

, α = (a1, a2).
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As mentioned above, R∞({{, }}) = T∈. However, by construction, we can obtain
f ∈ R∞(m) ⊆ R∞(w, T ′∈), and, by definition, g ∈ T02; therefore, T2 = R∞(w, T ′∈). The
Lemma is proved.

Lemma 4. Let f ∈ T2 and f /∈ T01. Then, 2 ∈ R∞({).

Proof. Consider the function h(x) = f (x, . . . , x). It is easy to show that if h /∈ T01, then
2 ∈ R∞(〈).

Let h ∈ T01. Note that for any g(|Xg| = 1)&(g ∈ T01), it holds that g ∈ R∞(〈) by
condition f /∈ T01; hence, there is a set α = (α1, . . . , αn), n = |X f |, αi ∈ {0, 1}, 1 ≤ i ≤ n
such that f (α) = 2. Construct a function f ′ = f (g1, . . . , gn), |Xgi | = 1, gi ∈ T01, 1 ≤ i ≤ n,
at gi(0) = αi. Note that {gi, h} ⊂ R∞({); therefore, f ′ ∈ R∞({). Consider a function
h′(x) = f ′(x, . . . , x). By construction, it can be obtained that h′(0) = h′(2) = 2; therefore,
according to the already considered case, we have 2 ∈ R∞(〈′) ⊂ R∞({).

The Lemma is proved.

Lemma 5. A class T∼ ∩ T2− isR∞—precomplete in T2.

Proof. Let f /∈ T∼, f ∈ T2, |X f | = n. Let me show that R∞({{ ∪ T∼ ∩ T∈}) = T∈. Note
that, by definition, there are at least two sets, α1 = (a1

1, . . . , a1
n) and α2 = (a2

1, . . . , a2
n), such

that α1 ∼ α2, and f (α1) ∼ f (α2). Identify variables in f according to the coincidence of
identical pairs in vectors α1 and α2. Concretely, if (a1

i , a2
i ) = (a1

j , a2
j ), then the ith and jth

variables are identified. Thus, the function f ′ of five variables satisfying the following
condition was obtained

f ′(0, 1, 2, 0, 1) ∼ f ′(0, 1, 2, 1, 0)

Without loss of generality, it can be assumed that after identification variables, the
function f ′ has exactly this order variables. Otherwise, the variables will be reordered.
In addition, note that some of the variables of the function f ′ can be dummy variables.

Note that there is 2, g ∈ T∼ ∩ T2(g(0) = 1, g(1) = 0). Let us move on from function
f ′ to function f ′′ = f ′(g(x1), x1, 2, x2, x3), f ′′ ∈ R∞(T∼ ∩ T∈). Function f ′′ satisfies the
property

f ′′(0, 0, 1) ∼ f ′′(1, 0, 1).

Without loss of generality, let f ′′(1, 0, 1) = 2.
There are functions f ∈ T∼ ∩ T2, such that f (α) = 2 if α = (2, . . . , 2). Denote the set of

such functions as N. By a construction, it is shown thatR∞({{′′,N}) = T2.
Let h ∈ T2 be an arbitrary function. Consider the functions g0, g1, g2 ∈ N(|Xgi | =

|Xh| = n).

g0(α) =

{
2, α = (2, . . . , 2)
0, otherwise.

g1(α) =

{
2, α = (2, . . . , 2)
1, otherwise.

g2(α) =


2, α = (2, . . . , 2)
1, h(α) = 2,
0, h(α) 6= 2,

Consider the function h′(x1, . . . , xn) = f ′′(g2(x1, . . . , xn), g1(x1, . . . , xn), g0(x1, . . . , xn)).
By construction, h′ ∼ h. Thereby, R∞(〈′) = R∞(〈) ⊆ R∞({{′′,N}) ⊆ R∞({, T∼ ∩ T∈).
Due to the arbitrariness of the function h ∈ T2, we obtain T2 ∈ R∞({{, T∼ ∩ T∈}).

The Lemma is proved.
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Lemma 6. A class T01 ∩ T2 isR∞-precomplete in T2.

Proof. Consider the function f /∈ T01 ∩ T2, f ∈ T2. By Lemma 4, R∞(∈, T′∞ ∩ T∈) ⊆
R∞({, T′∞ ∩ T∈). Let h ∈ T2 be an arbitrary function from T2. Note that there is a function
g ∈ T01 ∩ T2 satisfying the following property:

g(0, 2) ∼ g(1, 2)

Without loss of generality, g(1, 2) = 2.
Consider the function m ∈ T01 ∩ T2(|Xm| = |Xh| = n), such that:

m(α) =


2, α = (2, . . . , 2)
1, h(α) = 2,
0, h(α) 6= 2,

The function h′(x1, . . . , xn) = g(m(x1, . . . , xn), 2) satisfies the property h ∼ h′ by
construction. In this way, h ∈ R∞(〈′) ⊆ R∞({∈, T′∞ ∩ T∈}) ⊆ R∞({{, T′∞ ∩ T∈}). By the
arbitrary function h, we have T2 ∈ R∞({, T′∞ ∩ T∈).

The Lemma is proved.

Now, it is possible to formulate the main result that follows from these lemmas.

Theorem 1 (Completeness). There are five precomplete classes in T2.

3.2. Completeness Problem for the OperatorR∞

Let M be a given set of functions from P3. Denote the result of the closure of the set of
functions M with respect to the operation of substitution and transition of the function g to
the equivalent function f ∼ g asR∞(M), where

f ∼ g⇔ ∀~x [ ( f (~x) = g(~x)) ∨ ( f (~x), g(~x) ∈ {0, 1}) ].

Consider the following classes: T01 is the class of functions preserving the set {0, 1},
T2 is the function class preserving two, and class T∼ (also T{01},{2} (U(R)) is the function
class preserving the relation ∼ .

It is easy to see that with passing from function f to function g, the property of
belonging to classes T2, T01, T∼ is preserved. In this way, due to the classes T2, T01, T∼
being precomplete with respect to the substitution, and the completion does not add new
functions, the following lemma is obtained:

Lemma 7. Classes T2, T01, and T∼ areR∞-precomplete.

Lemma 8. Let f /∈ T01, then 2 ∈ R∞({).

Proof. It is easy to check that if h(x) /∈ T01 is a 1-place function, then 2 ∈ R∞(〈). Thus,
if the function g(x) = f (x, . . . , x), g /∈ T01, then the Lemma is proved.

Let g ∈ T01. By condition, there is a set~α = (a1, . . . , an), ai ∈ {0, 1} such that f (~α) = 2.
Consider a function f ′ such that

g′(x) = f (g1(x), . . . , gn(x))

where gi(gi(0) = ai)&(gi ∼ g). Notice that g′ ∈ R∞({) and g′(0) = 2, then 2 ∈ R∞(}′) ⊆
R∞({).

The Lemma is proved.

Theorem 2 (Completeness). There are threeR∞—precomplete classes T2.
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4. Conclusions

The proved results can be interpreted in the following way for applications: Suppose
we have a finite number of microcircuit industrial manufacturers. These three-valued logic
microcircuits can be considered as the class of three-valued functions (basic operations).
The presented results indicate that any other compound function (logic formula) that can be
expressed via functions from this class also belongs to this class. This compound function
is also called a superposition of basic functions (operations). The study of the superposition
of functions defined on a finite set led to the emergence of the theory of closed classes.
The term closed class means precisely closed in superposition. The initial problem for
the theory of closed classes is the problem of functional completeness [49]. It consists of
determining, for an arbitrary set of functions, whether it is possible to obtain all functions
with arguments and values in this set from these functions by superposition. I proved that
it is possible. Moreover, we can describe all of them explicitly (via lattice construction).

If there is a finite set of three-valued logic microcircuits, the solution for the problem
of completeness of closed classes means that we can construct all possible functional
schemes for a specific application problem by combining different microcircuits from
this finite set. Earlier, similar results were considered for a binary logic case [52], where
the theoretical foundation for designing current circuits in Boolean and linear algebra
was provided. However, for the case of multivalued logic (in particular, for three-valued
logic), this is still an open problem. Different techniques and tools have been applied
to this problem, but the current results mainly include either the description of general
approaches or attempts to apply the mathematical tool of linear algebra (nonlogical tools) to
synthesize nonbinary digital current circuits [53], or the more complicated pure theoretical
tools that are impossible to realize [54], or the realization for some special operators is
only given [55], or a complete superposition calculus is only provided for first-order-type
logic [56]. I proved the result for the three-valued case and showed that any logic function
(digital circuit) can be synthesized from a finite number of different microcircuits. My
results are based on the closure operators on the set of functions of three-valued logic,
which is a strength of the usual substitution operator. I proved that the completeness
problem for this operator has a solution. Therefore, it is possible to recover the sublattice of
closed classes in the general case of the closure of functions with respect to the classical
superposition operator.

Three-valued logic can potentially produce considerable improvements in the field
of computer networks and data networks. Research is in progress in the field of nonclas-
sical approaches to logic synthesis and circuit design of digital IP modules for computer
technology, and control and communication systems [38,41,42,57].

Let me separately highlight two examples where the results obtained in this paper
were directly applied, and are of greatest interest to me:

Example 1. The problem of traffic aggregation in cellular networks for providing Internet access
on high-speed trains. In [38], it was shown how to implement a new traffic aggregation protocol
based on predicates of three-valued logic exactly on these results. A new working scheme of LTE
modems was also described: coding three states instead of two (and, accordingly, using all their
possible combinations) allows covering all possible states of a data transmission device and, as a
result, processing more information per unit of time.

In general, a large number of states can be considered for an LTE modem, for example:

– Modem is off,
– Modem is on,
– Low latency for a pocket transmission,
– A good coverage of a cellular operator network, etc.

In reality, a countable number exists; however, it is possible to approximate all states
to three fundamentally important states from the point of view of applications:

1, The modem is working, and traffic is transmitted with normal latency;
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2, The modem does not work, or
0, The state is not recognized.

The functional elements of an LTE modem model may be represented by logical units
that generate multivalued signals at the inputs/outputs. These signals are discretized by
three values, for example, {A, B, x̂}, where A, B are constants, and x̂ is a positive signal.
Then, the operation of logical units with such signals may be described, for example, by the
following tables (that are analogues of truth tables in binary logic), where, for simplicity,
the constants are denoted by 0 and 1, and the positive signal as 2.

A A + 1
ine 0 1
ine 1 2
ine 2 0

A A + 2
ine 0 2
ine 1 0
ine 2 1

m(A, B) 0 1 2
ine 0 0 0 0
ine 1 0 1 1
ine 2 0 1 2

m1(A, B) 0 1 2
ine 0 0 1 2
ine 1 1 1 1
ine 2 2 1 1

m01(A, B) 0 1 2
ine 0 0 1 1
ine 1 1 0 1
ine 2 2 0 0

Furthermore, we can construct and calculate all possible values for the resulting
function, for example, for the following:

f = m1(m(X1; m01(X1; X2)); A + 2(X1)).

The table below shows an example of calculating values for this resulting function.

f (A, B) 0 1 2
ine 0 2 2 2
ine 1 1 2 1
ine 2 1 2 2

Figure 1 demonstrates a logical diagram of the construction of this function.
A similar approach based on the completeness problem of three-valued logic but for

a different task was used in [2]. The authors also implemented considered schemes and
performed a simulation that demonstrated a reduction in switching speed by a factor of 13
compared to classical results.
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Figure 1. An example of the resulting function construction f (A, B).

Example 2. The construction of structural reliability models of complex systems for which there
is no strict concept of failure. During modeling, three primitive logic functions describing three
states of the system’s unit are considered: an operable state, a valid state, and a failure. Then, these
are used to build a combination of any other state as the ternary predicate as well as handling the
ternary the whole system state. Th reliability functions are also written as a three-valued logic
predicate [58].

Many fuzzy factors that exist in the traffic aggregating scheme can be discretized.
To establish a functional relationship between the input and output parameters of the
system (i.e., the performance and reliability of the entire system), we can construct a
structural function that establishes a one-to-one correspondence between the possible
states of n elements and the state of the entire system:

ϕ(x1, . . . , xn) = ϕ(x) : {0, 1, 2}n → {0, 1, 2}.

Figure 2 demonstrates a general graphical interpretation of the structural function of
the process for assessing the quality (performance and reliability) of the above-mentioned
traffic aggregation system (the detailed scheme is given in [38]). When constructing this
scheme, the following key internal and external factors that affect the traffic transmission
were analyzed and selected: the quality of data transmission (availability of access to the
external network through one of the three cellular communication channels), equipment
quality, and power supply stability.

To demonstrate how to construct such a scheme, only the main influencing factors were
selected. With the assistance of software for the automated design of such models, and by
taking into account additional parameters, the list can be significantly expanded, for exam-
ple, by adding the speed of the object, the signal level of cellular stations, the amount of
network load (number of users), channel capacity, types of traffic, etc. Let us consider the
following factors for the traffic aggregation problem:
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Factor and its descriptionFactor
0 1 2

ine Data link 1 (x1) Not available Weak signal Stable connection
ine Data link 2 (x2) Not available Weak signal Stable connection
ine Data link 3 (x3) Not available Weak signal Stable connection

ine x11 Not available Weak signal Stable connection
ine Power supply (x4) failure Unstable operation Working state
ine LTE modem (x5) failure Unrecognized Working state

ine x12 failure Unstable operation Working state
ine The state of the entire

system (Y)
failure

Unstable network
access

Working state

Figure 2. Diagram of the structural function of the quality assessment of a traffic aggregation system.

In order to reduce the computational complexity of the structural function, all variables
may be grouped into classes of similarity, for example, data transmission links (x11) and
network equipment (x12); and the intermediate result calculating for these classes may
be based on expert assessments. The intermediate results’ calculation is described in the
following tables.

x1 0 0 0 0 0 0 0 0 0
ine x2 0 0 0 1 1 1 2 2 2
ine x3 0 1 2 0 1 2 0 1 2
ine x11 0 0 2 0 1 2 2 2 2

x1 1 1 1 1 1 1 1 1 1
ine x2 0 0 0 1 1 1 2 2 2
ine x3 0 1 2 0 1 2 0 1 2
ine x11 0 1 2 1 1 2 2 2 2
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x1 2 2 2 2 2 2 2 2 2
ine x2 0 0 0 1 1 1 2 2 2
ine x3 0 1 2 0 1 2 0 1 2
ine x11 2 2 2 2 2 2 2 2 2

x4 0 0 0 1 1 1 2 2 2
ine x5 0 1 2 0 1 2 0 1 2
ine x12 0 0 0 0 1 2 0 2 2

Then, the output function Y may be derived from these intermediate values:

x11 0 0 0 1 1 1 2 2 2
ine x12 0 1 2 0 1 2 0 1 2
ine Y 0 0 0 0 1 2 0 2 2

Thus, the result of the structural function construction of the system is a vector Y,
interpreted as a column of the truth table on ordered sets of variables:

{00, 01, 02, 10, 11, 12, 20, 21, 22} → Y.

The obtained structural function can be used to determine the efficiency and reliability of
the object under study for the given input parameters. Furthermore, this can be detailed
by adding new predicates for aggregation, for example (denoted with special names for
practical clarity ) [38],

simCardOp1Slot(x1, ..., xn): the value of the function determines if the SIM card is in
the corresponding slot or not, in the aggregator;

latency(x1, . . . , xn): indicates if the latency of the channel satisfies the requirements;
modemState(x1, . . . , xn): if the modem works or not;
coverageOperator1(x1, . . . , xn): indicates if modems are located in the coverage area of

Operator_1;
coverageOperatork(x1, . . . , xn): the modems in the coverage area of Operator_k, etc.
The proved results make it possible to construct the superposition of these functions

as a complex predicate for traffic aggregation:

tra f f icAggr
(

latency(x1, . . . , xn), modemState(x1, . . . , xn), ..., coverageOperatork(x1, . . . , xn)
)

.

The constructed structure function can be used to determine the efficiency and relia-
bility of the system for given input parameters. Further research and development of this
technique will allow a more complete assessment of the effects of various factors on the
performance of the system as a whole.

A similar process of the logical synthesis and circuit design of double- and multivalued
digital nodes was described in [57], demonstrating the advantages of the considered
architectural and circuitry solutions for the synthesis of double- and multivalued digital
nodes of different applications in comparison to double-valued Boolean algebra. However,
these results describe the concept rather than providing a method of synthesizing circuits
from a practical point of view. The results obtained in this paper can be used to optimize
the industrial production of chipsets (or microcircuits) for new functional circuits for
transmission and data processing tasks. The problem of constructing a lattice of closed
classes is, in some sense, an inverse problem to the problem of completeness, and it provides
an explicit answer on how to implement some functional schema from a finite number of
microcircuits.

In general, many results obtained for the 3-valued case (and for k-valued), are a
generalization of the results for the two-valued case. But there is the main fundamental
difference between P2 and P3 (more general for Pk) is that the class Pk (k > 2) is larger
than P2. And with k increase, the class Pk is so large that its full description is impossible.
For a given predicate we can check that the closed class is finite. And for some given
finite sets of functions, we can describe the closed class generated by them via predicates.
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These problems can be solved easily only for P2 and for P3. And only for these cases, we
can construct the lattice of all closed classes [49]. But for higher-order cases (k > 3) these
problems are not solvable: there is no good description of all closed classes (for Pk, k > 3)
that allow solving practical computational tasks.

Funding: This publication was prepared with the support of the Russian Foundation for Basic
Research according to the research project No. 20-01-00575 A.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Jeff, C. Ternary Computing Testbed 3-Trit Computer Architecture. Ph.D. Thesis, Computer Engineering Department, California

Polytechnic State University, San Luis Obispo, CA, USA, 2008; p. 192. Available online: http://xyzzy.freeshell.org/trinary/CPE%
20Report%20-%20Ternary%20Computing%20Testbed%20-%20RC6a.pdf (accessed on 23 November 2021).

2. Wang, X.Y.; Zhou, P.F.; Eshraghian, J.K.; Lin, C.Y.; Iu, H.H.C.; Chang, T.C.; Kang, S.M. High-density memristor-cmos ternary logic
family. IEEE Trans. Circuits Syst. Regul. Pap. 2020, 68, 264–274. [CrossRef]

3. Asadi, M.A.; Mosleh, M.; Haghparast, M. Toward novel designs of reversible ternary 6:2 Compressor using efficient reversible
ternary full-adders. J. Supercomput. 2021, 77, 5176–5197. [CrossRef]

4. Asadi, M.A.; Mosleh, M.; Haghparast, M. Towards designing quantum reversible ternary multipliers. Quantum Inf. Process. 2021,
20, 226. [CrossRef]

5. Novak, V.; Perfilieva, I.; Mockor, J. Mathematical Principles of Fuzzy Logic; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2012; Volume 517.

6. Mikhov, D.; Kondratenko, Y.; Kondratenko, G.; Sidenko, I. Fuzzy Logic Approach to Improving the Digital Images Contrast. In
Proceedings of the 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 2–6
July 2019; pp. 1183–1188. [CrossRef]

7. Mirshahi, S.; Novak, V. A Fuzzy Approach for Similarity Measurement in Time Series, Case Study for Stocks. In Proceedings of
the International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems; Springer: Cham,
Switzerland, 2020; Volume 1239. [CrossRef]

8. Kim, S.; Lee, S.-Y.; Park, S.; Kim, K.R.; Kang, S. A Logic Synthesis Methodology for Low-Power Ternary Logic Circuits. IEEE
Trans. Circuits Syst. Regul. Pap. 2020, 67, 3138–3151. [CrossRef]

9. Choi, B. Designing the First Many-valued Logic Computer. Int. J. Mech. Eng. Robot. Res. 2017, 6.
10. Ciuni, R.; Ferguson, T.M.; Szmuc, D. Modeling the Interaction of Computer Errors by Four-Valued Contaminating Logics. In

Logic, Language, Information, and Computation 2019; Iemhoff, R., Moortgat, M., de Queiroz, R., Eds.; Springer: Berlin/Heidelberg,
Germany, 2019; Volume 11541. [CrossRef]

11. Zhang, H.; Zhang, Z.; Gao, M.; Luo, L.; Duan, S.; Dong, Z.; Lin, H. Implementation of unbalanced ternary logic gates with the
combination of spintronic memristor and CMOS. Electronics 2020, 9, 542. [CrossRef]

12. Trogemann, G.; Nitussov, A.Y.; Ernst, W. Computing in Russia: The History of Computer Devices and Information Technology Revealed;
Vieweg+Teubner Verlag: Berlin, Germany, 2001; pp. 19, 55, 57, 91, 104–107. ISBN 978-3-528-05757-2.

13. Rumyantsev, D. Interviews with the Designer of the Ternary Computer. Upgrade 33:175 (August 2004). An Interview with
Nikolai Brusentsov, Designer of the Setun Ternary Computer. In Proceedings of the XXth International Congress of History of
Science, Liege, Belgium, 20–26 July 1997. (In Russian)

14. The Ternary Calculating Machine of Thomas Fowler. Available online: www.Mortati.Com/Glusker/Fowler/Index.Htm (accessed
on 3 November 2021).

15. Parhami, B.; McKeown, M. Arithmetic with binary-encoded balanced ternary numbers. In Proceedings of the 2013 Asilomar
Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 3–6 November 2013; pp. 1130–1133. [CrossRef]

16. Asibelagh, A.G.; Mirzaee, R.F. Partial Ternary Full Adder versus Complete Ternary Full Adder. In Proceedings of the 2020
International Conference on Electrical Communication and Computer Engineering (ICECCE), Istanbul, Turkey, 12–13 June 2020;
pp. 1–6.

17. Luo, L.; Dong, Z.; Hu, X.; Wang, L.; Duan, S. MTL: Memristor Ternary Logic Design. Int. J. Bifurc. Chaos 2020, 30, 2050222.
[CrossRef]

18. Jaber, R.; Elhajj, A.; Nimri, L.; Haidar, A. A Novel Implementation of Ternary Decoder Using CMOS DPL Binary Gates. In
Proceedings of the 2018 International Arab Conference on Information Technology (ACIT), Werdanye, Lebanon, 28–30 November
2018; pp. 1–3. [CrossRef]

19. Jaber, R.; Haidar, A. Multiple-Valued Logic Circuit Design and Data Transmission Intended for Embedded Systems. 2020.
Available online: http://repository.bau.edu.lb:8080/xmlui/handle/1080/9203 (accessed on 25 November 2021)

http://xyzzy.freeshell.org/trinary/CPE%20Report%20-%20Ternary%20Computing%20Testbed%20-%20RC6a.pdf
http://xyzzy.freeshell.org/trinary/CPE%20Report%20-%20Ternary%20Computing%20Testbed%20-%20RC6a.pdf
http://doi.org/10.1109/TCSI.2020.3027693
http://dx.doi.org/10.1007/s11227-020-03485-7
http://dx.doi.org/10.1007/s11128-021-03161-6
http://dx.doi.org/10.1109/UKRCON.2019.8879961
http://dx.doi.org/10.1007/978-3-030-50153-2_42
http://dx.doi.org/10.1109/TCSI.2020.2990748
http://dx.doi.org/10.1007/978-3-662-59533-6_8
http://dx.doi.org/10.3390/electronics9040542
www.Mortati.Com/Glusker/Fowler/Index.Htm
http://dx.doi.org/10.1109/ACSSC.2013.6810470
http://dx.doi.org/10.1142/S0218127420502223
http://dx.doi.org/10.1109/ACIT.2018.8672698
http://repository.bau.edu.lb:8080/xmlui/handle/1080/9203


Mathematics 2022, 10, 94 15 of 16

20. Subhash, K. On Ternary Coding and Three-valued Logic. arXiv 2018, arXiv:1807.06419.
21. Cobreros, P.; Égré, P.; Ripley, D.; Van Rooij, R. Three-valued Logics And Their Applications. J. Appl.-Non-Class. Logics 2014, 24,

1–11. [CrossRef]
22. Bykovsky, A.Y. Heterogeneous Network Architecture for Integration of Ai and Quantum Optics by Means Of Multiple-valued

Logic. Quantum Rep. 2020, 2, 126–165. [CrossRef]
23. Jin, Y.; He, H.; Lü, Y. Ternary Optical Computer Architecture. Phys. Scr. 2005, T118. [CrossRef]
24. Rushdi, A.M.A.; Al-Amoudi, M.A. Reliability analysis of a multi-state system using multi-valued logic. IOSR J. Electron. Commun.

Eng. (IOSR-JECE) 2019, 14, 1–10.
25. Rushdi, A.M.A. Utilization of symmetric switching functions in the symbolic reliability analysis of multi-state k-out-of-n systems.

Int. J. Math. Eng. Manag. Sci. (IJMEMS) 2019, 4, 306–326. [CrossRef]
26. Ren, Y.; Zeng, C.; Fan, D.; Liu, L.; Feng, Q. Multi-State Reliability Assessment Method Based on the MDD-GO Model. IEEE Access

2018, 6, 5151–5161. [CrossRef]
27. Zaitseva, E.; Vitaly, L. Reliability analysis of multi-state system with application of multiple-valued logic. Int. J. Qual. Reliab.

Manag. 2017, 34, 862–878. [CrossRef]
28. Rushdi, A.M.A.; Amashah, M.H. Symbolic Reliability Analysis of a Multi-State Network. In Proceedings of the 2021 National

Computing Colleges Conference (NCCC), Taif, Saudi Arabia, 27–28 March 2021; pp. 1–4. [CrossRef]
29. Liu, S.; Shi, Y.-F.; Huang, M.-Y. Model checking software product line based on multi-valued logic. Int. J. Reliab. Saf. 2018, 12,

364–393. [CrossRef]
30. Aizenberg, I. Complex-Valued Neural Networks with Multi-valued Neurons; Studies in Computational Intelligence; Springer:

Berlin/Heidelberg, Germany, 2011; Volume 353. [CrossRef]
31. Al-Askaar, S.; Marek, P. A New Approach to Machine Learning Based on Functional Decomposition of Multi-Valued Functions.

In Proceedings of the 2021 IEEE 51st International Symposium on Multiple-Valued Logic (ISMVL), Nur-sultan, Kazakhstan, 25–27
May 2021.

32. Hu, Z.; Deibuk, V. Design Of Ternary Reversible/Quantum Sequential Elements. J. Thermoelectr. 2018, 1, 5–16.
33. Muthukrishnan, A.; Stroud, C.R., Jr. Multivalued Logic Gates For Quantum Computation. Phys. Rev. A. 2000, 62. [CrossRef]
34. Muthukrishnan, A. Classical and Quantum Logic Gates: An Introduction to Quantum Computing—Rochester Center For

Quantum Information (Rcqi). Quantum Inf. Semin. 1999, 22.
35. Kacem, S.B.H.; Borgi, A.; Othman, S. DAS-Autism: A Rule-Based System to Diagnose Autism Within Multi-valued Logic. In

Smart Systems for E-Health; Springer: Cham, Switzerland, 2021; pp. 183–200.
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