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Abstract: This article presents a qualitative mathematical model to simulate the relationship between
supplied water and plant growth. A novel aspect of the construction of this phenomenological model
is the consideration of a structure of three phases: (1) The soil water availability, (2) the available
water inside the plant for its growth, and (3) the plant size or amount of dry matter. From these
phases and their interactions, a model based on a three-dimensional nonlinear dynamic system
was proposed. The results obtained showed the existence of a single equilibrium point, global and
exponentially stable. Additionally, considering the framework of the perturbation theory, this model
was perturbed by incorporating irrigation to the available soil water, obtaining some stability results
under different assumptions. Later through the control theory, it was demonstrated that the proposed
system was controllable. Finally, a numerical simulation of the proposed model was carried out, to
depict the soil water content and plant growth dynamic and its agreement with the results of the
mathematical analysis. In addition, a specific calibration for field data from an experiment with
wheat was considered, and these parameters were then used to test the proposed model, obtaining
an error of about 6% in the soil water content estimation.

Keywords: nonlinear systems; stability; controllability; irrigation strategy; soil–plant-
atmosphere continuum

1. Introduction

A clear example of World Climate Change’s effects has been the generalized increase
in drought in some Mediterranean climatic-type areas of South America [1]. Particularly in
Chile, since the end of the 1990s, this phenomenon has produced more frequent and severe
droughts that have been referred to as a mega-drought [2,3]. Climate change has serious
implications for agricultural production [4]. Agriculture is the activity that consumes the
most water worldwide because of irrigation, which has been estimated at around 70% [5].
Irrigation is the artificial application of controlled amounts of water to the soil to replace
the water consumed by agricultural crops [6]. Irrigation directly affects the plant’s growth,
yield, and quality of products, playing a key role in Mediterranean climate-type zones [7].
In Chile, irrigated agriculture represents 52% of the total agricultural surface [8] and 1.7%
of the gross domestic product [9], where this economic activity would be impossible
without irrigation.

Specific studies have demonstrated the advantages of applying an adequate irrigation
strategy [10]. Irrigation scheduling must ideally reflect the crop and climate interactions,
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considering the water availability, the moment of its application, and the appropriate distri-
bution in the field [6,11,12]. Indeed, several works that analyzed the irrigation strategies
used to optimize seasonal water consumption have been developed through engineering
crop models, based on biophysical and physiological principles, considering the soil–plant-
Atmosphere Continuum (SPAC) system [13,14]. In general, these engineering crop models
are computer programs that reliably simulate the growth and development of crops based
on specific data. All of them have previously been parameterized and validated, offering
reliable results, which have been broadly studied for specific situations [15]. Another alter-
native to crop modeling is the mathematical approach. Among their advantages are that
they enrich the scientific understanding of the phenomena [16] because they manipulate
all variables involved, analyzing all the possible responses. To mathematically model how
irrigation affects crop growth and the water flow in the SPAC, the phenomenological (or
macroscopic) approach is preferred to the mechanistic (or microscopic) one. This is because
the phenomenological models are generalist models based on energy and mass transfer
principles [17]. Phenomenological models do not require specific soil and plant parameters
that may be hard to determine [17,18].

As far as the authors are aware, there are no mathematical models to describe the
complete SPAC fluxes. Examples of the effects of the aforementioned mega-drought on
agriculture, provided by the development of a generalized mathematical approach, would
help to understand water flows in the SPAC. Additionally, these models offer the possibility
of analyzing how different irrigation strategies could influence productive parameters such
as water productivity, defined as the kilograms of growth per kilogram of water consumed.

We hypothesize that a qualitative mathematical model based on the SPAC interactions
will provide reliable trends on the overall relationship among the water in the soil, plant,
and growth. Considering that mentioned above, the objective of this work was to develop
a phenomenological mathematical model to simulate the relationship between supplied
water and plant growth. Taking into account that there are mathematical models that are
built to explore, test, and generate hypotheses [19], this tool may provide a useful way of
analyzing complex systems and the underlying mechanisms [19,20].

It is important to mention that for simplicity, this model assumes ideal field crop
management. Thus, other factors that affect the accumulation of dry matter [21], such
as soil nutrients, fertilizers, and so forth were considered ideal, the only limiting factor
being the water supply. This model will allow for a description of the effects of different
irrigation strategies on crop growth. The main relevance of this study is that it provides
a mathematical model in a context in which as far as the authors are aware, there are
no similar studies that analyzed the irrigation problem through this approach, coupling
between the water supplied to the plant and its dry mass change.

In this work, the development of the model and its analysis is presented as follows.
Firstly, we propose a system formulated and studied with an initial available amount
of water in the soil. For simplicity, we assumed this concept as being equivalent to the
available water capacity (AWC), water holding capacity (SWHC), or total available water
(TAW) [6,22]. This initial available amount of water in the soil does not consider external
water contributions. This approach is equivalent to assuming, as an initial condition,
soil full of water being available for the plant. Additionally, a qualitative analysis of the
behavior of the dynamic system was carried out, determining the equilibrium points, the
invariant planes, phase diagrams, bounded solutions, and global stability of equilibrium
points. Secondly, a system with external water input (i.e., with irrigation) was studied.
We started by studying irrigation as a perturbation of the original system, and then it is
shown that the said perturbation is a control. Furthermore, simulations were carried out
for some parameter values that allowed us to appreciate the dynamics of the system state
variables, and then a continuous and periodic irrigation strategy was incorporated to show
the effects of irrigation on plant growth. Finally, a calibration and validation example of the
resulting parameters of the proposed model will be presented, based on field experiment
data obtained from a previous study.
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2. Model Formulation

The soil–plant water flow has been traditionally explained by Ohm’s law [23], dividing
the water flow into three phases that represent the stages of the system: (1) variation of
water at the soil root zone; (2) variation of the water inside the plant; and (3) a third
phase that corresponds to the effects of this flow on the variation in the plant growth
and size [24]. In this case, the studied phenomenon was irrigation, and how the soil
water content variations affect the growth of plants. This process is represented by the
following abstraction: The process begins by considering that the soil at the root-zone of the
plant acts like a pond v(t) that contains the available water for plant water consumption
v(t0) = vmax. Then the water from the soil fluxes through the plant to the atmosphere, and
due to photosynthesis, a proportion of that water is transformed into biomass.The other
proportion remains in the plant cells, and a fraction of it allows their growth [25]. The latter
has traditionally been assumed as a sigmoidal growing shape. Under these assumptions, a
three-phase model is proposed: (1) Soil water availability v(t), (2) water inside the plant
available for its growth ω(t), and (3) the plant size or amount of dry matter x(t).

2.1. Water Dynamics at the Root Zone

In the development of this model, the soil at the root zone was assumed to act as a
pond. This assumption is of an analogy that will be repeatedly used in the text. At the
beginning of the growing cycle, it is assumed that this pond starts at full capacity of water
v(t0) = vmax. Then, during the growing cycle, the variations of the water in the pond v′(t)
are composed of two terms: the first is proportional to the amount of water in the soil at
the root-zone, and the second term accounts for the interaction of water inside the plant
with the water of the pond. Here, it must be considered that for large values ω(t), the rate
reaches a constant threshold, as follows:

v′(t) = −γ v(t) − ρ

(
ω(t)

1 + rω(t)

)
v(t), (1)

where r is a constant that modifies the limiting factor of the water inside the plant, γ is the
internal rate of decline in pond water by evaporation, and ρ is the intrinsic rate of water
that goes to the plant.

2.2. Water Dynamics Inside the Plant

The water flow from the soil to roots and then to the whole plant is considered as a
mass transfer process, where the water that enters the plant is equal to that lost through
transpiration, plus that which is stored in the tissues. Then the variation of water w ′(t)
inside the plant available for its growth, responds to the type,

w′(t) =
{

Water absorption
per unit of time

}
−
{

Water removed
per unit of time

}
. (2)

Water absorption: The plant absorbs the soil-water in proportion to the amount of
water v(t) that the pond has in interaction with the water inside the plant ω(t); however,
the water inside the plant for large values ω(t) reaches a constant rate,{

Water absorption
per unit of time

}
= δ

(
ω(t)

1 + rω(t)

)
v(t), (3)

with δ being the intrinsic rate of increase of the water inside the plant.
Water removed: The water that passes throughout the plant is moved by transpiration,

which is considered proportional to the amount of water ω(t) that the plant has, and the
other is retained in the plant tissues and a fraction of it is utilized for plant growth. This
process is considered proportional to the gain of mass G(x) (this term gain will be defined
later) in interaction with the amount of water ω(t). Then:
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{
Water removed
per unit of time

}
= β ω(t) + µ G(x)ω(t), (4)

with constant β being the rate of decrease of water inside the plant, and µ is the plant
growth rate.

From Equations (2)–(4), we have the following relationship for ω′(t).

ω′(t) = δ

(
ω(t)

1 + rω(t)

)
v(t) − β ω(t) − µ G(x)ω(t). (5)

2.3. Plant Growth Dynamics

For the growth of the plant, the variation of dry matter is considered, and it is the result
of a gain less than a degradation term, where an alternative that includes the Ref. [24] is,

x′(t) =
σ x(t)

1 + g x(t)n −m x(t), (6)

where x(t) represents the amount of dry mass at time t, the constant σ corresponds to
the intrinsic growth rate of the plant, g modifies the limiting factor of plant growth, m
corresponds to the rate of degradation of the plant, and factor n allows for modification of
the rapidity of growth of the plant.

Let us now discuss the first term of the Equation (6), as in any population, particularly
of cells of a plant, the rate of gain of a new mass per unit of time at all times t can be a
function of important internal or environmental parameters, also of the same accumulated
mass as a limiting element to growth (dense dependence with negative correlation). The
form of the function that represents the gain and that corresponds to the first term of (6) is
G(x) = ϑ x

1+g xn , which can be seen to be very sensitive to the parameter n. The form of G
(x) is discussed below for some intervals of n, with constant ϑ.

Next are four cases for different values of n:

(a) If n < 0, then G(x) = ϑ x
1+g x−|n|

, which for x � 1 tends to ϑ x, which is not realistic,

because the dry mass can not grow forever.
(b) For n = 0, it has G(x) = ( ϑ

1+g ) x, and the dry mass gain increases linearly with the
size of the plant, which, like the previous case, does not represent reality.

(c) For n > 1, if x � 1 then G(x) = ϑ
g

1
x(n−1) , it tends quickly to zero. This case is

unusual, and has been discarded in further analysis.
(d) Finally, the fourth case, with 0 < n ≤ 1, was assumed for the model.

Figure 1 illustrates the effects of parameter n on the function G(x) that represents
the mass gain. Five different values of n are taken into account, considering the four
previous cases.

In relation to the second term of Equation (6), the literature assumes that the plant in
any state of growth has some loss of mass at time t, considered proportional to the size of
the plant at time x(t), with a constant degradation rate m.

Figure 2 represents the size of the plant as a function of time, obtained from the
relationship (6). It can be seen in Figure 2 that at the beginning of the time scale, the size
of the plant tends to grow unlimitedly in a short time interval, for values of n ≤ 0 (blue,
red). This situation does not agree with plants which grow in a common pattern. In nature,
plants can present with accelerated growth in their first growth stages, but it then decreases
in their maturity until reaching a plateau; after that, there is a decrease in their harvest,
or after the end of each growing season [22]. For n = 2 (green), the plant’s size reaches a
constant value very soon (there is no growth), which is not adjusted to the aforementioned
pattern of plant growth. By assuming values of n = 0.8 (yellow) and n = 1.0 (purple), the
simulated behavior of the size of the plant over time shows a shape that reflects the natural
plant growth pattern.
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Figure 1. Rate of mass gain as a function of size of the plant, considering the following parameter
values: ϑ = 0.07 and g = 0.1. This figure shows that for values of n ≤ 0 (blue, red; cases (a), and (b)),
the gain in dry matter grows rapidly (monotonous growth). Similarly, for n = 2 (green; case (c)), the
dry matter gain falls very quickly to zero. For values of n = 0.8 (yellow, case (d)) and n = 1.0 (purple;
case (d)) the behavior of the gain is more realistic. In this work, a value of n = 1 was assumed for
the model.
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Figure 2. Simulation of dry mass growth as a function of time, where: n is the factor that allows for
modification of the plant’s rapidity of growth in t time (days), and x(t) is the amount of dry matter
(unit of mass). For parameter values n ∈ {−1, 0, 0.8, 1, 2}, σ = 0.07, g = 0.1 and m = 0.01.

Finally, in the first term of Equation (6), the intrinsic growth rate of the plant σ is
considered a function of omega, σ(ω) = κω, to incorporate an interaction with the water
entering the plant, where κ is a proportionality constant that accounts for the influence of
water inside the plant on the growth of the crop. In this way, the gain increases when more
water enters the plant, then Equation (6) remains:

x′(t) =
κ x(t)ω(t)
1 + g x(t)

−m x(t), (7)

where one should remember that 0 < n ≤ 1, and for simplicity, we chose n = 1.

Assumptions

A1: In relation to the water that flows from the pond to the plant, it is assumed that
the water absorption rate of the plant is less than or equal to the rate of loss of water
from the pond to the plant, that is, δ ≤ ρ.
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A2: In relation to the process of photosynthesis and plant growth, it is assumed that the
dry matter accumulation rate of the plant is approximately equal to the rate of decrease
of the water inside the plant that goes to photosynthesis. This assumption is supported
by the equation of photosynthesis [26]. Photosynthesis is the process that occurs in
plants (chlorophyll) where the solar energy, through the water hydrolysis, is used for
atmospheric carbon dioxide assimilation, resulting in the production of carbohydrate
molecules and oxygen. The balanced general equation of this phenomenon, for C3
plants, is as follows: 6H2O + 6CO2 −→ C6H2O6 + 6O2, resulting in κ ≈ k.
A3: It is assumed that the rate of water loss through transpiration β is greater than the
rate of water loss through evaporation γ, which is β > γ. In addition, it is assumed
that the degradation rate of the plant m is greater than the rate of water loss through
evaporation γ, which is m > γ. Finally, it is assumed that β > m.

2.4. Mathematical Model

From Equations (1)–(7), the following dynamic system is obtained, which represents
the coupling between the water supplied to the plant and the change of its dry mass.

x′(t) = κ x(t)ω(t)
1+g x(t) −m x(t),

w′(t) = δ
ω(t) v(t)
1+r ω(t) − β ω(t) − k x(t)ω(t)

1+g x(t) ,

v′(t) = −γ v(t) − ρ
ω(t) v(t)
1+r ω(t) .

(8)

More simply,
(x′, ω′, v′)T = f (x, ω, v), (9)

where f (x, ω, v) represents the right side of the system (8).
For obtaining a system of nonlinear differential equations in three dimensions where

it has been used, µ ϑ = k is a constant that represents the intrinsic rate of water decrease
by photosynthesis. The parameters are presented in Table 1.

System (8) is defined in the region Ω = {(x, ω, v) ∈ R3 | x, ω, v ≥ 0}.

Table 1. Parameters considered in the present study.

Parameters Meaning Units

κ Intrinsic growth rate per unit of water inside the plant [time×mass]−1

g Limiting factor constant of x(t) [mass]−1

m Plant degradation rate [time]−1

δ Intrinsic rate of increase of the water inside the plant [time ×mass]−1

r Limiting factor constant of ω(t) [mass]−1

β Rate of decrease of water inside the plant [time]−1

k Intrinsic rate of water decrease by photosynthesis [time ×mass]−1

γ Inner rate of decrease of the pond water [time]−1

ρ Intrinsic rate of water that goes to the plant [time ×mass]−1

Remarks

• Plant size variation. In the Equation (8), the first term of x′ corresponds to the growth
rate of the plant due to the water inside the plant represented by ω, and the expression
(1 + g x)−1 is the limiting factor of plant growth. The second term corresponds to the
rate of degradation of the plant.

• Variation of water inside the plant. The first term of ω′ accounts for the rate of
increase of the water inside the plant due to the water coming from the pond v, and
the expression (1 + r ω)−1 corresponds to the limiting factor of the increase in water
inside the plant. The second term represents the rate of decrease of the water inside
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the plant caused by transpiration. The third term is the rate of water loss inside the
plant as a result of photosynthesis, and the expression k x(1 + g x)−1 represents the
rate of decrease per capita, the x = g−1 value corresponds to half of the maximum
decrease rate kg−1.

• Variation of water in the pond. The first term corresponds to the rate of decrease in
pond water due to evaporation losses. The second term is the rate of decrease of the
pond water flowing into the plant, the expression ρ ω(1 + r ω)−1 represents the rate
of decrease per capita of pond water flowing to the plant, and the ω = r−1 value
corresponds to half of the maximum decrease rate ρr−1.

3. Main Results

Lemma 1. The coordinate planes of the system (8) are invariant.

Proof. It will be proved that the x ω plane is invariant, and the proof is similar for the
other planes. On one side, let S1 be the plane x ω with v = 0, then the vector 〈0, 0, 1〉
is always normal to S1. On the other hand, points (x, ω, 0) of S1 comply, 〈x′, ω′, v′〉 =
〈 κ x ω

1+g x −m x, −β ω − k x ω
1+g x , 0〉.

In this way, the following result is obtained:

〈0, 0, 1〉 · 〈x′, ω′, v′〉 = 〈0, 0, 1〉 ·
〈

κ x ω

1 + g x
−m x, −β ω − k x ω

1 + g x
, 0
〉

= 0,

which shows that the plane x ω is invariant.

Proposition 1. The solutions of system (8) are uniformly bounded.

Proof. Defining z(t) as:

z(t) =
x(t)

κ
+

ω(t)
k

+
δ

ρ k
v(t), z(t = 0) = z0 =

x0

κ
+

ω0

k
+

δ

ρ k
v0.

Then,

z′(t) =
x′(t)

κ
+

ω′(t)
k

+
δ

ρ k
v′(t) = −

(
m
κ

x(t) +
β

k
ω(t) +

γδ

k ρ
v(t)

)
,

and by assumption A3, the min{m, β, γ} = γ. Then, z′(t) satisfies

z′(t) ≤ − γ

(
x(t)

κ
+

ω(t)
k

+
δ

ρ k
v(t)

)
= −γ z(t). (10)

Using the comparison principle (lemma) [27], then from the differential inequality (10),
we obtain

0 ≤ z(t) ≤ z0 e−γt, ∀t > 0.

The equilibrium points of the system (8) are:

p0 = (0, 0, 0),

p1 = (0, − γ
ε , βρ

δε ),

p2 = ( −β
k+βg , km

κ(k+βg) , 0),

p3 =
(
− 1

mg (
κγ
ε + m), −γ

ε , kρ
κgδγε (

κgβγ
k + κγ + mε)

)
,
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with ε = ρ + γr. Considering that the state variables represent non-negative quantities,
then only the equilibrium points that are in the first octant are of interest. Thus, the only
equilibrium point of interest is p0 = (0, 0, 0).

Lemma 2. The equilibrium point p0 = (0, 0, 0) is locally asymptotically stable.

Proof. The eigenvalues of the Jacobian matrix evaluated at the point (0, 0, 0) are: λ1 =
−m, λ2 = −β, λ3 = −γ; therefore, (0, 0, 0) is locally stable.

Proposition 2. p0 = (0, 0, 0) is a globally exponentially stable equilibrium point.

Proof. Using the direct method of Lyapunov demonstrates the global exponential stability
of the system. The following scalar function is considered:

V(x, ω, v) =

(
k
κ

x + ω +
δ

ρ
v
)2

. (11)

(i) Clearly, V(0, 0, 0) = 0 and V(x, ω, v) > 0 for (x, ω, v) 6= (0, 0, 0).

(ii) V′(x, ω, v) = − 2
(

k
κ x + ω + δ

ρ v
) (

k m
κ x + β ω + γ δ

ρ v
)

.

Then, V′(x, ω, v) < 0 in Ω−{(0, 0, 0)}, given that all the parameters: k, κ, δ, ρ, m, β
and γ are positive, and the state variables are also positive.

(iii) V(x, ω, v) =
(

k
κ x + ω + δ

ρ v
)2
≤ r1

(
2(xω + xv + ωv) + (x2 + ω2 + v2)

)
. With

r1 = max{( k
κ )

2, 1, ( δ
ρ )

2, k
κ , kδ

κρ , δ
ρ}, according to the Assumptions r1 = 1, obtaining

V(x, ω, v) ≤ 4 ‖(x, ω, v)‖2.
On the other hand, V(x, ω, v) ≥

(
( k

κ )
2x2 + ω2 + ( δ

ρ )
2v2
)
≥ r2‖(x, ω, v)‖2,

with r2 = min{( k
κ )

2, 1, ( δ
ρ )

2}, according to the Assumptions r2 = ( δ
ρ )

2, obtaining

V(x, ω, v) ≥ ( δ
ρ )

2‖(x, ω, v)‖2.

Obtaining ( δ
ρ )

2‖(x, ω, v)‖2 ≤ V(x, ω, v) ≤ 4 ‖(x, ω, v)‖2.

(iv) V′ ≤ −2 min{m, β, γ}
(

k
κ x + ω + δ

ρ v
)2

, according to the Assumptions,
min{m, β, γ} = γ.
Obtaining V′ ≤ −2γ V.

(v) Since the Lyapunov function it is strictly increasing, lim
‖(x,ω,v)‖→∞

V(x, ω, v) = ∞.

4. Modeling with Irrigation

To consider adding external water to the system, in Equation (9), a term I(t, x, ω, v) is
incorporated that accounts for the way in which the water is added.

(x′, ω′, v′)T = f (x, ω, v) + I(t, x, ω, v). (12)

The term I = (0, 0, I3)
T is considered a perturbation of the system. Suppose the

perturbation term satisfies the linear growth bound.

‖I(t, x, ω, v)‖ < η ‖(x, ω, v)‖. ∀ t ≥ 0, ∀ (x, ω, v) ∈ Ω, (13)

where η is a nonnegative constant,

η <
c3

c4
, (14)

where c3 and c4 are defined by the Lyapunov function (11) of the nominal system (9) that
satisfies the following three conditions,

c1‖(x, ω, v)‖2 ≤ V ≤ c2‖(x, ω, v)‖2, (15)
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V′ =
∂V
∂t

+
∂V

∂(x, ω, v)
f (x, ω, v) ≤ −c3‖(x, ω, v)‖2, (16)∥∥∥∥ ∂V

∂(x, ω, v)

∥∥∥∥ ≤ c4 ‖(x, ω, v)‖, (17)

where c1 = min{( k
κ )

2, 1, ( δ
ρ )

2}, c2 = 4 max{( k
κ )

2, 1, ( δ
ρ )

2, k
κ , kδ

κρ , δ
ρ},

c3 = min{mk2

κ2 , β, γδ2

ρ2 }, c4 = 4
[(

k
κ

)2
+ 1 +

(
δ
ρ

)2
] 1

2
max{ k

κ , 1, δ
ρ}.

Considering the Assumptions of the model, the following is obtained: c1 = ( δ
ρ )

2, c2 ≈ 4,

c3 = γ( δ
ρ )

2. For the case c4, from the Assumptions A2, we have that k
κ ≈ 1, where from A1

you get δ
ρ ≤ 1, then max{ k

κ , 1, δ
ρ} = 1, obtaining c4 ≤ 4

√
3; then, we assume that c4 ≈ 6.

Lemma 3. Suppose the perturbation term satisfies I(t, 0, 0, 0) = 0, for t ≥ 0. Then, equilibrium
point p0 = (0, 0, 0) is globally exponentially stable of the system (12).

Proof. We use V of the nominal system (9) as a Lyapunov function candidate for (12).

Lyapunov function V(x, ω, v) =
(

k
κ x + ω + δ

ρ v
)2

.

V′ =
∂V
∂t

+
∂V

∂(x, ω, v)
[ f (x, ω, v) + I(t, x, ω, v)],

occupying Equation (16), we obtain

V′ ≤ −c3‖(x, ω, v)‖2 +

∥∥∥∥ ∂V
∂(x, ω, v)

∥∥∥∥‖I(t, x, ω, v)‖, (18)

substituting Equations (17) and (13) into (18)

V′ ≤ (−c3 + ηc4)‖(x, ω, v)‖2,

using the relation (14) we obtain V′ ≤ 0.

Now we are going to consider the more general case I(t, 0, 0, 0) 6= 0, and we cannot
expect the solutions to approach the origin for long times, but we can ensure that the
solutions are ultimately confined by a small bound in some sense.

Theorem 1. Suppose the perturbation I(t, x, ω, v) satisfies

‖I(t, x, ω, v)‖ <
1

8
√

2
γ r, (19)

where equilibrium point p0 = (0, 0, 0) is globally asymptotically stable of the system (9). Then, the
system solutions (12) satisfy

‖(x(t), ω(t), v(t))‖ ≤ τ e−α(t−t0) ‖(x(t0), ω(t0), v(t0))‖, ∀ t0 ≤ t < t0 + T,

and
‖(x(t), ω(t), v(t))‖ ≤ b, ∀ t ≥ t0 + T,

where τ =
√

c2
c1

= 2 ( ρ
δ ), α = 1

8 γ(1− θ)( δ
ρ )

2, b = 3
√

2
4 ( ρ

δ )
3 r

θ , 0 < θ < 1.

Proof. We use V of the nominal system (9) for a perturbed system (12) and using Equation (18),
we obtained

V′ ≤ −c3‖(x, ω, v)‖2 +

∥∥∥∥ ∂V
∂(x, ω, v)

∥∥∥∥‖I(t, x, ω, v)‖.
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Using Equations (17) and (19), with γ r
8
√

2
≡ λ was obtained,

V′ ≤ −(1− θ)c3‖(x, ω, v)‖2 − θc3‖(x, ω, v)‖2 + c4λ‖(x, ω, v)‖, 0 < θ < 1.

For ‖(x, ω, v)‖ ≥ c4λ
c3θ ≡ µ was obtained,

V′ ≤ −(1− θ)c3‖(x, ω, v)‖2. (20)

Now we separate the proof into two cases.
First case: V ≥ c2 µ2, with (15) is obtained ‖(x, ω, v)‖ ≥ µ, for all t0 ≤ t < t0 + T.
From Equation (15) and (20), V′ ≤ −(1− θ) c3

c2
V obtaining,

V ≤ e−
c3
c2
(1−θ)(t−t0) V0, with V0 = V(t0). (21)

Replacing (21) in (15), and using V0 ≤ c2 ‖(x(t0), ω(t0), v(t0))‖2 is obtained,

‖(x, ω, v)‖ ≤
[

1
c1

V
] 1

2
≤
√

c2

c1
e−

c3
2 c2

(1−θ)(t−t0) ‖(x(t0), ω(t0), v(t0))‖. (22)

This inequality (22) is valid for the interval [t0, t0 + T) during which V ≥ c2 µ2.
Second case: V < c2 µ2, t ≥ t0 + T.

From Equation (15), ‖(x, ω, v)‖ ≤
[

1
c1

V
] 1

2 ≤
[

1
c1

c2 µ2
] 1

2 , then,

‖(x, ω, v)‖ ≤
√

c2

c1
µ ≡ b.

5. Irrigation as Control

Now the external water added to the system is considered as a control
I(t, x, ω, v) = h(x, ω, v) u, and from (9) the equation of state is obtained, with
h(x, ω, v) = (0, 0, 1)T . Thus, the system (12) assumes the following form:

(x′, ω′, v′)T = f (x, ω, v) + h(x, ω, v) u, (23)

with output equation
y = l(x, ω, v) = x. (24)

Lemma 4. vicente

(a) The input-affine system model (23) and (24) is linearizable.
(b) Let (x, ω, v) ∈ int(Ω) =

{
(a, b, c) ∈ R3/a, b, c > 0

}
, the system (23) is feedback linearizable.

Proof. In the first case, using the Lie derivative, we calculate the relative degree of the
nonlinear systems (23) and (24).

We define Ψ1 = l(x, ω, v) = x, then ∂Ψ1
∂(x,ω,v) = (1 0 0). Thus,

Ψ2 ≡
∂Ψ1

∂(x, ω, v)
f (x, ω, v) =

κ x ω

1 + gx
− mx,

and ∂Ψ2
∂(x,ω,v) = ( κ ω

(1+gx)2 −m κ x
1+gx 0) is obtained. Finally,
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Ψ3 ≡ ∂Ψ2

∂(x, ω, v)
f (x, ω, v),

= (
κ ω

(1 + gx)2 − m)(
κ xω

1 + gx
−mx) +

κ x
1 + gx

(
δωv

1 + rω
− βω− k xω

1 + gx
).

Therefore,

∂Ψ1

∂(x, ω, v)
h(x, ω, v) =

∂Ψ2

∂(x, ω, v)
h(x, ω, v) = 0, and

∂Ψ3

∂(x, ω, v)
h(x, ω, v) = (

∂Ψ3

∂x
∂Ψ3

∂ω

∂Ψ3

∂v
)

 0
0
1

 =
κδxω

(1 + gx)(1 + rω)
6= 0.

Therefore, the (23) and (24) system has relative degree 3.
In the second case, we calculate the rank of matrix G =

[
h, ad f h, ad f

2h
]

constructed
from Lie brackets, and check that the distribution D = span{h, ad f h} is involutive.

(I) Let’s evaluate the second term of G,

ad f h = [ f , h] =
∂h

∂(x, ω, v)
f (x, ω, v) − ∂ f

∂(x, ω, v)
h(x, ω, v)

=

 0
δω

1+rω
−γ− ρω

1+rω

.
(25)

Now let’s calculate the third term of G:
ad2

f h = [ f , ad f h]

=

0 0 0
0 δ

(1+rω)2 0
0 − ρ

(1+rω)2 0


 f1

f2
f3

−
 f1 x f1 ω f1 v

f2 x f2 ω f2 v
f3 x f3 ω f3 v

 0
δω

1+rω
−γ− ρω

1+rω



ad2
f h =



κδxω
(1+gx)(1+rω)

f2
δ

(1+rω)2 −
∂ f2
∂ω

δω
1+rω + ∂ f2

∂v (γ + ρω
1+rω )

− f2
ρ

(1+rω)2 −
∂ f3
∂ω

δω
1+rω + ∂ f3

∂v (γ + ρω
1+rω )

 ≡

 r1
r2
r3

 (26)

The matrix remains G

G =

0 0 r1
0 δω

1+rω r2
1 (−γ− ρω

1+rω ) r3

.

Then rg(G) = 3.
(II) The distribution D = span{h, ad f h} is involutive, since:

(i) Clearly, {h, ad f h} is linearly independent, with h =

 0
0
1

 and

ad f h =

 0
δω

1+rω
−γ− ρω

1+rω

.
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(ii) Let’s evaluate the range of
[

h, ad f h, [h, ad f h]
]
.

rg
[

h, ad f h, [h, ad f h]
]

= rg

0 0 0
0 δω

1+rω 0
1 (−γ− ρω

1+rω ) 0

 = 2.

Corollary 1. Under the conditions of the Lemma above the input-affine system, (23) and (24)
are controllable.

Proof. From the input-affine form (23) and (24), the following sets of vector field L are
constructed, formed by the Lie brackets. L =

{
h, ad f h, ad f

2h
}

. From (25) and (26), we get

L =


 0

0
1

,

 0
δω

1+rω
(−γ− ρω

1+rω )

,

 r1
r2
r3

.

Then, dim(L) = 3.

6. Numerical Examples and Simulations
6.1. Dynamics of the State Variables of the System

The model (9) was implemented using a script written using Matlab© R2019a (Math-
works Inc., Natick, MA, USA). It is important to highlight that water is the main component
of plants—approximately between 80 % and 90 % of the fresh weight in herbaceous plants,
and more than 50 % in woody plants [23]. In this simulation, it has been considered
for the initial values of the states that 70% corresponds to water inside the plant avail-
able for growth, and 30% corresponds to dry mass, then x(0) = 3.0, ω(0) = 7.0 and
v(0) = vmax = 20.0 (Figures 3–5). The parameter g = 0.1 was taken from Thornley [24].
The parameters β and γ were conditioned by Assumption A3, β > m and γ < m, and
we took β = 0.1, γ = 0.000009 and m = 0.00001 and κ = 0.01. From Assumption A2,
k ≈ κ = 0.01. Parameters δ, ρ and r were arbitrarily manipulated to fit the curves, and
do not necessarily represent values associated with particular cases, with the condition
imposed by Assumption A1, δ ≤ ρ.

Figure 3 presents a simulation of the system without irrigation, which allows us to
appreciate the dynamics of the states, for a cultivation period of 300 days. It can be seen that
the curve that represents the water available in the soil v(t) (green line) approaches zero for
a time t around 35, like the water available inside the plant ω(t) (black line). Additionally,
the amount of dry matter x(t) (red line) has strong growth of t around 30, and then very
slowly decays.

The study of the behavior of the long-term solutions and their stability was carried
out in order to determine the validity of the model and its construction in qualitative terms,
however, for practical application purposes, the behavior of the crops in the short term is
of interest for decision-making. This motivated the next numerical scenario.
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v(t)

Figure 3. State dynamics for the system without irrigation, time t in days, where v(t) (green line),
ω(t) (black line), and x(t) (red line) are the water available in the soil, the water inside the plant,
and the amount of dry matter, respectively. Parameter values: x(0) = 3.0, ω(0) = 7.0, v(0) = 20.0,
κ = 0.01, g = 0.1, m = 0.00001, δ = 1.0, r = 20, β = 0.1, k = 0.01, γ = 0.000009, ρ = 2.0.

6.2. Irrigation Strategy

Now we incorporate irrigation in the system (9) to analyze through simulations how
irrigation of a farm field influences plant growth. For this, an irrigation function I(t) is
incorporated to state variable v(t) of the system (9). We consider a bounded, continuous,
differentiable, and periodic irrigation I(t) function, Figure 6. Crop seasons were of 300 days,
with irrigation during the first 200 days, an irrigation period of 32 days, with each watering
lasting one day, and levels of irrigation of 30 volume units.

When applying the irrigation function I(t) to the system (9), there are fluctuations
in the amount of water in the soil available v(t) for the growth of the plant, as shown
in Figure 4. The horizontal lines mark the thresholds for the availability of water in the
soil; most of the pores of Saturated soils (Sat) were occupied by water, which prevents
the uptake of oxygen by the roots; Field Capacity (FC) is the amount of water in the soil
after drainage; and Management Allowed Depletion (MAD) is the percentage of depletion
without reduction of crop yield [6]. The vertical arrows indicate the times when irrigation is
applied. Six irrigation applications were made during the season, where the first irrigation
was carried out when the initial amount of water v(0) = vmax = 20.0 reached the MAD
value, approximately at t = 32; thus, the irrigation period will be 32. The amount of water
supplied in each irrigation slightly exceeds FC.
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t
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v
(t
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0
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20
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30
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MAD

Figure 4. Soil water content v(t) for the plants’ growth. The horizontal lines represent the soil water
thresholds, Saturated soils (Sat, upper line), Field Capacity (FC), and Management Allowed Depletion
(MAD, bottom line). The vertical arrows indicate the times when irrigation is applied. Initial
conditions x(0) = 3.0, ω(0) = 7.0, v(0) = 20.0, parameter values κ = 0.01, g = 0.1, m = 0.00001,
δ = 1.0, r = 20, β = 0.1, k = 0.01, γ = 0.000009, ρ = 2.0.

Figure 5 shows the dynamics of the states of system (9) when applying the irrigation
function of Figure 6. Comparing Figure 5 with Figure 3, it is possible to see how irrigation
affects crop growth. The irrigation schedule allows the accumulation of dry matter x(t) to
increase during the irrigation period (200 days in the numerical example). When irrigation
is suspended, ω(t) and v(t) tend to zero, and the process of dry matter accumulation stops.

t
0 50 100 150 200 250 300

x
(t
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ω
(t
),
v
(t
)

0

5

10

15

20

25

30

x(t)

ω(t)

v(t)

Figure 5. State dynamics for the system with irrigation, time t in days, where v(t) (green line), ω(t)
(black line), and x(t) (red line) are the water available in the soil, the water inside the plant, and the
amount of dry matter, respectively. Parameter values: x(0) = 3.0, ω(0) = 7.0, v(0) = 20.0, κ = 0.01,
g = 0.1, m = 0.00001, δ = 1.0, r = 20, β = 0.1, k = 0.01, γ = 0.000009, ρ = 2.0.
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Figure 6. Irrigation function I(t) in days t. This function is considered bounded, continuous,
differentiable, and periodic in order to represent a realistic case. Six watering applications were
considered during the season.

6.3. Assessment of the Model Performance Using Experimental Data

As our work did not have its own field data, and under the need to evaluate the perfor-
mance of the proposed model, it was assessed against field data obtained from Andarzian
et al. [28]. In this work, the authors presented the results from a field experiment carried
out on full and deficit irrigated wheat production in Iran. Mainly, data from this research
were obtained from [28] (Figure 1, page 4), which describes the soil moisture dynamics
for wheat (1) under full and (2) with water deficit irrigation. The values from this figure
were hand-extracted to a Comma Separated Values (CSV) file, using the WebPlotDigitizer
webpage (https://automeris.io/WebPlotDigitizer/, accessed on 13 December 2021). Please
consult the work of Andarzian et al. [28] for more details.

Data-processing and statistical analysis. The system (9) was solved numerically,
adjusting the output v(t) for the soil water content, considering the case under water
deficit. This parameterization was carried out using a nonlinear least squares curve-fitting
method [29], by occupying a script developed in Matlab© R2019a (Mathworks Inc., Natick,
MA, USA). The actual data from the soil moisture obtained from Andarzian et al. [28] were
used to fit the parameters to find the best solution. The resulting parameter values of the
model that minimized the difference between simulated and measured data are presented
in Table 2. The performance of the data fit is presented in Figure 7.

Table 2. Proposed model resulting parameters.

Parameters Values Units

κ 0.99373 [days×mm]−1

g 0.10390 [mm]−1

m 1.07359 [days]−1

δ 1.02885 [days ×mm]−1

r 1.22763 [mm]−1

β 1.35470 [days]−1

k 0.01003 [days ×mm]−1

γ 0.00001 [days]−1

ρ 0.01146 [days ×mm]−1

https://automeris.io/WebPlotDigitizer/
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Figure 7. Model fit from the deficit irrigated wheat data (data extracted from Andarzian et al., [28].)

Then the parameters from Table 2 were used to test the proposed model, considering
the simulation with irrigation v(t). For this purpose, the data extracted from Andarzian
et al. [28] for the experiment with full irrigation were used as ground truth, and they were
compared against the proposed model’s outputs. The model performance of that simulated
against measured data was carried on by the classical curve fit suggested by Mayer and
Butler [30]. The statistical parameters used were the Pearson’s correlation coefficient (r), the
Mean Absolute Error (MAE), and the Root Mean Square Error (RMSE) deviance parameters.
Figure 8 shows the graphs of the simulated and measured data.
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Figure 8. Soil water content trends for modeled and actual data for full irrigated wheat (using the
calibrated parameters from Table 2, and measured data from Andarzian et al. [28]). Field Capacity
(FC), Permanent Wilting Point (PWP), Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
and Pearson’s correlation coefficient (r).

The performance of the modeled against measured values, depicted in Figure 8,
showed good trends, highlighting the model’s capabilities to simulate the soil water content
behavior. The green line was very close to the measured values (orange crosses), considering
a cycle of two irrigations for the experiment on wheat. Regarding the statistical validation,
the r = 0.51, with an RMSE and MAE of 28.63 and 20.11 mm, can be considered acceptable
for irrigation purposes [28,31,32].
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7. Discussion

As far as the authors are aware, in the literature, there is a large number of works
that study the irrigation phenomenon considering the SPAC system from computational
simulations [6,15,20,33–36]. The models above have been described as methods to under-
stand and reproduce the water fluxes from the root zone to the atmosphere, evaluating
specific climatic scenarios and their influence on plant growth. These approaches can be
used to simulate point examples, and are very useful for particular field conditions and
management. In our case, the qualitative characteristics of the proposed model could allow
for simulations of all situations. In the development of this model, it was assumed that
the relation between irrigation and plant growth could be compartmentalized into three
parts: The soil water availability, (2) the available water inside the plant for its growth, and
(3) the plant size or amount of dry matter. In the construction of the model, it has been
considered that the water in the soil only reduces due to the evaporation from the soil and
the water consumed by the plant by the transpiration. This last flux allows the plant to
photosynthesize. This phenomenon increases the plant’s biomass (dry mass amount) due
to the water inside the plant available for growth, considering the losses due to degradation.
For the relationship between the parameters of the model (8), whose description is given in
Table 1, some assumptions have been considered: the rate of flow of water from the pond
(soil) to the plant (ρ) being greater or equal to the rate of flow of water entering from the
soil to the plant (δ). Furthermore, the rate of accumulation of dry matter (or dry mass) (κ) is
approximately equal to the rate of decrease of the water inside the plant that goes towards
photosynthesis (k). Finally, the rate of flow of water corresponding to transpiration (β) is
greater than the flow rate of evaporated water (γ).

The stability analysis of the proposed model was divided into two parts, with and
without an external water supply. The system without an external water supply was first
studied (8). Second, it was studied with an external water supply giving rise to the two
models (12) and (23) based on the perturbation theory and control theory results.

For the analysis of the model, it was considered that the soil starts with a certain
amount of water, the plant starts with a certain size, and at the beginning of the process,
there is a certain amount of water inside the plant available for growth. These considera-
tions were both for the system without external water supply (or irrigation) (8) and also for
the systems with an external water supply, both the perturbed (12) and control (23).

The proposed mathematical model (8) without an external water supply meets the
following properties: The solutions of the system are uniformly bounded, and this indicates
that the states’ variables do not grow indefinitely. It was also found that the system
has a single equilibrium point given by (0,0,0) which is globally exponentially stable,
showing that given any initial condition, the water–plant interaction does not persist in the
long term.

The simulation shown in Figure 3 indicates that the proposed mathematical model
allows to qualitatively account for the expected behavior in the dry matter changes of the
plant as a function of the soil water, and the dynamics of the curves are in accordance with
what is expected in general for the behavior of plants.

The effect of an external water supply was subsequently studied. In the first place, the
external water supply was treated as a perturbation to the original model (8) through an
irrigation function, obtaining the system (12). If the perturbation is bounded and null at the
origin, that is, at the beginning of the process, there is no external water supply, then the
equilibrium point (0,0,0) is globally exponentially stable, maintaining the stability behavior
similar to the original system. If the perturbation is not null at the origin, that is, at the
beginning of the process there is an external water supply, a bound was found in terms of
the system parameters so that said perturbation maintains similar stability to the original
system, this bound turned out to be proportional to inner rate of decrease of the soil water
content (γ). Second, the irrigation was treated as a control (23) and it was found that the
system is controllable by taking the size of the plant as the output state, which implies that
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it is theoretically possible to achieve a desired plant size level from any initial state through
a continuous irrigation strategy dependent on the state variables.

Figures 4 and 5 show that when applying continuous and periodic irrigation, there
are fluctuations in the amount of water in the soil available for the plant, that oscillate
between the thresholds for the availability of water in the soil FC and MAD, thus achieving
sustained growth of the plant. This was most evident when comparing Figures 3 and 5.

After the parameterization, the proposed model obtained an acceptable simulation
of the soil water content seasonal trends (Figure 8), considering a specific calibration for
field data, from an experiment on wheat. Notwithstanding, this is a specific example. The
proposed model’s performance should be parameterized and validated whenever tested
against field data.

8. Conclusions

In this work, a mathematical model based on the SPAC system was proposed from
a phenomenological paradigm to study the effect of irrigation on plant growth from a
macroscopic perspective. This mathematical approach has been focused on increasing the
understanding of plant–water relation growth dynamics from a qualitative point of view.

A contribution of this work is that it provides a mathematical simplified model to
describe the dynamic of the water from the root zone to the plant, their interactions, and
how they affect plant growth. This is the first attempt to approximate such a phenomenon
in a simple way.

The application of the model to actual data resulted in an acceptable performance for
wheat irrigation, considering specific parameters calibration. For future work, it is expected
to adjust the model with the results of other field experiments quantitatively. Their potential
for use and limitations will depend on its configuration and calibration using ground truth
data. Its simplicity, if adequately parameterized, could lead to obtaining representative
simulations for more specific purposes, such as irrigation management. As indicated herein,
the complex interactions among the soil water availability, water availability, and plant
growth open new needs for exploring an adjustment to the proposed model.
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