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Abstract: Finding a maximum clique is important in research areas such as computational chemistry,
social network analysis, and bioinformatics. It is possible to compare the maximum clique size
between protein graphs to determine their similarity and function. In this paper, improvements
based on machine learning (ML) are added to a dynamic algorithm for finding the maximum clique
in a protein graph, Maximum Clique Dynamic (MaxCliqueDyn; short: MCQD). This algorithm was
published in 2007 and has been widely used in bioinformatics since then. It uses an empirically
determined parameter, Tlimit, that determines the algorithm’s flow. We have extended the MCQD
algorithm with an initial phase of a machine learning-based prediction of the Tlimit parameter
that is best suited for each input graph. Such adaptability to graph types based on state-of-the-art
machine learning is a novel approach that has not been used in most graph-theoretic algorithms. We
show empirically that the resulting new algorithm MCQD-ML improves search speed on certain
types of graphs, in particular molecular docking graphs used in drug design where they determine
energetically favorable conformations of small molecules in a protein binding site. In such cases, the
speed-up is twofold.

Keywords: maximum clique; protein graphs; machine learning; ProBiS

1. Introduction

Finding the maximum clique in a graph is a well-studied NP-complete problem [1].
Recently developed algorithms significantly reduce the time required to search for a maxi-
mum clique, which is of great practical importance in many fields such as bioinformatics,
social network analysis, and computational chemistry [2,3].

There have been many advances in the search for faster algorithms for maximum
cliques, many of which focus on specific domains of graphs [4–7]. To make the algorithm
work fast on general graphs, some good heuristics have been proposed to speed up the
branch-and-bound search [1,4,8–15]. One such algorithm is MCQD, on which we have
built [4]. It has been shown that the MCQD algorithm is faster than many other similar
branch-and-bound algorithms in finding maximum cliques [1]. In the MCQD algorithm,
there is a single parameter that can be set before the algorithm is executed. This parameter,
called Tlimit, controls the fraction of a graph on which tighter upper bounds apply to the
size of a maximal clique. These upper bounds require that (O(N2)) be computed. The
fraction of a graph on which looser upper bounds are used (O(NlogN)) is empirically
estimated to be 0.025 for random graphs. Even though MCQD seems to progress quickly
with a default value of Tlimit in many graphs, there are some graphs where Tlimit performs
poorly [4]. In particular, the Tlimit parameter is suboptimal in some dense and synthetic
graphs of the DIMACS benchmark [16]. Here, we present an improvement to the original
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MCQD algorithm that automatically determines the value of the Tlimit parameter for
the MCQD algorithm. We predict that the Tlimit parameter uses machine learning for
the input graph. The code used to perform the experiments is freely available at http:
//insilab.org/mcqd-ml (accessed on 9 November 2021).

1.1. Problem Description and Notation

Let G = (V, E) be an undirected graph, where V = 1, . . . , n is a set of vertices and
E⊂V × V is a set of edges. A clique C in the graph G is a set of nodes defined such that
there exists an edge between every two nodes in C. We say that C is a maximum clique if
its cardinality |C| is the largest among all cliques in the graph G. The maximum clique
problem (MCP) is an optimization problem that seeks the maximum clique in a given graph.
The clique number w(G) of graph G is the number of nodes in the maximum clique of graph
G. The maximum clique problem is strictly equivalent to a maximum independent set (MIS)
as well as the minimum vertex cover problem (MVC). Finding the maximum clique is an
NP-complete problem. We do not know if there is an algorithm for this group of problems
that can find the solution in polynomial time. It is likely that no such algorithm exists.

1.2. Maximum Clique Dynamic (MCQD) Algorithm

The MCQD algorithm is based on a branch and bound principle [4]. It uses approxi-
mate graph coloring to estimate the upper bound of the maximum clique size and is shown
in Algorithm 1.

Algorithm 1. Dynamic algorithm for maximum clique search.

1: procedure MaxCliqueDyn(R, C, level)
2: S[level]← S[level] + S[level - 1] – Sold[level]
3: Sold[level]← S[level - 1]
4: while R 6= Ø do
5: choose a vertex p with maximum C(p) (last vertex) from R
6: R← R \ {p}
7: if |Q| + C[index_of_p_in_R] > |Qmax| then
8: Q← Q ∪ {p}
9: if R ∩ Γ(p) 6= Ø then
10: if S[level] / ALL_STEPS < Tlimit then
11: calculate the degrees of vertices in G(R ∩ Γ(p))
12: sort vertices in R ∩ Γ(p) in descending order with respect to
their degrees
13: ColorSort(R ∩ Γ(p), C’)
14: S[level]← S[level] + 1
15: ALL_STEPS← ALL_STEPS + 1
16: MaxCliqueDyn(R ∩ Γ(p), C’, level + 1)
17: else if |Q| > |Qmax| then
18: Qmax← Q
19: Q← Q \ {p}

The algorithm stores the current clique in the variable Q and keeps track of the current
maximum clique size in the variable Qmax. As an input, it accepts an ordered set of nodes
based on their color, a set of colors, and the level variable which provides the current depth
of the recursive function. The algorithm also uses two global variables, S[level] and Sold
[level], which store the sum of steps up to the current level of algorithm progression and
the previous level Sold [level] = S[level − 1]. With the Tlimit parameter, we can limit the
use of the graph coloring of vertices R sorted by their degree. When the proportion of
steps up to a certain level of recursion is less than Tlimit, we perform additional operations
of recalculating the vertex degrees for the remainder of the graph and of resorting these
vertices according to their descending degrees. This additional work increases the tendency
of the ColorSort function to estimate a tighter upper bound for the size of a maximum
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clique, generally reducing the number of steps and time necessary for the algorithm to
find a maximum clique. The Tlimit value used in the original paper [4] was empirically
determined on a sample of random graphs and was set to a value of 0.025.

1.3. Protein Product Graphs and Use of Molecular Docking Graphs in Drug Discovery

To move drugs from the research phase to the trial phase, the most promising molecules
must be identified from a set of potential candidates. This requires a detailed knowledge
of the functions of drug target proteins, which is often lacking. Protein functions can be
determined by comparing the structure of unknown proteins to proteins with known func-
tions [2]. To compare proteins with each other, we can represent them as protein graphs,
such as we did with the ProBiS (Protein Binding Sites) algorithm [17]. Two protein graphs
can be compared by constructing a protein product graph, which is a Cartesian product
of the two protein graphs and captures all possible overlaps of one protein with the other.
Finding a maximum clique in this protein product graph is directly equivalent to finding
the alignment that overlaps most of the vertices of the protein graphs. The quality of the
overlap is an indication of the similarity of the proteins.

Another application for maximum clique search is molecular docking, which is often
performed as a high-throughput screening approach whose goal is to predict the binding
position and binding affinity of potential ligands of a target protein [18]. In a particular class
of molecular docking called fragment docking, which was explored in our ProBiS-Dock
docking algorithm, a maximum clique algorithm is used to reconstruct a docking graph
of the small molecule in a protein-bound conformation from fragments of the previously
docked molecule. The calculated binding affinities of the docked fragments can be included
in this graph as node weights, resulting in a weighted docking graph. A clique with
maximum weight in such a graph represents the docked conformation of a small molecule
with the highest binding affinity among all possible conformations of that small molecule.
This allows the algorithm to discover potential new ligands of a protein that could become
drugs in the future.

2. Overview of Graph Theory and Neural Networks Approaches

We describe the novel developed MCQD-ML (Maximum Clique Dynamic–Machine
Learning) algorithm that was tested with different types of graphs and incorporates differ-
ent machine learning models.

2.1. Graphs Used for Training and Testing

To train the machine learning algorithm, we first create a variety of graphs. In or-
der to capture the largest possible variety of target graphs in our training set, we in-
clude 10,000 sparse and dense random graphs, as well as 15 complete protein graphs and
200 molecular docking graphs. The random graphs are generated such that each edge
exists with probability d, where d is greater than 0.99 in dense graphs. The types of graphs
are presented in the following sections.

2.2. Molecular Docking Graphs

To identify energetically preferred docking conformations of potential ligands, we
performed a maximum clique search in molecular docking graphs. A molecular docking
graph is a graph whose nodes are docked molecular fragments and in which two nodes
are connected if the docked fragments can be connected with linker atoms to reconstruct
the original docked molecule. Each node is assigned a weight representing the binding
energy (or binding affinity) of a docked fragment. By performing a maximum weight clique
search on docking graphs, we can find the combination of docked fragments that yields the
conformation with the lowest energy of the docked small molecule with a given protein.
We use the ProBiS-Dock algorithm to build molecular docking graphs. The algorithm is
used to find the ligands with the highest potential when screening multiple ligands on a
target protein [18,19].
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2.3. Protein Product Graphs

In the ProBiS algorithm [17], proteins are represented as protein graphs. Each node
in a protein graph represents the spatial coordinates of the surface amino acid functional
groups. If the distance between nodes u and v is less than 15 Å, there is an edge between
two nodes in a protein graph. We can formulate the comparison of two proteins as a
maximum clique search by using the notion of a protein product graph. A maximum clique
in a protein product graph is a superposition of protein graphs in which the majority of the
nodes of two graphs are aligned. The protein product graph of two protein graphs G1 and
G2 is defined by a set of nodes, V (G1, G2) = V (G1)× V (G2). Each node in a product graph
consists of a node u from graph G1 and a node v from graph G2, both of which represent a
similar functional group in the original proteins. In general, a protein product graph can
have |V1| × |V2| nodes, but this number is reduced by keeping only the nodes from the
original protein graphs G1 and G2 that have similar neighbourhoods in a 6 Å sphere.

2.4. Small Protein Product Graphs

The problem with protein product graphs is the large size of the adjacency matrix,
which can exceed the available memory depending on the size of the proteins being
compared. It is possible to split a large protein product graph into smaller product graphs
that are much denser and contain only a subset of the nodes of the original product graph.
The advantage of smaller and denser graphs is the speed at which they can be processed. A
disadvantage of smaller protein graphs is the loss of information. If we look for a maximum
clique in a small product graph, there is no guarantee that the same clique will be the
maximum clique in the entire protein product graph.

2.5. Protocol for Machine Learning on Graphs

To gather as much information as possible about the graph, it is necessary to perform
machine learning directly on the graph. To this end, we tested several different graph
neural network models and a support vector regression algorithm with the Weisfeiler–
Lehman kernel function [20–30], which are listed in Table 1. We tested three different graph
neural network models that can model data of different complexity with inductive biases.
They are (i) Graph Convolutional Networks (GCN) [28], (ii) Graph Attention Networks
(GAT) [29,30], and (iii) Graph Isomorphism Networks (GIN) [15,25]. We trained the models
on a given training set and then used them to predict Tlimit values for graphs on the test
set. The test set contained 15 dense random graphs, 10 small product graphs, 3 product
graphs, and 10 docking graphs. We evaluated the performance of the algorithms and
calculated the average speed of the standard MCQD algorithm for each set of test graphs.
We also calculated the combined speed for the entire test set by summing the runtimes of
the algorithms for many different types of graphs and dividing the sum by the runtime
required for the MCQD algorithm.

Table 1. Different machine learning methods employed.

ML Method Description Works on Graphs Representative Power References

XGBoost Ensemble of gradient
boosted trees.

No. Best for
tabular data.

Works well on tabular data and
extracted features of a graph. Results

depend on the quality of
features extracted.

[21,22]

SVR-WL Support vector machine with
Weisfeiler–Lehman kernel Yes. Can distinguish

non-iso-morphic graphs. [24]

GNN Graph Neural Networks
(GCN, GAT, GIN) Yes. Can distinguish most graphs and learn

good representations. [15,25,28–30]
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3. Materials and Methods
3.1. Preparation of a Labeled Training Set

Before attempting to use machine learning to improve the selection of the Tlimit
parameter value for specific input graphs, we prepared a labeled training set in which
different Tlimit values were identified for each graph with the time required to detect
the maximum clique. So, we performed the maximum clique search with different Tlimit
values on a set of graphs and recorded the time taken by the MCQD algorithm to find
the maximum clique. For each generated graph, we ran the MCQD algorithm multiple
times for different values of the Tlimit parameter to record the Tlimit values approximately
uniformly on a logarithmic scale from 0 to 1. When running MCQD for many graphs and
many Tlimit values for each graph, this step becomes computationally intensive. After
collecting all Tlimit pairs and their corresponding computation time, we selected the Tlimit
value with the lowest time as the best Tlimit value for a graph. This value was then used
as the label value for training the machine learning models. The training set consists of
graphs as input and the optimal Tlimit value for each graph as the target variable.

3.2. Maximum Clique Dynamic Algorithm with Machine Learning (MCQD-ML)

The idea behind the MCQD-ML algorithm is shown in Figure 1. The algorithm per-
forms inference on the graph to determine a Tlimit parameter before the MCQD algorithm
starts, and the MCQD algorithm then uses this parameter instead of the hard-coded param-
eter. In this way, we obtain the best Tlimit parameter for a given graph and use it to make
the MCQD algorithm run faster.
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Figure 1. MCQD-ML algorithm architecture.

We used an implementation of the MCQD algorithm that can search for a maximum
clique as well as a maximum weighted clique. This algorithm is available as source code at
https://gitlab.com/janezkonc/insidrug/-/blob/master/lib/glib/mcqd.cpp (accessed on
9 November 2021). For experimental purposes, we created two training sets and two test
sets for molecular docking graphs. One set contains the docking graphs with weights, and
in the other set we omit the weights from the docking graphs and assume that all nodes
have the same weight. All other graphs are unweighted.

3.3. Evaluation of Possible Acceleration of the MCQD Algorithm

To determine if any speed-ups are possible by tuning the parameter Tlimit, we plot
the time needed for MCQD to find the maximum clique at different values of the Tlimit
parameter. In Figure 2, it can be observed that on a random 150 node graph, the default
value of parameter is well suited and the maximum clique can be found relatively quickly
compared to other values of Tlimit.

https://gitlab.com/janezkonc/insidrug/-/blob/master/lib/glib/mcqd.cpp
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In Figure 3 we evaluate the impact of the initial sorting of vertices on the time required
for MCQD to finish searching. We found that initial sorting of vertices has no significant
impact on the time needed by MCQD to find the maximum clique.

3.4. Evaluation of the Effect of Machine Learning Models on Validation Sets

We perform an evaluation of the trained machine learning models we presented. The
models are evaluated using the R2 score on the validation set, which contains graphs from
different domains. This value (also called coefficient of determination) is used in statistics
to evaluate statistical models. Values of R2 typically range from 0 to 1, with 1 being the best
possible value. If the model predicts the mean of the data (constant value), the R2 value is
0. The value can also be negative if the model does not perform as well as the mean of the
data. The results of our evaluation are shown in Table 2.

We find that the model GAT achieves the highest R2 value, with any machine learning
model performing better than the standard MCQD parameter choice, which is nearly equal
to 0. Thus, we expect the GAT model to perform the best, while the other models in the test
set are not as fast. In the next section, we evaluate the models based on the time they take
to find the maximum clique.
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Table 2. R2 values from different machine learning models.

Model Name R2 Score on Validation Set

MCQD −0.02
XGB 0.15

SVR-WL 0.21
GCN 0.42
GAT 0.55
GIN 0.16

4. Results

Our Maximum Clique Dynamic–Machine Learning (MCQD-ML) algorithm was im-
plemented in Python (ML part) and C++ (MCQD part) and uses only 1 CPU core. Here we
evaluated the MCQD-ML algorithm on several previously described sets and compared
the results with the standard MCQD algorithm. The MCQD algorithm was extensively
compared and benchmarked [1,2,4]. The computational experiments were performed on an
AMD Ryzen 9 3900X 12-core with a CPU frequency of 2 GHz. The MCQD-ML maximum
clique algorithm was compared with the original MCQD algorithm on random graphs,
protein product graphs, and molecular docking graphs. We limited the time available
for the algorithms to 2000 s. To compare the performance of the algorithms, we use two
metrics: (i) the speed-up on a test set, i.e., the time taken by the MCQD algorithm to find the
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maximum clique for each graph in a test set divided by the time taken by the MCQD-ML
algorithm to find the maximum clique on a given set of graphs and (ii) the average speed-up
on a test set is calculated by taking the speed-up of the MCQD-ML algorithm for each
graph and averaging it over all graphs.

We used various machine learning models to predict the value of the Tlimit parameter,
and then used this value in the MCQD-ML algorithm to evaluate its performance on several
test sets, including random graphs, protein product graphs, and molecular docking graphs.
We compared it with the basic MCQD algorithm with default value Tlimit = 0.025. MCQD-
ML is implemented with the following machine learning models: XGBoost (XGB), Graph
Convolutional Neural Network (GCN), Graph Attention Neural Network (GAT), Graph
Isomorphism Network (GIN), and Support Vector Regressor with the Weisfeiler–Lehman
Kernel (SVR-WL). For each model, we record the time it takes MCQD to find the maximum
clique with a predicted value of the parameter Tlimit.

4.1. Dense Random Graphs

In a series of tests with dense random graphs, we found that GAT outperforms other
models, including the original MCQD algorithm. The faster speed of GAT compared to
MCQD is not great, as GAT is about 18% faster on average and only 4% faster on the entire
test set of dense random graphs.

From Table 3 and Figure 4 we can see that the default MCQD algorithm is nearly
optimal for some graphs and almost two times slower compared to tests with a better
choice of the value of the parameter. There exists no Tlimit for which MCQD will find the
maximum clique substantially faster.

Table 3. Times needed by algorithms to find the maximum clique for each graph in a test set of dense
random graphs. Best times are in bold.

n p MCQD XGB GCN GAT GIN SVR-WL

63 0.9944 0.0008 0.0007 0.0007 0.0007 0.0011 0.0007
113 0.9987 0.0024 0.0022 0.0023 0.0022 0.0028 0.0023
121 0.9955 0.0044 0.0042 0.0042 0.0041 0.0065 0.0047
175 0.9954 0.0171 0.0159 0.0157 0.0151 0.0194 0.0157
304 0.9911 8.8271 6.4638 7.305 6.2747 8.6368 9.3515
414 0.9943 2.3677 1.8574 1.7514 1.2559 5.0611 1.9631
443 0.9938 57.898 55.2395 66.4033 58.8421 428.473 265.817
475 0.9979 0.2406 0.2327 0.2413 0.2305 0.2336 0.2287
476 0.9977 0.3262 0.2695 0.3024 0.2906 0.2703 0.2652
524 0.9992 0.5042 0.438 0.466 0.4482 0.4341 0.4278
622 0.9981 0.6802 0.6225 0.6212 0.6082 0.6253 0.612
690 0.9978 326.052 1124.65 511.101 428.92 115.922 −1.0000
828 0.9979 382.55 322.846 431.302 254.81 −1.0000 1217.84
931 0.9995 1.98 1.7438 1.7799 1.7807 1.7584 1.7017
941 0.9988 25.4684 12.2125 22.7202 20.2954 12.3739 12.044

Speedup 0.52 0.77 1.04 0.73 0.31
Average speedup 1.14 1.04 1.18 1.09 1.05



Mathematics 2022, 10, 97 9 of 14

Mathematics 2022, 10, x 9 of 15 
 

 

Table 3. Times needed by algorithms to find the maximum clique for each graph in a test set of 
dense random graphs. Best times are in bold. 

n p MCQD XGB GCN GAT GIN 
SVR-
WL 

63 0.9944 0.0008 0.0007 0.0007 0.0007 0.0011 0.0007 
113 0.9987 0.0024 0.0022 0.0023 0.0022 0.0028 0.0023 
121 0.9955 0.0044 0.0042 0.0042 0.0041 0.0065 0.0047 
175 0.9954 0.0171 0.0159 0.0157 0.0151 0.0194 0.0157 
304 0.9911 8.8271 6.4638 7.305 6.2747 8.6368 9.3515 
414 0.9943 2.3677 1.8574 1.7514 1.2559 5.0611 1.9631 
443 0.9938 57.898 55.2395 66.4033 58.8421 428.473 265.817 
475 0.9979 0.2406 0.2327 0.2413 0.2305 0.2336 0.2287 
476 0.9977 0.3262 0.2695 0.3024 0.2906 0.2703 0.2652 
524 0.9992 0.5042 0.438 0.466 0.4482 0.4341 0.4278 
622 0.9981 0.6802 0.6225 0.6212 0.6082 0.6253 0.612 
690 0.9978 326.052 1124.65 511.101 428.92 115.922 −1.0000 
828 0.9979 382.55 322.846 431.302 254.81 −1.0000 1217.84 
931 0.9995 1.98 1.7438 1.7799 1.7807 1.7584 1.7017 
941 0.9988 25.4684 12.2125 22.7202 20.2954 12.3739 12.044 

Speedup 0.52 0.77 1.04 0.73 0.31 
Average speedup 1.14 1.04 1.18 1.09 1.05 

 
Figure 4. Time that MCQD algorithm and each variant of the MCQD-ML algorithm needs to find 
the maximum clique on three different graphs from a test set of dense random graphs dependent 
on the Tlimit parameter. 
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Tlimit parameter.

4.2. Small Protein Product Graphs

From Table 4 it can be observed that most ML models fail to reach the performance of
the default MCQD algorithm.

Table 4. Times that algorithms need to find maximum clique for each graph from test set of small
product graphs. Best times are in bold.

n p MCQD XGB GCN GAT GIN SVR-WL

61 0.9792 0.0008 0.0008 0.0008 0.0007 0.0012 0.0008
138 0.9422 0.0079 0.0137 0.0078 0.0074 0.0102 0.0076
200 0.8581 0.0358 0.0398 0.0388 0.0381 0.0327 0.0393
271 0.9852 0.2062 0.2004 0.1972 0.1907 0.1831 0.1913
346 0.9091 2.3032 0.7774 2.8878 2.8278 14.3173 4.7920
451 0.9743 0.8956 0.8989 0.8955 0.8464 1.3257 1.3406
563 0.9800 1.7685 1.8496 1.7348 1.6936 1.7277 1.6994
655 0.9692 2.3652 2.3684 2.4533 2.6894 15.9674 15.8806
750 0.9625 4.7147 5.8504 4.2834 4.1741 8.0964 8.0182
905 0.9412 18.4683 16.2290 25.2455 18.5778 −1.0000 283.5820

Speedup 1.08 0.81 0.99 0.29 0.09
Average speedup 1.13 0.96 1.02 0.69 0.70
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4.3. Protein Product Graphs

In Table 5 and Figure 5 we observe that any substantial speed-ups on product graphs
are not achievable because the default value of parameter Tlimit is almost optimal for all
product graphs in the test set.

Table 5. Times that algorithms need to find the maximum clique for each graph from a test set of full
product graphs. Best times are in bold.

n p MCQD XGB GCN GAT GIN SVR-WL

27,840 0.0069 9.8018 9.9147 10.2909 9.8759 10.9743 10.1547
36,841 0.0060 18.6482 19.7002 19.1695 19.0900 23.4188 19.9433
121,359 0.0024 198.5920 199.5000 199.4170 199.8520 378.1210 199.3480

Speedup 0.99 0.99 0.99 0.55 0.99
Average speedup 0.98 0.98 0.99 0.74 0.97
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4.4. Molecular Docking Graphs

On the test set of molecular docking graphs, we observe in Table 6 that the GAT
model and SVR-WL outperform every other model, including the MCQD algorithm. The
performance of GAT and SVR-WL is almost two times faster with the whole test set, and
34% faster on average. On Figure 6 we observe that the molecular docking graphs vary
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in the optimal parameter value. While on a graph with 1779 nodes the default value of
the parameter is nearly optimal, it is not suitable for the graph with 5309 nodes where it is
more than three times slower than with the optimal parameter value.

Table 6. Times that algorithms need to find maximum clique for each graph from test set of docking
graphs. Best times are in bold.

n p MCQD XGB GCN GAT GIN SVR-WL

345 0.1266 0.0025 0.0025 0.0026 0.0025 0.0026 0.0025
1779 0.1108 0.0940 0.0948 0.0943 0.0939 0.0952 0.0952
1851 0.1580 0.1606 0.1606 0.1829 0.1562 0.4394 0.1580
3233 0.1620 3.6941 3.4489 1.9791 1.9817 3.5981 1.9176
4211 0.0448 0.3889 0.3900 0.3990 0.3783 0.3967 0.3823
5293 0.1119 2.7147 6.0876 2.9925 2.6810 5.4606 2.7374
5309 0.1474 26.3695 19.1478 33.7628 7.7648 7.8752 7.5596
5735 0.0592 1.2673 1.2681 1.3803 1.2271 1.3196 1.2476
6294 0.1382 3.0941 15.8609 3.3343 3.0363 3.1517 3.0399
7211 0.1012 4.4230 11.2341 4.5631 4.2580 9.0498 4.3415

Speedup 0.73 0.86 1.96 1.41 1.96
Average speedup 0.84 1.01 1.34 1.10 1.34
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From these experiments we see that the prediction of Tlimit is not an easy task and
differs between graphs from the same general domain. For the XGB model, we conclude
that it does not have sufficient information about the graph to be able to predict a good
Tlimit value. For models GCN and GIN, we hypothesize that due to their expressive power
(GIN, for example, can distinguish between isomorphic graphs), they are harder to train
with relatively small sets and thus perform more poorly than, for example, the GAT model.

4.5. Weighted Molecular Docking Graphs

On a test set of weighted molecular docking graphs, we observed that unlike with
the set of unweighted docking graphs, there are only minor speed-ups with the GAT
model (Table 7).

Table 7. Times that the MCQD algorithm and the MCQD-ML (variant with the GAT model) algorithm
need to find the maximum clique for each graph from a test set of weighted molecular docking graphs.

n p MCQD GAT

345 0.1266 0.0049 0.0048
1779 0.1108 0.1188 0.1122
1851 0.1580 1.0636 1.0563
3233 0.1620 107.3550 106.3990
4211 0.0448 0.4950 0.4960
5293 0.1119 1.1551 1.1550
5309 0.1474 16.5672 16.4841
5735 0.0592 1.3452 1.3416
6294 0.1382 11.4437 10.8346
7211 0.1012 6.8934 6.8882

Speedup 1.01
Average speedup 1.01

From these experiments, above we can see that we can speed up the maximum clique
search with MCQD by augmenting it with the GAT model. The speed-ups were achieved
on random graphs and docking graphs, while on other graph domains we saw very
little improvement.

5. Conclusions

We have developed a new approach to find the maximum clique on a protein graph
using both neural networks and artificial intelligence approaches. It is a new approach that
has not been developed before, and its results show a remarkable speed-up in determining
the correct maximum clique on the product graph. Therefore, we expect that this approach
will be widely applicable in various scientific fields, such as computer science.

Having fast algorithms that solve maximum clique problem is of great importance
in the discovery of new drugs and of protein behavior. We applied a couple of machine
learning methods on a regression problem in order to speed up a dynamic algorithm for
maximum clique search and obtained several variants of the new MCQD-ML algorithm,
which we applied to graph topologies that are particularly important in bioinformatics.

We concluded that improvements using deep learning methods are possible. The most
well-suited model that we tested is the graph attention network (GAT), which can speed up
the maximum clique search on average by 18% on random graphs and by 34% on docking
graphs. The computational cost introduced with the machine learning model is negligible
compared to the maximum clique search.

From experiments on protein product graphs, we can assume that further improve-
ments using the same MCQD algorithm are unlikely to be achievable. In further work, we
could improve the quality of the set with more samples from different graph topologies
such as social network graphs. It would be interesting to test possible speed-ups on other
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algorithms that operate on a domain of graphs and use empirically determined parameters
that determine the progress of the algorithm.
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