
����������
�������

Citation: Goncharov, S.; Nechesov, A.

Solution of the Problem P = L.

Mathematics 2022, 10, 113. https://

doi.org/10.3390/math10010113

Academic Editors: Francesco Aldo

Costabile, Maria I. Gualtieri, Anna

Napoli and Radi Romansky

Received: 29 November 2021

Accepted: 28 December 2021

Published: 31 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Solution of the Problem P = L
Sergey Goncharov *,† and Andrey Nechesov *,†

Sobolev Institute of Mathematics, Academician Koptyug Ave., 4, 630090 Novosibirsk, Russia
* Correspondence: s.s.goncharov@math.nsc.ru (S.G.); nechesov@math.nsc.ru (A.N.)
† These authors contributed equally to this work.

Abstract: The problems associated with the construction of polynomial complexity computer programs
require new techniques and approaches from mathematicians. One of such approaches is representing
some class of polynomial algorithms as a certain class of special logical programs. Goncharov and
Sviridenko described a logical programming language L0, where programs inductively are obtained
from the set of ∆0-formulas using special terms. In their work, a new idea has been proposed to look
at the term as a program. The computational complexity of such programs is polynomial. In the
same years, a number of other logical languages with similar properties were created. However, the
following question remained: can all polynomial algorithms be described in these languages? It is
a long-standing problem, and the method of describing some polynomial algorithm in a not Turing
complete logical programming language was not previously clear. In this paper, special types of terms
and formulas have been found and added to solve this problem. One of the main contributions is
the construction of p-iterative terms that simulate the work of the Turing machine. Using p-iterative
terms, the work showed that class P is equal to class L, which extends the programming language L0

with p-iterative terms. Thus, it is shown that L is quite expressive and has no halting problem, which
occurs in high-level programming languages. For these reasons, the logical language L can be used to
create fast and reliable programs. The main limitation of the language L is that the implementation of
algorithms of complexity is not higher than polynomial.

Keywords: polynomiality; polynomial function; polynomial algorithm; Turing machine; logical
programming language; semantic programming; smart contract; blockchain; AI

1. Introduction

In the 1980s–1990s, Ershov, Goncharov, and Sviridenko presented the theory of seman-
tic programming [1]. The concepts of Σ-programs and Σ-specifications were introduced
in this work. The hereditary finite list superstructure was chosen as a base mathematical
model. The universe of this model is the hereditary finite lists generated by elements of the
universe of the base model [2], and some LISP-like functions were added. Special logical
Σ-formulas with input and output variables were used as Σ-programs [3]. This gave rise to
the study of programming language semantics from a mathematical point of view.

Cenzer and Remmel were among the first to study polynomial structures [4]. They
investigated the existence of computable isomorphisms between computable and polynomial
structures. Then, Lewis and Papadimitriou explored polynomial-time reductions [5]. Then,
for a long time, the open problem was to create a logical programming language, which
would have polynomial complexity. Mantsivoda developed a logical programming language
based on document models. Documents are the main elements of the model universe. Special
functions are defined for working with them. Mantsivoda and Ponomaryov formalized
this approach in their work [6]. This language is simple and efficient. All operations and
relations are polynomial. After that, another type of logical programming language, semantic
domain-specific languages, was developed [7]. This language is based on the ideas of semantic
programming where a truth-checking formula on the model replaced computability [1]. All
programs also have polynomial complexity, but the question of how well it described the

Mathematics 2022, 10, 113. https://doi.org/10.3390/math10010113 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10010113
https://doi.org/10.3390/math10010113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2954-0900
https://orcid.org/0000-0001-7631-7440
https://doi.org/10.3390/math10010113
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10010113?type=check_update&version=2

Mathematics 2022, 10, 113 2 of 8

class of polynomial algorithms remained. In the work [8], some interesting results were
presented. The authors found that the primitive recursive representation of the algorithm
with boundaries of the variables often had a polynomial complexity. Then, Alaev investigated
the questions of polynomial representability of various structures in his work [9]. This work
gave the key to understanding what polynomiality is. In parallel, Goncharov and Sviridenko
developed and presented a new logical programming language in which special terms were
used as logical programs [10]. All programs in this language have polynomial computational
complexity. However, the main question remains: can all polynomial algorithms be described
by this language? The result that will be proved in this work answers this question.

After proving the polynomial analogue of Gandy’s fixed point theorem [11], it became
clear that the language L0 is wide enough. This language is used to construct quite complex
constructions. In particular, this concerned the inductive construction of new types of data
and computer programs in programming.

2. Preliminaries

Let B be a p-computable model of the signature σ0. A p-computable hereditary finite
list superstructure HW(B) [11] was chosen as a mathematical model of the signature
σ. The universe of the model HW(B) consists of elements of the model universe B and
hereditarily finite lists HW(B). Signature σ extends σ0 with the next LISP-like list relations
∈ (to be an element of a list), ⊆ (to be an initial segment of a list) and the list operations
head, tail, cons, conc, and constant nil [12]. Define new unary list operations f irst, cons_l,
tail_l. The first operation f irst gets the first list element, the second cons_l adds the element
into the beginning of the list and the last operation tail_l removes the first element from
the list correspondingly. Define new unary operations strList, listStr. The first operation
strList based on the input string of the form l1 . . . lk builds a list of the form < l1, . . . , lk >,
where li ∈ Σ, i ∈ [1, . . . , k], the second operation listStr based on the input list of the
form < l1, . . . , lk > builds a string l1 . . . lk, where li ∈ Σ, i ∈ [1, . . . ,]. The signature σ
is an extension of σ0 with these new operation symbols. The main operations head, tail,
cons, conc, and relations ∈, ⊆ have polynomial complexity [12]. It is easy to see that other
operations f irst, cons_l, tail_l, strList, and listStr have polynomial complexity.

Define ∆0-formulas as first order formulas of the signature σ in which quantification
is of the following two types:

• a restriction onto the list elements ∀x ∈ t and ∃x ∈ t.
• a restriction onto the initial segments of list ∀x ⊆ t and ∃x ⊆ t.

The set of ∆0-formulas of the signature σ has been extended by induction with several
types of terms: conditional terms, b-while terms, bounded recursive terms, and etc. [10]
These formulas are denoted as ∆0(I)-formulas and new terms are denoted as ∆0(I)-terms.
Denote the resulting set of ∆0(I)-terms as a language L0.

Definition 1. Any ∆0(I)-term from the language L0 will be referred to as L0-program.

Definition 2. Any ∆0(I)-formula will be referred to as L0-formula.

L0-program property:

• any L0-program has a polynomial computation complexity on any p-computable
enrichment HW(B)∗ of the model HW(B).

L0-formula property:

• any L0-formula has a polynomial truth-checking algorithm on any p-computable
enrichment HW(B)∗ of the model HW(B).

In this work, to construct a suitable logical program for a polynomial function, the
concept of a conditional term from the work of Goncharov [13] is used. Let t0, t1, . . . , tn+1

Mathematics 2022, 10, 113 3 of 8

is L0-programs and θ0, . . . , θn is L0-formulae [10]. Define the concept of a conditional term
t(v) in the next interpretation:

t(v) =

t0(v), if HW(B) |= θ0(v)
t1(v), if HW(B) |= θ1(v)&¬θ0(v)
. . .
tn(v), if HW(B) |= θn(v)&¬θ0(v)& . . . &¬θn−1(v)
tn+1(v), otherwise

(1)

where v have a form (v1, . . . , vk) for some k ∈ N.
Conditional terms use a construction similar to the operator “if then else” in high-level

programming languages. Leave also the other types of terms from [10] for the expressiveness
of a new language. However, in the future, to construct a term describing a polynomial
function, only conditional terms from work [10] will be used.

3. Polynomial Functions and Turing Machines

Let Tf be a deterministic Turing machine over the alphabet Σ representing polynomial
function f . Let S be the set of symbols {1, B} and Q be the set of states of the Turing machine,
where q1 is the initial state and q0 is the final state. Let PTf be a Turing machine program
that implements the function f . Since any program of the Turing machine is implemented
through σ : Q× S→ Q× S×{R, L}, then all elements of the program PTf will be presented
in the form of a list < qi1 , sj1 , qi2 , sj2 , β >. Sequence of the symbols

ci : s−mi . . . s−2 s−1 qki
s0 s1 . . . sni (2)

is called the configuration of the Turing machine at the ith step.
Let β be the symbol from the set {R, L}. Let ci be some configuration of Tf and there is

a element < qi1 , sj1 , qi2 , sj2 , β > from the program PTf . Then, with the help of this element,
the configuration ci will switch to another configuration cj.

Since the Turing machine Tf represents a polynomial function f over the alphabet Σ,
the machine will work on any input x ∈ Σ∗ no more than

p(|x|) = Cp · |x|np (3)

steps for some fixed Cp, np ∈ N. Let r(f (x)) be the computational complexity of the
function f (x). From (3), it follows:

r(f (x)) ≤ p(|x|) (4)

If the Turing machine Tf changes configuration ci on ci+1, then:

|ci| − 1 ≤ |ci+1| ≤ |ci|+ 1 (5)

and from (5) the inequality follows for the final configuration c f inal :

|c f inal | ≤ |c0|+ p(|x|) ≤ d(|x|), for some polynomial d(|x|) (6)

It should be noted that if Tf reached the final configuration c f inal = cj for some jth
step and j ≤ p(|x|); then, all the remaining configurations cj+1, . . . , cp(|x|) would be equal
to c f inal .

Using the configuration ci of the form (2) define a machine word wci in the next form:

wci : << s−mi , . . . , s−1 >, qki
,< s0, . . . , sni >> (7)

where qki
is equal to a string q . . . q of the length ki + 1 and sk ∈ {B, 1}, k ∈ [−mi, ni].

Define wci ,k as the k-th element of the machine word wci , where k ∈ {1, 2, 3}.

Mathematics 2022, 10, 113 4 of 8

If configuration ci has a form qki
s0 . . . sni , then the machine word wci has a form:

wci : < nil, qki
,< s0, . . . , sni >> (8)

Remark 1.

(1) the state qki
is obtained from wci and equal head(tail(wci))

(2) monitored symbol s0 is obtained from wci and equal f irst(head(wci)).

Remark 2.

(1) Equality (5) implies that

|wci | − C ≤ |wci+1 | ≤ |wci |+ C, for some fixed C ∈ N (9)

(2) Equalities (6) and (9) imply that

|wc f inal | ≤ |wc0 |+ p(|x|) · C ≤ r′(|x|) for some polynomial r′(|x|).

Define a new binary operation ⊗ using the machine word wci and the element
< q1, s1, q2, s2, β > from the program PTf :

Case 1: element equal < q1, s1, q2, s2, R >

wci⊗ < q1, s1, q2, s2, R >=

{
wcj , if head(tail(wci)) = q1 and f irst(head(wci)) = s1

nil, otherwise
(10)

and wcj =< wcj ,1, wcj ,2, wcj ,3 >, where

wcj ,1 = cons(f irst(wci), s2); wcj ,2 = q2;
wcj ,3 = tail_l(head(wci));

Case 2: element equal < q1, s1, q2, s2, L >

wci⊗ < q1, s1, q2, s2, L >=

{
wcj , if head(tail(wci)) = q1 and f irst(head(wci)) = s1

nil, otherwise
(11)

and wcj =< wcj ,1, wcj ,2, wcj ,3 >, where

wcj ,1 = tail(f irst(wci)); wcj ,2 = q2;
wcj ,3 = cons_l(cons_l(tail_l(head(wci)), s2), head(f irst(wci)));

Remark 3. Operation ⊗ is polynomial.

4. p-Iterative Terms

From the previous section, the length of the final machine word wc f inal does not exceed
the length of the initial machine word wc0 plus the length of some polynomial r′(|x|). The
main goal of this section is to construct a p-iterative term so that the length of the final
value should not exceed the length of the input value plus the value of some polynomial
v(|x|). Furthermore, it will be shown that such extension using p-iterative terms of the
language L0 does not take us beyond the polynomiality.

Let HW(B) be a p-computable model of the signature σ, g(x) be a L0-program, ϕ(x) be
a L0-formula. Require |g(x)| ≤ |x|+ Cg for some Cg ∈ N. Let u(|x|) be a polynomial such
that the complexity of checking the truth of the L0-formula ϕ(x) on model HW(B) should
not exceed u(|x|). Let computation complexity r(g(x)) of L0-program g(x) be bounded by
some polynomial s(|x|) = Cs · |x|ns . Define a p-iterative term t(x, n) using the following
iterative construction:

Mathematics 2022, 10, 113 5 of 8

g0(x) = g(x)
. . .

gi+1(x) = g(gi(x))
(12)

The p-iterative term has the form:

t(x, n) =
{

gi(x), if i ≤ n HW(B) |= ϕ(gi(x)) and ∀j < i HW(B) 6|= ϕ(gj(x)))
nil, otherwise

(13)

Remark 4. |gi+1(x)| ≤ |gi(x)|+ Cg.

Theorem 1. Let HW(B) be a p-computable model, ϕ(x) be a L0-formula, and g(x) be a L0-
program with the condition |g(x)| ≤ |x|+ Cg, Cg ∈ N. Then, p-iterative term from (13) is a
p-computable function.

Proof. Let t(x, n) be a p-iterative term. If the value of the term t(a, n0) equal gi+1(a); then,
HW(B) |= ϕ(gi+1(a)) for some a ∈ HW(B), n0 ∈ N, and i + 1 ≤ n0. It can be inferred that
the length of p-iterative term for i + 1 iteration:

|gi+1(a)| ≤ |gi(a)|+ Cg ≤ |g0(a)|+ (i + 1) · Cg ≤ |a|+ (i + 2) · Cg

and for any i ≤ n0:

|gi(a)| ≤ |g0(a)|+ n0 · Cg ≤ |a|+ (n0 + 1) · Cg ≤ (|a|+ n0) · (Cg + 1) + Cg ≤ z(|a|+ n0)

where
z(|x|) = (Cg + 1) · |x|+ Cg. (14)

The next step is to calculate the computational complexity r(t(x, n)) of the p-iterative
term. The algorithm is the following for some fixed a and n0:

step 0: Calculate g0(a) (it is necessary to calculate g(a)) and check the truth of the L0-
formula ϕ(g0(a)) on the model HW(B). If L0-formula is true, then leave the algo-
rithm running and send value g0(a); otherwise, go to the next step.

step 1: Calculate g1(a) (it is necessary to calculate g(g0(a))), where g0(a) is known on step 0
and check the truth of the L0-formula ϕ(g1(a)) on the model HW(B). If L0-formula
is true, then leave the algorithm running and send value g1(a); otherwise, go to the
next step.
. . .

step i: Calculate gi(a) (it is necessary to calculate g(gi−1(a))), where gi−1(a) is known on
step i− 1 and check the truth of the L0-formula ϕ(gi(a)) on the model HW(B). If
L0-formula is true, then leave the algorithm running and send value gi(a), otherwise
go to the next step.
. . .

step n: Calculate gn0(a) (it is necessary to calculate g(gn0−1(a))), where gn0−1(a) is known
on step n− 1 and check the truth of the L0-formula ϕ(gn0(a)) on the model HW(B).
If L0-formula is true, then leave the algorithm running and send value gn0(a),
otherwise send nil.

Let w be gi(a) and |gi(a)| ≤ z(|a|+ n0), as r(g(w)) ≤ s(|w|) it can be inferred that:

r(t(a, n0)) ≤
n0

∑
i=0

(s(z(|a|+ n0)) + u(z(|a|+ n0))) (15)

and get inequality:

r(t(a, n0)) ≤ (s(z(|a|+ n0)) + u(z(|a|+ n0))) · (n0 + 1) ≤ d(|a|+ n0)

for some polynomial d(|x|) and polynomial z(|x|) from (14).

Mathematics 2022, 10, 113 6 of 8

Corollary 1. Let the conditions of Theorem 1 be satisfied and f (|x|) be some polynomial. Then,
any p-iterative term of the form t(x, f (|x|)) is a p-computable function relative to variable x.

Proof. The condition of Theorem 1 implies that there exists a polynomial z(x) from (14)

r(t(x, f (|x|))) ≤ z(|x|+ f (|x|)) ≤ z(w(|x|)) ≤ v(|x|)

where polynomial w(|x|) has a form |x|+ f (|x|) and polynomial v(|x|) has a form z(w(|x|)).

Definition 3. Define a new language L. Language L extends L0 by p-iterative terms. Classes
L-formulas and L-programs extend the classes of L0-formulas and L0-programs, respectively.

Theorem 2. Let HW(B)∗ be a p-computable extension of the p-computable model HW(B) of the
signature σ∗. Then, any L-program has polynomial computational complexity on HW(B)∗.

Proof. To prove this statement, it is nessesary to use induction on the number of distinct
p-iterative terms for some L-program t(x):

Base of induction n = 0: t(x) does not contain a p-iterative term. Then computation
complexity of the t(x) is polynomial; this follows immediately from the work [10].

Induction step: Let the statement be true for n = k; show this for n = k + 1. Let t(x)
be a L-program with k + 1 distinct p-iterative terms. Let HW(B)∗∗ be enrichment of the
model HW(B)∗ of the signature σ∗∗ = σ∗ ∪ {t1}, where p-iterative term t1 is involved
in construction t(x). In the new model HW(B)∗∗, L-program t(x) has only k distinct p-
iterative terms and by induction step, the L-program t(x) has a polynomial complexity.

5. Polynomiality via p-Iterative Terms

Let f (x) be a p-computable function, and let h(|x|) be a polynomial, such that
r(f (x)) ≤ h(|x|).

Let the universe of the model HW(B) contain the natural numbers N in the main set.
Signature σ contains the constants 0 and 1, Σ alphabet, and R and L, contain multiplication
× and addition + operations on N, operation of string concatenation concat, and operation
of string length (| |).

Remark 5. The new operations ×, +, concat, and | | are polynomial.

For any polynomial h(|x|), there is a suitable L-program. Let qi1 be a L-program of the
form concat(concat(. . . concat(q, q) . . .), q), where the function concat is used i1 + 1-times.
Then, for each element of the form < qi1 , sj1 , qi2 , sj2 , β > from the Turing machine program
PTf , there is a suitable L-program v(qi1 , sj1 , qi2 , sj2 , β) of the form:

v(qi1 , sj1 , qi2 , sj2 , β) = cons(cons(cons(cons(cons(nil, qi1), sj1), qi2), sj2), β) (16)

Theorem 3. For any p-computable function, there is an L-program defining this function.

Proof. Let f be some p-computable function, h(|x|) some polynomial such that:

r(f (x)) ≤ h(|x|) (17)

Consider the Turing machine Tf over alphabet Σ with program PTf that realizes the
function f . Let us construct a list l f of terms of the form v(qi1 , sj1 , qi2 , sj2 , β) use (16) from
the program PTf , where β ∈ {R, L}. Then, L-formula ϕ(x) has a form:

ϕ(x) : Final(x) (18)

where predicate Final(w) is true if w is a machine word of the form

Mathematics 2022, 10, 113 7 of 8

<< s−m, . . . , s−1 >, q0,< s1, . . . , sk >>

It is apparent that the predicate Final(x) has a polynomial complexity.
Define tailk(x) as applying tail operation k times to x. A conditional term g(x) [10]

will be used for constructing a final L-program:

g(x) =

x⊗ l1, where (l1 = f irst(l f))&(x⊗ l1 6= nil)
. . .
x⊗ li, where (li = head(tailk−i(l f)))&(x⊗ li 6= nil)
. . .
x⊗ lk, where (lk = head(l f))&(x⊗ lk 6= nil)
x, otherwise

(19)

Define mw(x) as the L-program that transforms a word w to the machine word of the
form < nil, q1, w >. This L-program has a form:

mw(x) = cons(cons_l(cons(nil, q1), nil), strList(x)) (20)

L-program mw(x) transforms the word x to the machine word for the initial configura-
tion c0 of the Turing machine Tf .

Define value(x) as the L-program that transforms a machine word w into the word on
the tape of the Turing machine Tf . This function is constructed as follows:

value(w) = listStr(conc(f irst(w), head(w))) (21)

Define p-iterative term t(mw(x), h(|x|)) using construction (12) with the L-program
g(x) of the form (19), the formula ϕ from (18), the polynomial h(|x|) from (17), and L-
programs from (20) and (21).

The final L-program representing the function f (x) has the form:

value(t(mw(x), h(|x|))) (22)

Note that the L-program t(mw(x), h(|x|)) satisfies the conditions of Theorem 1 and,
therefore, value(t(mw(x), h(|x|))) is a p-computable.

6. Conclusions

The work shows the equality of classes P and L. The main motivation was to create
a not Turing complete logical programming language describing the class of polynomial
algorithms. Programs in this language are logical terms and have polynomial complexity.
For any polynomial algorithm, there is a program describing it. One of the main contribu-
tions of this work is the construction of a new logical language L that is equal to the class P.
Another contribution is the construction of a p-iterative term for this. The main limitation
is that this language is not Turing complete. Therefore, it is impossible to realize algorithms
on it with the complexity being higher than polynomial.

Thus, language L is rich enough to describe any algorithms of polynomial complexity.
These results are one more step in the construction of high-level programming languages
based on logical language L. Moreover, programs in such languages will remain polyno-
mially computable. It means that programs stop running every time, work quickly, and
produce results. It is especially important during the development of blockchain technolo-
gies and smart contracts. Since smart contracts are programs in a distributed environment,
the correct functioning of the entire blockchain as a whole depends on the result of its
execution. Such smart contracts should be executed quickly and should not consume a lot
of computing resources.

The work has built a logical language that allows one to create fast and reliable programs.
These programs will be used in computer science, robotics, the Internet of things, blockchain
technologies, medicine, and artificial intelligence.

Mathematics 2022, 10, 113 8 of 8

High-quality artificial intelligence requires not only just neural networks and machine
learning, but also logical rules and their execution. An effective solution is the hybrid tech-
nologies of neural networks and logical rules that will make a breakthrough in the future.
To construct such logical rules, the semantic programming theory suits perfectly well.

Author Contributions: Conceptualization, S.G. and A.N.; methodology, S.G. and A.N.; formal
analysis, S.G.; validation, S.G.; investigation, S.G. and A.N.; writing—original draft preparation, A.N.;
writing—review and editing, A.N.; supervision, S.G.; project administration, S.G.; software, A.N. All
authors have read and agreed to the published version of the manuscript.

Funding: Goncharov research was funded by the project of Fundamental Research of the Sobolev
institute of mathematics SB RAS number 0314-2019-0002.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ershov, Y.L.; Goncharov, S.S.; Sviridenko, D.I. Semantic programming. In Proceedings of the Information Processing 86: Proceedings

of the IFIP 10th World Computer Congress, Dublin, Ireland, 1–5 September 1986; Elsevier Sci.: Dublin, Ireland, 1986; Volume 10,
pp. 1113–1120.

2. Goncharov, S.S.; Sviridenko, D.I. Σ-programming. Transl. II Ser. Am. Math. Soc. 1989, 142, 101–121 .
3. Ershov, Y.L. Definability and Computability; Springer: Berlin/Heidelberg, Germany, 1996.
4. Cenzer, D.; Remmel, J. Polynomial-time versus recursive models. Ann. Pure Appl. Log. 1991, 54, 17–58. [CrossRef]
5. Lewis, H.; Papadimitriou, C. Elements of the Theory of Computation; Prentice-Hall: Upper Saddle River, NJ, USA, 1998.
6. Mantsivoda, A.; Ponomaryov, D. A Formalization of Document Models with Semantic Modelling; Series Mathematics; The Bulletin of

Irkutsk State University: Irkutsk, Russia, 2019; Volume 27, pp. 36–54. [CrossRef]
7. Gumirov, V.; Matyukov, P.; Palchunov, D. Semantic Domain-specific Languages. In Proceedings of the International Multi-Conference

on Engineering, Computer and Information Sciences (SIBIRCON), Novosibirsk, Russia, 21–27 October 2019; pp. 955–960. [CrossRef]
8. Kalimullin, I.; Melnikov, A.; Ng, K. Algebraic structures computable without delay. Theor. Comput. Sci. 2017, 674, 73–98.

[CrossRef]
9. Alaev, P.E. Structures Computable in Polynomial Time. I. Algebra Log. 2017, 55, 421–435. [CrossRef]
10. Goncharov, S.S.; Sviridenko, D.I. Logical language of description of polynomial computing. Dokl. Math. 2019, 99, 121–124.

[CrossRef]
11. Goncharov, S.; Nechesov, A. Polynomial analogue of Gandy’s fixed point theorem. Mathematics 2021, 9, 2102. [CrossRef]
12. Ospichev, S.S.; Ponomaryov, D.K. On the complexity of formulas in semantic programming. Sib. Electron. Math. Rep. 2018, 15,

987–995. [CrossRef]
13. Goncharov, S.S. Conditional Terms in Semantic Programming. Sib. Math. J. 2017, 58, 794–800. [CrossRef]

http://doi.org/10.1016/0168-0072(91)90008-A
http://dx.doi.org/10.26516/1997-7670.2019.27.36
http://dx.doi.org/10.1109/SIBIRCON48586.2019.8958237
http://dx.doi.org/10.1016/j.tcs.2017.01.029
http://dx.doi.org/10.1007/s10469-017-9416-y
http://dx.doi.org/10.1134/S1064562419020030
http://dx.doi.org/10.3390/math9172102
http://dx.doi.org/10.17377/semi.2018.15.083
http://dx.doi.org/10.1134/S0037446617050068

	Introduction
	Preliminaries
	Polynomial Functions and Turing Machines
	p-Iterative Terms
	Polynomiality via p-Iterative Terms
	Conclusions
	References

