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Abstract: The sixth generation (6G) of communication networks represents more of a revolution than
an evolution of the previous generations, providing new directions and innovative approaches to face
the network challenges of the future. A crucial aspect is to make the best use of available resources
for the support of an entirely new generation of services. From this viewpoint, the Web of Things
(WoT), which enables Things to become Web Things to chain, use and re-use in IoT mashups, allows
interoperability among IoT platforms. At the same time, Multi-access Edge Computing (MEC) brings
computing and data storage to the edge of the network, which creates the so-called distributed and
collective edge intelligence. Such intelligence is created in order to deal with the huge amount of
data to be collected, analyzed and processed, from real word contexts, such as smart cities, which
are evolving into dynamic and networked systems of people and things. To better exploit this
architecture, it is crucial to break monolithic applications into modular microservices, which can
be executed independently. Here, we propose an approach based on complex network theory and
two weighted and interdependent multiplex networks to address the Microservices-compliant Load
Balancing (McLB) problem in MEC infrastructure. Our findings show that the multiplex network
representation represents an extra dimension of analysis, allowing to capture the complexity in WoT
mashup organization and its impact on the organizational aspect of MEC servers. The impact of
this extracted knowledge on the cognitive organization of MEC is quantified, through the use of
heuristics that are engineered to guarantee load balancing and, consequently, QoS.

Keywords: 6G; complex network theory; microservices; multi access edge computing; multiplex
networks; QoS; task offloading; web of things

1. Introduction

The forthcoming 6G will attempt to rewrite the communication networks’ perspec-
tive, focusing on a paradigm shift in the way technologies and services are conceived,
integrated and used. The 6G technology has the ambition to provide new directions for
dealing with future network challenges. It will address the constraints and the perfor-
mance requirements of emerging applications and services, many of which have increasing
resource needs, through innovative approaches [1,2], such as complex network and bio-
inspired methods [3–6]. A context in which this will be quite prominent is the application
of the Internet of Things (IoT) to smart cities, which is now attracting attention from both
academia and industry. Such environments frequently become difficult to manage because
networked Things and people are highly dynamic. One step that can be taken to make
this management easier, and to effectively address certain needs, is to adopt efficient re-
source discovery and access mechanisms. The Web of Things (WoT) has emerged from
such a need. WoT effectively allows Things to become Web Things that are accessible via
Representational State Transfer (REST) Application Programming Interfaces (APIs) [7].
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More precisely, the idea of the WoT is to reuse and leverage widely popular Web protocols,
standards and blueprints, to make data and services offered by objects accessible to Web
developers. Things expose their data and services as Web resources, allowing reading (e.g.,
temperature) and/or updates (e.g., trigger an actuation) by client applications/users [8].

The WoT is intended to enable interoperability across IoT platforms and application
domains, enabling the discovery of Things for interaction with other Things or applications.
This type of Thing exposure facilitates the creation of mashups, where services/data from
one or multiple Things are combined with virtual Web resources, e.g., to decide on an
actuation [9]. In the context of smart cities and related systems, as more Things become
available and mashups are built, more data will be collected, analyzed and processed,
which brings storage and processing capability challenges. One way to solve this is to use
cloud infrastructures, as proposed in [9,10]. However, cloud computing layers involve
high delays, mainly due to the distance between the devices and cloud data centers. This
can be avoided if developers push processing of sensed data to edge devices close to the
physical Things, reducing latency and saving energy. Edge computing is the paradigm to
use in order to achieve this goal, as it brings computing and data storage closer to where
it is needed. Many emerging IoT services are expected to benefit from such a paradigm,
since low latency and processing, e.g., for security purposes, will be critical requirements
in many scenarios [11], e.g., emergency services [12]. Within mobile networks, this is
handled by Multi-access Edge Computing (MEC) infrastructures that are expected to be
incorporated into future 6G networks, creating the so-called distributed and collective edge
intelligence [13,14]. Edge devices become intelligent hubs that are able to deliver highly
personalized services directly from the edge of the network, enabling applications to
perform at their best. These types of architectures strongly benefit from breaking monolithic
applications into loosely coupled microservices for greater flexibility and robustness of IoT
applications, improving their performance.

In this article, the Microservices-compliant Load Balancing (McLB) problem in MEC
infrastructures is addressed, and a solution is proposed that joins complex network theory
with multiplex dimension representation and analysis of these networks. This approach
represents a change of perspective that allows multiplexity to capture the complexity of WoT
mashup organizations, both in terms of their internal interdependencies and their impact
on the cognitive organizational aspect of MEC devices/servers [15,16]. The aforementioned
scenario is modeled using two interdependent and weighted multiplex networks [17–19].
The first refers to WoT mashups, while the second is populated by MEC servers whose
computational load depends on the way in which Web resources are organized, used and,
if possible, reused in order to provide the final mashup applications. The impact of the
extracted knowledge is quantified through the use of heuristics that are engineered to
guarantee load balancing and, consequently, Quality of Service (QoS).

The contributions of this article include:

• Modeling approach to address the McLB problem in MEC infrastructures. The ap-
proach allows for the unveiling of the interplay between WoT mashups (their use,
reuse and chaining) and related computational loads at the MEC.

• Definition of a weight system for WoT resources, at one of the weighted multiplex
networks, by taking into account the concept of input heterogeneity. How such a
weight system influences the workload of the second multiplex network is also pointed
out. For the second weighted multiplex network, an interaction weight system is
defined that is based on computing capabilities of MEC server pairs.

• Evaluation of the interplay between computational loads at MEC servers and mul-
tiplex structural properties, through the definition of a complex involvement that
takes into account a participation coefficient, the strength of links, and the reuse of
WoT resources.

• Evaluation of time and energy overhead for both local computation and offloading
to neighboring MEC servers, shedding light on the impact of complex involvement
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measurements in triggering distributed cognitive-based decision mechanisms. This
awareness makes it possible to reduce costs and improve QoS.

The remainder of this paper is organized as follows. In Section 2, some background
and methods are discussed to highlight the importance of MEC, WoT and microservices-
based deployments as key enabling factors for 6G. Multiplex networks and complex
theory perspective in 6G are also introduced. Section 3 provides WoT and microservices-
related definitions and assumptions, to clarify how smart city mashups would be deployed,
and then dives into the analytical approach that was taken to model the McLB problem.
Section 4 presents results and discussion, and Section 5 concludes the article and proposes
future work.

2. Background and Methods
2.1. MEC for Smart City Applications

Cities are evolving into constantly changing systems of networked Things and people,
and the introduction of MEC represents a pivotal point in developing innovative and
cognitive urban applications [13,14]. Together with Artificial Intelligence (AI), the MEC is
able to assure the intelligence required to process data accurately and efficiently, at the edge,
creating a powerful distributed computing environment. Networks get self organizing and
sustaining capabilities, in order to satisfy the dynamically changing services’ requests and
make more efficient use of resources. Typical 6G applications, such as self-driving cars,
traffic and logistic management systems, telepresence and virtual, augmented or extended
reality, require real-time feedback to be effective in addressing challenges from real-world
scenarios. These aspects are particularly challenging and require efficient distributed
models, data re-utilization and dynamic decision mechanisms based on all the knowledge
available from different models and data sources [1,20]. For these reasons, the interest in
modern interdisciplinary concepts, known as Edge Intelligence (EI), is growing and it is
now a key pillar aspect of 6G [13].

Research activities are now shifting from traditional cloud-based architectures to collab-
orative, distributed, low-latency and reliable ones, calling for a shift from centralized/cloud-
based systems to new EI-based designs. In the latter case, however, data are distributed
across heterogeneous end devices, both Base Stations (BSs) and/or mobile devices (e.g.,
phones, cameras, vehicles, drones), characterized by limited computation and storage
capabilities. Mobile end devices, for example, can be hand-held or wearable systems that
are powered by capacity-limited batteries and storage. For these devices to stay cheap, it is
crucial to rely on additional systems that acquire, cache, process and analyze data close
to their source. These additional systems can form a distributed support network, shared
by many systems, allowing for scalability, adaptability and resilience. Another crucial
aspect is to make the best use of resources at the edge of the network, for the support of an
entirely new generation of services. As an example, power consumption and latency issues
are still open questions in MEC networks, and have a significant impact on the smart city
application support.

In a nutshell, it is crucial to allow software to be “liquid” for continuous “flow” across
devices and relocation of computation after design time, instead of making any kind of
reservation “a priori”. Microservices are a software development methodology that goes
in this direction [21,22]. Modular lightweight application components are individually
deployed on-demand, contrary to monolithic software applications whose modules cannot
be independently executed, becoming more suitable for distributed systems. Microservices
are cohesive, autonomic, replaceable and deployable independent processes interacting
with each other through standardized interfaces [23].

2.2. Multiplex Networks

Key concepts in complex systems theory, such as adaptability, resilience, decentral-
ization, self-organization and self-optimization, become crucial for 6G communication
networks, which are characterized by a high level of interdependence among their highly
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heterogeneous components and by dense deployments. Complex systems analysis can
be considered as the science that studies how elements of a system act collectively, to
determine the emerging behavior of the whole system, and how they interact with the
environment. For these reasons, the complex system approach represents an effective and
useful tool to monitor, model and design the previously mentioned networks [2].

Complex systems are totally described by their connectedness: elements having con-
nections of a certain relationship type. This means that network representations of complex
systems include nodes that interact with each other through multiple links. A traditional
monolayer approach can be used to describe the network, leading to the analysis of a
single graph including all links. As this approach assumes a single kind of link, relevant
information ends up being neglected and knowledge about the structural complexity and
connectivity of the system is lost. In fact, in many real applications the relationships be-
tween nodes may differ in relevance, context and meaning [17–19]. In order to preserve
and extract this knowledge, it is crucial to introduce a multi-dimensional network analysis,
which allows an in-depth assessment (in structural terms) of the encoded information. Mul-
tilayer networks are a generalization of traditional graphs and provide a novel framework
to model environments where nodes are connected differently in different layers [17,18].
That is, there will be intra-layer connections (within a layer) and inter-layer connections
(between layers).

A multiplex network is a particular kind of multilayer network where the set of
nodes is the same for all layers, and a node can be adjacent to another in the same
layer, through intra-layer edges, or to its counterpart in another layer, through inter-layer
edges [17,18,24]. Complexity in connections can be explored more deeply when weighted
multiplex networks are used, where weights reflect intensity of interactions. On the basis of
these premises, links between nodes can be distinguished not only by the kind of interaction
but also by their intensity [19]. Therefore, multiplexity adds an additional dimension of
analysis that allows non-trivial dynamics, phenomena and interdependencies of many
real-world systems to be unveiled. More information and knowledge are extracted in
order to understand a phenomena, to identify mechanisms and to inspire the design of
such systems.

The relevance of multiplex network modeling is unquestionable and the scientific
interest around applications is growing in several areas: biological, social and technological
systems, social networks and telecommunication ones, epidemics and social contagions,
transportation networks and brain computing dynamics [24–26]. Its application to smart
cities, involving WoT devices supported by an MEC distributed infrastructure, allows
for the engineering of heuristics that guarantee load balancing and, consequently, QoS
to applications.

3. Modeling a Distributed MEC for WoT Mashups
3.1. Smart City Mashup Scenario

IoT cameras made available in a smart city can be used by visitors, to take
videos/photos, while acting alongside other sensors (e.g., motion or smoke detectors)
for security purposes or to ensure that safety regulations are followed. Other applications
may include video analytics, location services, augmented reality, object recognition, etc.
The devices will be shared by client applications building mashups, for use by locals or
anyone around the world. Such mashups can integrate processing tasks to improve pro-
cesses/services or to create new ones. MEC can create a powerful distributed computing
environment that can be deployed to support low-latency services and IoT applications.
Scenarios, such as industrial automation, smart homes, smart vehicles, among others, are
envisioned as 6G use cases due to their strict latency and reliability requirements. Applica-
tions with coordination and contextualization needs, such as Intelligent Transportation and
Logistics, are also expected to benefit from 6G.
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3.2. Basic Definitions and Assumptions

The core idea of the WoT is that Things will be exposing services and data through
RESTful APIs that other developers and devices can easily understand and use. REST is
a resource-oriented architecture where every component of a system (sensor, sampling
frequency, variable, etc.) is called a resource, which can be individually addressed using
a Uniform Resource Identifier (URI) standard scheme [7]. Resources can also enforce
processing or decision tasks [27].

Definition 1 (Task). Resource implementing autonomous processing or decision logic on certain
inputs and returning an output value. Besides simple logic, complex processing (eventually
integrating other info; e.g., historical data) can be performed. The overall set of different tasks is
denoted by T .

The exposure of Thing resources facilitates the creation of mashups. In general, a
mashup is a way to compose a new service from existing services [28]. While this definition
is focused mainly on information services, recent efforts on WoT standardization by W3C
(see [8]) are allowing Thing resources to become part of mashups [9,29]. Recently, Rule
resources have been introduced to implement observe–evaluate–actuate patterns, which
are required in mashups [27].

Definition 2 (Rule Resource). Collection including a reference to a set of input resources, a task,
and a set of output resources where task results should be placed. It is a REST-compliant mechanism
to build observe–evaluate–actuate workflows. For a given ruleRi, the set of inputs is denoted by
I(Ri), the set of outputs by O(Ri), and the task by t(Ri) ∈ T (see Figure 1).

Figure 1. Rule resource composition.

Note that every element of the Rule collection (inputs, task, outputs) supports Create,
Read, Update and Delete (CRUD) operations, which means that these can be modified
on-the-fly (see [27] for more details). The task feeds on the set of Rule input resources,
and this set can change. Each input resource can also go through some format conversion
or special treatment. The set of Rule output resources can also change on-the-fly, and
notification templates are used for format adaptation. Rule inputs and outputs are Web
resources, I(Ri) ⊆ W andO(Ri) ⊆ W , whereW denotes the overall set of Web resources,
which means that Rule inputs, task and outputs can be hosted in different URIs and
physical locations.

Definition 3 (Web Mashup). Workflow linking Web resources, which are identifiable digital,
physical or abstract entities. A mashup Si can be seen as a set of Rule resources and, therefore, can
be denoted by Si = {R1,R2, ...,R|Si |}.

Note that a Rule resource can be part of multiple mashups because there can be
multiple Rule outputs, each with its own format, for participation in different workflows.

In future MEC network architectures there will be authorized third parties, such as
application developers and content providers, which will be able to use application servers
integrated at the Radio Access Network (RAN), which causes a multi-tenancy run-time and
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hosting environment for applications to emerge. Since MEC is a distributed cloud platform,
breaking a monolithic application into loosely coupled microservices can bring significant
gains in the performance, flexibility and robustness of IoT applications, as it is possible to
relocate or replicate microservices. Microservices also have the advantage of being reusable
across applications. Thus, an IoT related task can be implemented monolithically, or it can
be broken down into microservices (e.g., data processing, log file or database update).

Definition 4 (Microservices). Independently deployable services communicating through a well-
defined lightweight mechanism. A set of microservices serves a certain business goal/task. The
available microservices are denoted by V , and the set of microservices involved in task t ∈ T is
denoted by Vt.

Definition 5 (Distributed MEC). Network solution providing services and computing functions
required by clients at the edge. The set of application servers, or data centers, is denoted by D. Each
d ∈ D provides computing resources, storage capacity, connectivity and access to RAN information,
and will be hosting microservices instances running as virtual appliances.

In short, a microservices architecture can better ensure that applications are always on,
due to replication, while a MEC infrastructure ensures a low end-to-end latency. This type
of architecture, together with the uncoupling of Rule collection components, provides the
key elements for edge computing to work properly. Mashups can be built independently
by the client, using a Rule-like mechanism, and processing/service tasks inside Rules
can be moved to the MEC. Naturally, the MEC would benefit from load balancing across
application servers, which would have to take into account interdependencies among
microservices, i.e., the load on a successor microservice instance depends on the load from
predecessor microservice instances [30].

Load balancing becomes the challenge that needs to be solved and aspects such as MEC
virtualization facilities and interdependencies among microservices have to considered.
This problem is defined as follows.

Definition 6 (Microservices-compliant Load Balancing (McLB) problem). Given a distributed
MEC serving a set of client mashups, whose tasks involve one or more microservice instances hosted
at MEC servers, plan for an adequate cooperative server MEC environment where load balancing
is ensured.

In this article, multiplex network modeling is used to address this problem, as ex-
plained next.

3.3. Multiplex Network Modeling for the McLB Problem
3.3.1. General Formalization of Multiplex Networks

In general, a multiplex networkM is defined as a set of L networks representing the
different layers. Each network is denoted by the graph Gα = (N , Eα), where N is the set of
nodes/vertices, the same in every layer, and Eα is the set of links/edges, which changes
according to the layer α ∈ {1, ..., L} [17,19].

A network Gα can be described by its adjacency matrix denoted by Aα, where aα
ij = 1

if there is a link from i to j, and aα
ij = 0 otherwise. In weighted multiplex networks, a link ij

in Eα will be characterized by the weight wα
ij. This means that aα

ij = wα
ij whenever there is a

weighted link between i and j, and aα
ij = 0 otherwise [19].

Weighted multiplex networks allow node properties to be defined: (i) kα
i , for degree;

(ii) sα
i , for strength; and (iii) oi, for the overlapping degree; where i is a node in layer α.

These are defined as follows [17,19] (see Figure 2):

kα
i = ∑

{j∈N :j 6=i}
aα

ij (1)
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sα
i = ∑

{j∈N :j 6=i}
wα

ij (2)

oi =
L

∑
α=1

kα
i (3)

Figure 2. Multiplex network representation.

The Z-score is a measure associated with oi, and is calculated as:

z(oi) =
oi − 〈o〉

σo
(4)

where 〈o〉 is the average overlapping degree of the nodes in the system, and σo is the
corresponding standard deviation [31]. The examination of Z-score variation among
nodes is crucial to introduce a classification of nodes that is based on the quantification of
multiplex network properties. Another information of interest is the heterogeneity of the
number of neighbors across layers, called the multiplex participation coefficient [17] for
node i, which is measured using:

Pi =
L

L− 1
[1−

L

∑
α=1

(
kα

i
oi
)2] (5)

where Pi = 1 when the links incident on node i are equally distributed across the layers,
and Pi = 0 when the node is active on only one layer.

Taking into account the mentioned multiplex network properties, two interdependent
weighted multiplex networks are proposed to model the McLB problem:M1, denoting a
multiplex network that models the WoT section; andM2, denoting a multiplex network
that models the MEC section. These networks are shown in Figure 3, and their role is
clarified next.

3.3.2. WoT Multiplex Network

The multiplex network M1 is intended for WoT section modeling, where client
mashups are built. Therefore, its nodes represent Rule resources exposed by Things,
while its links/edges represent workflow wiring together such Rule resources. Rule re-
sources can be part of multiple mashups, andM1 layers are the reflection of these structural
interconnections.Thus, for a set of up and running mashups, the network graph at layer
β, for M1, is denoted by GWoT

β = (RWoT, EWoT
β ), where RWoT = ∪β∈{0,...,LWoT}Sβ. The

set Sβ includes the Rule resources used by the mashup defined at layer β. Additionally,
GWoT

β ≡ Gα, LWoT ≡ L,RWoT ≡ N and EWoT
β ≡ Eα.
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Figure 3. Multiplex network interdependency model (represented in (b)) for the McLB problem
(synthesized in (a)).

A Rule resourceRi is a Web resource of a particular type, available at some URI. As
stated in Definition 3, the task performed by a Rule uses input Web resources, denoted by
I(Ri), and after performing some task the output is placed at one or more output URIs,
O(Ri), which will feed into other Rules. According to [27], the overall execution logic of
the Rule resource is the following: every time a Rule input is updated, the Rule task is executed
and if its state changes from False to True then notifications are sent to the output resources. When
abstracting ourselves from intermediate URIs, it is possible to state thatRi task execution is
triggered by Rules that precede RuleRi in the workflow, within the same layer or in other
layers, and this influence will be modeled as follows. For a weighted multiplex network
M1, it is assumed that the relevance of a link is greater when its endpoints have greater
difference on the number of inputs. The weights ofM1 interactions will be the following:

Definition 7 (Interaction weights inM1). In a weighted multiplex networkM1, the weight of
a link between endpointsRi andRj in layer α, denoted by wα

Ri ,Rj
, is given by:

(wα
Ri ,Rj

)M1 = 1 + |(kα
Ri
− 1)− (kα

Rj
− 1)| (6)

where kα
Ri

and kα
Rj

are the degrees of theRi andRj nodes in layer α, respectively.

The degree of a node is the number of interactions in layer α. Figure 4 illustrates such
intra-layer interaction weights. This property is useful to shape interactions among nodes
in a layer, allowing re-usability and chaining of resources to be improved. In addition,
Rule resources interact with their counterparts in other layers. This is so because Rule
resources are not only chained for the creation of a specific mashup, but also contribute
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to the formation of other mashups. This is captured by the interdependent layers of the
multiplex networkM2.

Figure 4. Weights of interactions inM1.

3.3.3. MEC Multiplex Network

The multiplex networkM2 is intended for MEC section modeling, where application
servers or data centers are placed. While the network is populated by the set of application
servers/data centers (network nodes), the layers refer to the microservices. In each layer,
an n ∈ N will be hosting microservices instances running as virtual appliances. Multiplex
representations allow us to establish relationships and to shed light on complex interde-
pendence between microservices with respect to load distribution, reusability, computing
capability of hosting nodes and time involved. Therefore, links between nodes inM2 will
have weights defined as follows.

Definition 8 (Interaction weights inM2). Referring to the weighted multiplex networkM2,
the weight of the link wα

ij is given by:

(wα
ij)
M2 = 1 + | f α

i − f α
j | (7)

where f α
i and f α

j represent the computing capability of data centers i and j (CPU/cycles per
second [32]), respectively, which is dedicated to the microservice α. This accounts for multiple
microservice instances.

3.3.4. WoT and MEC Interplay

By assuming that WoT applications can share Rules, when building their workflows,
and that Rule tasks can be decomposed into small and light components/microservices,
it becomes possible to distribute microservices across servers. This leads to complex
interactions between MEC servers and, given the chains of resource requirements involved,
multiple levels of abstractions with complex interactions can emerge. To capture the
connection between Rule resources inM1 and microservices distributed across servers
populatingM2, the complex load for each node i inM2 is defined. This represents the
computation overhead due to the involvement of MEC nodes in the multiplex network
representation. The complexity measure (bi)

M2 is defined as follows:

Definition 9 (Complex involvement of server i inM2).

(bi)
M2 = (Pi)

M2 ×
L2

∑
α=1

(sα
i )
M2 ×

L1
∑

β=1
∑

{j∈N1}
(sβ

j )
M1

∑
{j∈N1}

(Pj)M1
(8)

where L1 and L2 denote the number of layers inM1 andM2, respectively, while N1 denotes the
set of nodes inM1.
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Note that (Pi)
M2 in Equation (8) is the multiplex participation coefficient of a node

i ∈ N2, a set of nodes in M2, measuring the involvement of MEC servers’ resources
in different microservices/layers. The higher the participation coefficient, the higher
the computation load at the server, due to the fact that the node actively participates in

multiple microservices. The
L2
∑

α=1
(sα

i )
M2 is the sum of the strengths of node i, calculated

for each layer α ∈ {1, ..., L2}. This measure depends on the importance of links, which
has to do with the computing capability difference of its nodes. The last component

of Equation (8) is the Reuse function for Rule resources inM1, where
L1
∑

β=1
∑

{j∈N1}
(sβ

j )
M1 ,

summing the strengths of nodes inM1 over all layers β ∈ {1, ..., L1}, takes into account
the heterogeneity of links as a consequence ofM1’s weights (see Section 3.3.2). A greater
strength implies greater heterogeneity at Rule resource inputs and, consequently, additional
loading for MEC servers inM2. The (Pj)

M1 is the multiplex participation coefficient of
node j ∈ N1, from the WoT-based multiplex networkM1, and it represents a measure of
how Rule resources inM1 are reused and chained in different mashups. The greater the
multiplex participation coefficient, the more Rules are involved in different mashups, with
no additional computation required on MEC servers. The (bi)

M2 ends up measuring the
commitment of MEC node i and, therefore, the probability of opting for local computation
or offloading to neighboring nodes. Thanks to this complex measure, an estimation is made
regarding the probability that a node inM2 will compute locally or not.

3.3.5. Impact on Energy and Time

To measure the impact on both energy and time associated with computing that is
held locally and offloaded, a cost function must be defined. As specified in Definition 4,
each task t ∈ T can be served by a set of microservices Vt and, for the sake of simplicity,
it is assumed here that such a data load is initially distributed across microservices and
MEC nodes (layers and nodes in M2, respectively) using a hypothetical distribution that
depends on the degree kα

i .
Let xit ∈ {0, 1} denote the offloading decision for node i regarding the task t ∈ T .

That is, xit = 0 if the MEC server goes for the local computation, and xit = 1 in case of
offloading. According to such a decision, the energy and time cost is defined as follows.

Definition 10 (Decision Impact on Energy and Time). The total cost associated with decisions
stored in matrix X|N1|×|T | is defined by:

Cost(X) =
|N1|

∑
i=1

|T |

∑
t=1

(Eit + Hit) (9)

where Eit is the required energy and Hit the execution time for task t initially allocated at node i. As
operations will be performed locally or offloaded:

Eit = (1− xit)Eloc
it + xit × Eoff

it (10)

Hit = (1− xit)Hloc
it + xit × Hoff

it (11)

whose components are defined as follows [32]:

Hloc
it =

cit × lit
fi

, (12)

where cit is the number of CPU cycles, lit is the task load and fi is the computing capability of node
i in M2,

Ho f f
it =

lit
ri

+
cj × ljt

f j
(13)
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where f j refers to the computing capability of node j in M2, to which the task load is offloaded, and
ri = B× ln(1 + pi

ω0B ) is the uplink rate for bandwidth B, pi is the transmission power, and ω0 is
the channel noise,

Eloc
it = vi × li,t × ci,t (14)

with vi energy per CPU cycle and, finally,

Eo f f
it = pi × Ho f f

it . (15)

4. Analysis of Results
4.1. Scenario Setup

Simulations were conducted considering a multiplex networkM1 with L1 = 3 layers,
with each layer representing an IoT mashup, which models three distinct kinds of weighted
interactions and connectivity among the |N1| = 1000 nodes (Rule resources). A variable
population forM2, 50 ≤ |N2| ≤ 500 nodes (MEC servers), and a variable number for L2
(microservices layers), 3 ≤ L2 ≤ 9, are assumed. Each layer of both weighted multiplex
networks has a Scale-Free (SF) network topology [33]. SF networks are highly heteroge-
neous networks, characterized by a power-law degree distribution, with a high degree
of correlation between nodes and degree distribution having a long tail. SF networks fit
many real-world networks and are characterized by preferential attachment and growth;
new nodes are added to the existing ones with a probability of attachment that is proportional to the
degree of older nodes in the network.

Regarding the remaining simulation parameters, it is assumed that the size/load of
tasks is in the range [0, 20], i.e., lit ∈ [0, 20] MB, and that tasks are spread across nodes
following the hypothetical distribution described in Section 3.3.5. The energy consumption
per CPU cycle is set to νi = (0.20 × 10(11)) Joules per cycle. For the number of CPU
cycles it is considered that there will be cit = 500 cycles per bit. In order to take into
account the heterogeneous computing capability of servers, a random computing capability,
fi ∈ {0.5, 0.6, ..., 1} GHz, is used. The device’s transmission power, channel bandwidth and
background noise are pi = 0.1 W, B = 20 MHz and ω0 = −100 dBm, respectively [32].

To build the model, perform computation and obtain results, the programming lan-
guage R and IDE RStudio were used. Figures were generated using the Plotly and ggplot2
packages [34–36]. Simulations ran on a personal computer with Intel(R) Core(TM) i7-8750H
CPU, 8 GB RAM capacity and 2.20GHz frequency. The employed simulation settings are
summarized in Table 1.

Table 1. Synthesis of simulation conditions, tools and packages.

Number of nodes inM1 |N1| = 1000

Number of layers inM1 L1 = 3

Number of nodes inM2 50 ≤ |N2| ≤ 500

Number of layers inM2 3 ≤ L2 ≤ 9

Size/load of tasks lit ∈ [0, 20] MB

Energy consumption per CPU cycle νi = (0.20× 10(11)) Joules per cycle

CPU cycles per bit cit = 500 cycles per bit

Channel bandwidth B = 20 MHz

Computing capability fi ∈ {0.5, 0.6, ..., 1} GHz

Transmission power pi = 0.1 W

Background noise ω0 = −100 dBm

Tools R, RStudio [36]

Packages Plotly and ggplot2 [34,35]
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4.2. Evaluation

Figure 5a shows a cartography of the node roles in the multiplex networkM2, plotting
for each node i the multiplex participation coefficient (Pi)

M2 versus the Z-score (z(oi))
M2

of the total overlapping degree. Since the overlapping degree of a node represents its
overall importance in terms of number of incident edges, while the multiplex participation
coefficient gives information about the distribution of incident edges across the layers,
this cartography allows us to classify nodes merely in terms of their structural role in the
multiplex network (see [17,31]).

In general, representing nodes as points in the Pi − z(oi) plane allows us to identify
three classes of nodes: (i) focused, comprising the nodes for which 0 ≤ Pi ≤ 1

3 ; (ii) mixed,
comprising nodes having 1

3 ≤ Pi ≤ 2
3 ; (iii) multiplex nodes, comprising nodes with Pi >

2
3 .

Regarding the Z-score of their overlapping degree, it is possible to distinguish: (i) hubs,
for which z(oi) ≥ 2; (ii) regular nodes, for which z(oi) < 2. Moreover, through the color of
each node it is possible to show the variation of the mean strength distribution 〈si〉M2 and
through its size, the complex involvement (bi)

M2 is shown.
A finding from such a cartography is that greater values of complex involvement

(bi)
M2 can be noticed in nodes classified as regular multiplex, confirming that the multi-

plex network representation is quite suitable to capture the complexity of the considered
scenario, where computation is shifted to the edge. These nodes are regular because they
have a low number of incident edges and multiplex as their links are well distributed across
the layers (microservices in which they are involved). This means these nodes are involved
in many microservices but their computation is not crucial for any of them. Furthermore,
we can deepen the analysis, evaluating not only the number of nodes’ incident links and
their distribution across the layers but also the distribution of their average strengths. The
strength is a function of weights (see Equation (2)) and according to Definition 8 it depends
on the difference of computing capabilities among linked MEC nodes. A poor heterogeneity
in the mean strengths’ distribution 〈si〉M2 , as evidenced from the Figure 5a, is consistent
with the scenario in consideration in which the nodes at the edges, which carry out the
computation, have limited and not too different computing capabilities.

Figure 5. Role of nodes: (a) multiplex participation coefficient (Pi)
M2 versus the Z-score (z(oi))

M2 ),
for each node inM2 (color indicates the average strength 〈si〉M2 and the size of nodes represents
the measure of complex involvement (bi)

M2 ); (b) multiplex participation coefficient (Pi)
M1 versus

Z-score for each node inM1 (color indicates the Reuse function of resources inM1 and the size of
nodes represents the average strength 〈si〉M1 ).

The complex involvement (bi)
M2 represents the interplay between the two multiplex

networksM1 andM2 (see Section 3.3.4) and strictly depends on the way in which the
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resources are organized and reused in the Wot-basedM1, represented through the Reuse
function. For this reason, Figure 5b shows the cartography in the plane Pi − z(oi) for the
nodes inM1. This time, the size represents the distribution of the average strength 〈si〉M1 ,
while the color is the variation of the Reuse function. This cartography sheds light on
how the multiplex network analysis results in a deepened understanding of the hidden
organization of Web resources, their use and re-use in IoT mashups, which impacts the
computational load of MEC nodes inM2. In this case, considering an SF as the network
topology, it is possible to see that the most used and re-used Web resources are those
classified as multiplex regular nodes. These Web resources participate in several IoT
mashups but do not present a high number of incident links in any of them. The nodes
with lower values of the Reuse function are the most critical nodes in terms of computation
because they are characterized by high values of both (Pi)

M1 and (z(oi))
M1 (multiplex

hubs). This means that they are involved in many IoT mashups and, at the same time, in
some of them they are important in terms of the number of incident links. In addition,
those with high average strength are even more critical because they introduce further
heterogeneity in computation (see Definition 7).

Figure 6a shows the cost for the case of |N2| = 300 nodes and L2 = 3 layers. Points
in the graph represent the cost (energy and time) associated with nodes for the following
three cases: (i) nodes always choose local computation (orange points in the plot); (ii) nodes
always decide on offloading (pink points in the plot); (iii) the decision about computation
is made in accordance with the values of the complex involvement (bi)

M2 (referred to as
the cognitive case; green points in the plot). In order to provide a heuristic (non-optimal
solution) to the McLB problem in a distributed and collective way, the mean values of costs
related to the three cases are shown. From such information it is possible to state that the
cognitive case represents the most profitable approach for the whole system, presenting the
lowest mean cost. Figure 6b indicates the trend of the computing time, and it is clear that,
in terms of time, the complex involvement choice is also quite convenient. This approach
can be particularly suited to those distributed and mobile network contexts whose services
require priority and are extremely sensitive to delay.

Figure 6. Cost Hit versus nodes: (a) total cost; (b) computing time component. Punctual and mean
values are shown for three cases: local computation (in pink), offloading to neighbors (in orange),
and cognitive computing decision (in green).

The mean and standard deviations, of both computing time and total cost, are reported
in Table 2 for the following three cases: local computation, offloading to neighbors and
cognitive computing decision.
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Table 2. Significance of results.

Local Computation Offloading Cognitive Computing

Mean Cost 7.15 × 1024 5.33 × 1024 3.90 × 1024

Mean Execution Time 1.72 × 1024 1.58 × 1012 1.25 × 1024

Standard Deviation of Cost 7.04 × 1024 7.55 × 1024 3.66 × 1024

Standard Deviation of Execution Time 1.58 × 1012 1.20 × 1012 885,859,776,046

The heatmap in Figure 7 displays a comparison of the total cost for the local, offloading
or cognitive computation cases. Different population sizes are used for the multiplex
networkM2, |N2| ranging from 50 to 500 nodes. The number of layers, L2, also varies
and L2 = 3, L2 = 5, L2 = 7 and L2 = 9 cases are considered. The figure shows that the
case where a computation decision is taken according to the knowledge extracted from the
multiplex network representation, through the measure (bi)

M2 , the cognitive case presents
the most profitable values for the whole system. Furthermore, as the population and the
number of layers grow, this approach becomes increasingly convenient. In particular, for
L2 = 9 it is possible to see that a high number of layers means that the MEC nodes in
M2 are involved in a large number of microservices, resulting in a major computation
load and cost. Increasing the population, in the cognitive case, provides more capacity for
self-organization, increasing the probability to go for the most profitable choice in terms
of cost. In other words, a richer multiplex structure in terms of layers and nodes, even if
it initially involves a higher computational load and cost, allows the exploitation of more
knowledge, which results in a significant cost reduction.

Figure 7. Heatmap of total cost sensitivity. For each computing decision considered (offloading
to neighbors, local computation, cognitive computing), the heatmap is displayed considering a
population size |N2| basis (ranging from 50 to 500) and different numbers of layers (L2 = 3, L2 = 5,
L2 = 7 and L2 = 9), where colors (ranging from yellow to blue) indicate the total cost values.
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5. Conclusions and Future Work

This work presents an innovative multiplex networks-based approach to solve the
Microservices-compliant Load Balancing (McLB) problem in MEC infrastructures. The
novelty of the approach consists in introducing key features able to fully describe and
capture the complexity of 6G ecosystems. These ecosystems involve WoT platforms charac-
terized by heterogeneous Web resources and MEC servers devoted to computation. The
aim is to achieve a connected intelligence from the network design, and control service
construction and QoS, through the introduction of novel algorithms able to dynamically
manage applications.

The results put in evidence that the multiplex network representation provides a
suitable tool to capture the complex interactions and interdependence within MEC and
WoT mashups, highlighting critical issues in Web resource usage and triggering cognitive
decision mechanisms about the computation, with an impact on final services’ QoS.

As future work, we envisage complex scenarios including also learning aspects and
collective/evolutionary dynamics, such as cooperation through Evolutionary Game The-
ory, and mesoscopic analysis such as multilink communities detection, with the aim of
improving performance in provided services.
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