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Abstract: In this work, we introduce a new type of surface called the Log Aesthetic Patch (LAP). This
surface is an extension of the Coons surface patch, in which the four boundary curves are either planar
or spatial Log Aesthetic Curves (LACs). To identify its versatility, we approximated the hyperbolic
paraboloid to LAP using the information of lines of curvature (LoC). The outer part of the LoCs, which
play a role as the boundary of the hyperbolic paraboloid, is replaced with LACs before constructing
the LAP. Since LoCs are essential in shipbuilding for hot and cold bending processes, we investigated
the LAP in terms of the LoC’s curvature, derivative of curvature, torsion, and Logarithmic Curvature
Graph (LCG). The numerical results indicate that the LoCs for both surfaces possess monotonic
curvatures. An advantage of LAP approximation over its original hyperbolic paraboloid is that the
LoCs of LAP can be approximated to LACs, and hence the first derivative of curvatures for LoCs
are monotonic, whereas they are non-monotonic for the hyperbolic paraboloid. This confirms that
the LAP produced is indeed of high quality. Lastly, we project the LAP onto a plane using geodesic
curvature to create strips that can be pasted together, mimicking hot and cold bending processes in
the shipbuilding industry.

Keywords: log aesthetic curves; log aesthetic space curves; surface design; Coons patch; lines
of curvature

1. Introduction

The introduction of Bezier curves and surfaces representation was a significant break-
through of Computer Aided Geometric Design (CAGD), which was later extended to
B-spline representation [1,2]. Eventually, B-splines and NURBS became the de facto stan-
dard for computer graphics packages, computer-aided design (CAD), and computer-aided
manufacturing (CAM) [3]. The complex form of curvature of these curves, which are not
suitable for direct manufacturing, led to the introduction of a variety of efficient fairing
algorithms to reduce the oscillation in the curvature profile of these curves [4–6]. However,
Cornu spirals, or clothoids, are members of spiral curves that have monotonic curvature
profiles by nature [7–9].

The Log Aesthetic Curve (LAC) is a type of curve that possesses a monotonic curvature
profile, hence suiting the aesthetic design environment. The research on LACs has been
active since Miura [10] introduced a linear Logarithmic Curvature Graph (LCG) as its
fundamental equation. The LAC equation can be used to represent various spirals, e.g.,
clothoid, logarithmic spiral, circle involute, and Nielsen’s spiral. LCG can also be used as a
shape interrogation tool to investigate the characteristics of arbitrary curves [11]. Yoshida
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and Saito [12] developed a method of drawing and controlling LACs alternatively using
a bisection method; hence, it can be shaped using control points, similar to Bezier curves.
Moreover, Yoshida et al. [13] also introduced an algorithm to interactively control the Log
Aesthetic Space Curve (LASC), which has a linear LCG as well as a linear Logarithmic
Torsion Graph (LTG).

There are numerous works on developing surfaces using the LAC. In 2012, Ziatdi-
nov [14] implemented the generalized version of LAC as a profile curve to generate a
surface of revolution called a superspiraloid. Inoue et al. [15] developed an algorithm that
used the LAC as a profile curve to generate a log aesthetic curved surface using the virtual
reality (VR) technique. Furthermore, the LAC has also been used to design bi-cubic B-spline
surfaces [16]. The fundamental equation of the LAC can also be used as a digital filter to
smooth any arbitrary surfaces [17]. The latest work is to investigate the characteristics of
LoCs for Log Aesthetic (LA) surfaces of revolution and LA swept surfaces on GPU [18].

Surface modeling is a basic mathematical method for forming surfaces in CAD appli-
cations. The NURBS surface is the de facto surface for the CAD environment and is built
on the basis of control points, knots, degrees, and weights [19]. Designers can interactively
draw NURBS surfaces by controlling these variables. Meanwhile, the Coons surface patch
is a parametric surface consisting of four boundary curves, which are connected like a
closed fence [20]. This surface has been widely used, as it interpolates four boundary
curves. The advantage of Coons patch is that designers require only four boundary curves
to design a surface rather than controlling each control point or weight to draw the desired
surface; hence, it has widely been used for patching holes. Examples of works include the
implementation of the Coons patch for image interpolation [21] and automotive design [22].

A ship hull must be a smooth streamlined surface that satisfies hydrodynamic prop-
erties such as pressure and frictional and wave resistances [23]. Hence, designing a ship
hull that involves bending thick plates is one of the top priorities in shipbuilding. Fukano
et al. [24] proposed a point-based shape monitoring method for bent plates of a large
storage tank. The plates used to construct the storage tank are similar to those used in the
shipbuilding industry and are very thick and difficult to bend. Note that a typical ship hull
is built of 200–300 thick, doubly curved plates that are more than 1 cm thick [25]. Fukano
et al.’s [24] method is time-consuming, as the process requires laser scanning to extract
the desired points on the plate, identifying the differences, plate bending, and repeating
the process until the desired shape is formed. To fabricate each doubly curved plate, the
engineers are required to bend each planar plate along the lines of curvature (LoC) using
the cold and hot bending techniques. Cold bending is performed by pressing along the
LoC with a smaller curvature magnitude, which causes the plate to bend along the LoC
with a larger curvature magnitude [25]. Then, hot bending is applied by implementing
local heat treatment along the LoC with a larger curvature magnitude on the plate, causing
the plate to bend along the LoC with a smaller curvature magnitude. In other words, the
plates used in shipbuilding can be formed by applying these two processes.

An LoC is a curve on a surface whose tangent is in the principal direction. A principal
direction is a tangent direction that has either a maximum or a minimum surface of the
normal curvature. Takezawa et al. [26] proposed a method of using LoCs to shape the
doubly curved plates used in shipbuilding. In 2014, Joo et al. [25] proposed an algorithm
for computing LoCs on parametric surfaces as well as to derive its curvature and torsion.
They further showed that these LoCs may aid in designing ship hulls. The authors also
provided an algorithm for using geodesic curvature to develop a surface using LoCs by
projecting them onto a plane, as shown in Section 3.1. In 2019, Takezawa et al. [23] proposed
an interactive method to control LoCs on a doubly curved surface. They smoothed the
experiment surfaces by implementing smoothed directions on the LoCs instead of using
true principal directions. Recently, Takezawa et al. [27] proposed a fabrication method for
unfolding generalized principal patches to design carbon fiber reinforced plastic automobile
parts and marine propeller blades.
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In 2021, Gobithaasan et al. [18] applied LACs to draw LA surfaces of revolution and
LA swept surfaces, and the LoCs of these surfaces are indeed the LAC itself. This motivated
us to design free-from surfaces by applying LACs or LASCs as boundary curves for the
Coons patch. In this paper, we use LACs or LASCs to form a Coons-like patch, denoted as
the Log Aesthetic Patch, or LAP in short. Next, we approximated the hyperbolic paraboloid
using the LAP and analyzed the characteristics of LoCs on the resulting LAP. Finally, we
employed an algorithm to project the LAP onto a plane for the fabrication mimicking the
shipbuilding process.

The rest of the paper is arranged as follows. Sections 2–4 describe the literature review
of this work; Section 2 introduces the LAC and LASC; Section 3 reviews the differential
geometry of the surface and the development of the surface onto a plane; and Section 4
describes the fundamental equation of the Coons patch. Section 5 describes the develop-
ment of the LAP and presents a numerical example with the development of a surface by
mapping onto a plane before finally elaborating on the conclusion.

2. LAC and LASC

This section describes the general equations of the LAC and LASC.

log
(

ρ
ds
dρ

)
= α log(ρ) + C1, (1)

log
(

µ
ds
dµ

)
= β log(µ) + C2, (2)

Equation (1) represents the LCG as a linear function, where α is the slope of LCG,
s is the arc length of the curve, ρ is the radius of curvature, and C1 is a constant [12].
Equation (2) represents the LTG function, where β is the slope of LTG, s is the arc length of
a curve, µ is the radius of torsion and C2 is a constant [13]. If we differentiate and simplify
Equations (1) and (2), we obtain:

ds
dρ

=
ρα−1

Λ
, (3)

ds
dµ

=
µβ−1

Ω
, (4)

where Λ = e−C1 and Ω = e−C2 are shape parameters. Integrating Equations (3) and (4)
yields:

ρ =

{
ρ0eΛs i f α = 0

(ρ0
α + Λαs)

1
α otherwise

, (5)

µ =

{
µ0eΩs i f β = 0

(µ0
α + Ωβs)

1
β otherwise

, (6)

where ρ0 is the initial radius of curvature and µ0 is the initial radius of torsion. It is
important to note that Yoshida et al. [13] set µ0 = ν. Hence, the curvature and torsion of a
curve are shown below:

κ =


1

ρ0eΛs , α = 0,

(ρ0
α + Λαs)−

1
α , otherwise

(7)

τ(s) =


1

µ0eΩs i f β = 0(
υβ + Ωβs

)− 1
β otherwise

(8)
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We can substitute Equation (3) to dθ
ds = 1

ρ , where θ is the tangential angle [12], to obtain:

dθ

ds
ds
dρ

=
dθ

dρ
=

1
ρ

ρα−1

ρΛ
=

ρα−2

Λ
(9)

Integrating Equation (9) yields:

ρ =

{
ρ0eΛθ i f α = 1(

ρ0
α−1 + Λ(α− 1)θ

) 1
α−1 otherwise

(10)

Let C(s) = (x(s), y(s), z(s)) be an arc length of the parameterized space curve; t(s)
is the unit tangent vector, n(s) is the unit normal vector, and b(s) is the unit binormal
vector. The Frenet–Serret formulas in terms of arc length parameterized can be represented
as follows:

t′(s) = κ(s)n(s)
n′(s) = −κ(s)t(s) + τ(s)b(s)

b′(s) = −τ(s)n(s)
(11)

Assume that ϕ(u) = ds
du ; the Frenet–Serret formula in terms of the parameter u is

defined as [28]:
.
t(u) = ϕ(u)κ(u)n(u)

.
n(u) = ϕ(u)(−κ(u)t(u) + τ(u)b(u))

.
b(u) = −ϕ(u)τ(u)n(u)

(12)

The LASC is a curve in three-dimensional space that can be drawn by applying
curvature (Equation (7)) and torsion (Equation (8)) to Equation (11). Since the LAC is a curve
in two-dimensional space, we can draw this curve by applying curvature (Equation (7))
and assigning torsion, τ(s) = 0, in Equation (11). The details on how the LAC and LASC
can be drawn and controlled interactively are fully discussed in [12,13].

3. Lines of Curvature

Let a parametric surface R(u, v) = (x(u, v), y(u, v), z(u, v)); the first and second fun-
damental equation of the surface are [25,29]:

I(u, v) = E
.
u2

+ 2F
.
u

.
v + G

.
v2, (13)

II(u, v) = L
.
u2

+ 2M
.
u

.
v + N

.
v2, (14)

where E = Ru.Ru, F = Ru.Rv, G = Rv.Rv, L = N.Ruu, M = N.Ruv, N = N.Rvv,
N = Ru×Rv

|Ru×Rv | ,
.
u = du

dt , and
.
v = dv

dt . Equations (15)–(17) represent the Gaussian curva-
ture, mean curvature, and principle curvature, respectively.

K =
LN −M2

EG− F2 , (15)

H =
EN + GL− 2FM

2(EG− F2)
, (16)

κp = H ±
√

H2 − K. (17)

By solving the following initial value problems numerically, the LoC on a surface can
be computed as [25]:

u′(s) =
dt
ds
× .

u(t) =

{
η
(

M− κpF
) ∣∣L− κpE

∣∣ ≥ ∣∣N − κpG
∣∣

µ
(

N − κpG
) ∣∣L− κpE

∣∣ < ∣∣N − κpG
∣∣ , (18)
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v′(s) =
dt
ds
× .

v(t) =

{
−η
(

L− κpE
) ∣∣L− κpE

∣∣ ≥ ∣∣N − κpG
∣∣

−µ
(

M− κpF
) ∣∣L− κpE

∣∣ < ∣∣N − κpG
∣∣ , (19)

where the non-zero factor (η and µ) can be obtained by normalizing the first fundamental
equation, as shown below:

dt
ds

=
±1√

E
.
u(t)2 + 2F

.
u(t)

.
v(t) + G

.
v(t)2

. (20)

The sign of dt
ds can be determined from Equation (20) [29]. LoCs can be generated by

solving initial value problems (Equations (18) and (19)) using various types of numerical
approaches, such as the Runge–Kutta method.

Let c(s) = R(u(s), v(s)) represent a curve on a surface; the derivatives of the curve on
the surface can be obtained using the chain rule as follows [25]:

c′(s) = Ruu′ + Rvv′. (21)

c′′ (s) = Ruuu′2 + 2Ruvu′v′ + Rvvv′2 + Ruu′′ + Rvv′′ . (22)

c′′′ (s) = Ruuuu′3 + 3Ruuvu′2v′ + 3Ruvvu′v′2 + Rvvvv′3 + Rvv′′′ + Ruu′′′+
3(Ruuu′u′′ + Ruv(u′v′′ + u′′ v′) + Rvvv′v′′ ).

(23)

In 2014, Joo et al. [25] proposed a novel method to compute the curvature and torsion
of LoCs. Equation (24) represents the proposed method for computing u′′ , v′′ , and the
geodesic curvature, κg.

 v′′
v′′
κg

 =

 E F −(U·Ru)
F G −(U·Rv)
− .

v(t)
.
u(t) 0

−1 −(γ1·Ru)
−(γ1·Rv)

δ1

, (24)

where
U = N× t,

γ1 = Ruuu′2 + 2Ruvu′v′ + Rvvv′2,

.
v(t) =

{
−
(

L− κpE
)

i f
∣∣L− κpE

∣∣ ≥ ∣∣N − κpG
∣∣

−
(

M− κpF
)

i f
∣∣L− κpE

∣∣ < ∣∣N − κpG
∣∣ ,

.
u(t) =

{
M− κpF i f

∣∣L− κpE
∣∣ ≥ ∣∣N − κpG

∣∣
N − κpG i f

∣∣L− κpE
∣∣ < ∣∣N − κpG

∣∣ ,
δ1 =

{
−
(

L′ − κ′pE− κpE′
)
u′ −

(
M′ − κ′pF− κpF′

)
v′ i f

∣∣L− κpE
∣∣ ≥ ∣∣N − κpG

∣∣
−
(

M′ − κ′pF− κpF′
)
u′ −

(
N′ − κ′pG− κpG′

)
v′ i f

∣∣L− κpE
∣∣ < ∣∣N − κpG

∣∣
The curvature of the LoC can be calculated using principal curvature and geodesic

curvature, as shown below:
κ =

√
κp2 + κg2. (25)

Note that the classical method for computing geodesic curvature is given by [25]:

κg = (Γ2
11

(
du
ds

)3
+
(

2Γ2
12 − Γ1

11

)(
du
ds

)2 dv
ds +

(
Γ2

22 − 2Γ1
12

)
du
ds

(
dv
ds

)2
− Γ1

22

(
dv
ds

)3
+ du

ds
d2v
ds2−

d2u
ds2

dv
ds )
√

EG− F2.
(26)

where Γ1
11 =

G dE
du−2F dF

du +F dE
dv

2(EG−F2)
, Γ1

11 =
G dE

du−2F dF
du +F dE

dv
2(EG−F2)

, Γ1
12 =

G dE
dv−F dG

du
2(EG−F2)

, Γ1
22 =

2G dF
dv−G dG

du −F dG
dv

2(EG−F2)
,

Γ2
11 =

2E dF
du−E dE

dv−F dE
du

2(EG−F2)
, Γ2

12 =
E dG

du −F dE
dv

2(EG−F2)
, and Γ2

22 =
E dG

dv −2F dF
dv +F dG

du
2(EG−F2)

.
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The torsion and first derivative of LoC curvature on a surface can be computed using
the equation below:


u′′′
v′′′
κ′

τ

 =


E F −(n·Ru) −κ(b·Ru)
F G −(n·Rv) −κ(b·Rv)

(n·Ru) (n·Rv) −1 0
− .

v(t)
.
u(t) 0 0


−1

−(γ2·Ru)− κ2(t·Ru)
−(γ2·Rv)− κ2(t·Rv)

−(n·γ2)
δ2

 (27)

where
t = c′(s),

n =
c′′ (s)

κ
,

b = t× n =
c′(s)× c′′ (s)

κ
,

γ2 = Ruuuu′3 + 3Ruuvu′2v′ + 3Ruvvu′v′2 + Rvvvv′3 + 3
(

Ruuu′u′′ + Ruv
(
u′v′′ + u′′ v′

)
+ Rvvv′v′′

)
,

δ2 =



−

 2
(

L′ − κ′pE− κpE′
)
u′′ + 2w

(
M′ − κ′pF− κpF′

)
v′′

+
(

L′′ − κ′′ pE− 2κ′pE′ − κpE′′
)
u′+(

M′′ − κ′′ pF− 2κ′pF′ − κpF′′
)
v′

 i f
∣∣L− κpE

∣∣ ≥ ∣∣N − κpG
∣∣

−

 2
(

M′ − κ′pF− κpF′
)
u′′ + 2w

(
N′ − κ′pG− κpG′

)
v′′

+
(

M′′ − κ′′ pF− 2κ′pF′ − κpF′′
)
u′+(

N′′ − κ′′ pG− 2κ′pG′ − κpG′′
)
v′

 i f
∣∣L− κpE

∣∣ < ∣∣N − κpG
∣∣

Further details of LoCs can be obtained from [25] and references therein.

3.1. The Projection of a Surface onto a Plane

Geodesic curvature is an important tool for developing a surface on a plane. Joo
et al. [25] proposed six steps to project a surface onto a plane as follows:

1. Generate two LoCs with larger curvature magnitude named C13D and C23D along the
surface (refer to Figure 1a).

2. Generate n number of LoCs with smaller curvature magnitude (named Di3D,
i = 1, . . . , n), starting from C13D and stopping at C23D. The stopping points on
C23D are labelled as Pi3D, i = 1, . . . , n.

3. Project C13D and Di3D onto a plane isometrically, and represent them as C12D and
Di2D. Note that the starting angles of Di2D from C12D are 90◦ (refer to Figure 1b).

4. Transform C23D onto a plane isometrically from the end point of Dj2D with an angle
of 90◦, and represent it as C2j2D. The corresponding points of Pi3D on C2j2D are
indicated as Pi2D.

5. Compute the sum of gaps δij between the endpoints of Dj2D and Pi2D where δj = ∑ δij.
6. Select the connection j with minimum δj.

A curve on a surface can be projected onto a plane by applying geodesic curvature
along the curve to the Frenet–Serret formula t′ = κgn. The plane curve is calculated
using the classic Runge–Kutta method to solve the Frenet–Serret formula by assigning the
torsion as 0. For an example, we used Joo et al.’s [25] method to reconstruct the hyperbolic
paraboloid onto a plane, as shown in Figure 1. Figure 1c is the planar hyperbolic paraboloid
by [25], while Figure 1d is the planar hyperbolic paraboloid computed on GPU using
Mathematica.
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Mathematica.

3.2. Efficient LoC Computation

This paper used CUDA programming to perform LoC calculations on GPU. Mathe-
matica 11.0 was used to compute the performance metrics of CPU and GPU. Hence, we
computed the significant error of LoCs on the hyperbolic paraboloid in CPU and GPU
to validate our method. The significant error of the LoC computation is 3.869 × 10−7

(all the function types are “Float”). If we change all the function types to “Double”, the
significant error is reduced to 6.02988× 10−16. Readers are referred to [18] for the details of
LA surface’s LoC computation using GPU, where the computation time is greatly reduced.

4. Coons Patch

Assume that the four parametric curves defined in c0(u), c1(u), d0(v), and d1(v) meet
at four end points, where c0(0) = d0(0), c1(0) = d0(1), c0(1) = d1(0) and c1(1) = d1(1).
Three surfaces are defined by linear interpolation [20]:

Lc(u, v) = (1− v)c0(u) + vc1(u), (28)

Ld(u, v) = (1− u)d0(v) + ud1(v), (29)

Lb(u, v) = (1− u)(1− v)c0(0) + u(1− v)c0(1) + (1− u)vc1(0) + uvc1(1). (30)

A bilinear Coons patch CP(u, v) is defined over the parameter domain containing the
unit square (u, v) ∈ [0,1] × [0,1]:

CP(u, v) = Lc(u, v) + Ld(u, v)− Lb(u, v). (31)
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In this paper, we defined the Log Aesthetic Patch (LAP) as a surface using
Equations (28)–(31) with four parametric curves either in the form of LAC or LASC. To
show its versatility, we approximated the hyperbolic paraboloid using LAP by replacing
the LoCs of the hyperbolic paraboloid with LACs/LASCs. This approach is in line with Joo
et al.’s [25] idea, where they considered LoCs the boundaries of a developable surface. The
first step is to replace the four connected LoCs of the hyperbolic paraboloid with LACs or
LASCs, depending on the type of boundary curves we are dealing with. On the basis of
these four boundary curves, an LAP surface is constructed using the Coons patch equations,
as stated in (28)–(31). In the first step, we obtain four LoCs from a hyperbolic paraboloid,
which are connected like a closed fence, as shown in Figure 2.
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Figure 2. LoCs on hyperbolic paraboloid.

Next, we calculated the four endpoints (the intersection of LoCs) and their maximum
and minimum principal direction with their corresponding vectors. Then, LACs or LASCs
were generated using two endpoints and their respective tangent vector (maximum or
minimum principal direction). Using the given LAC or LASC shape parameters (α, β, ρ0,
and Ω), we could compute the LAC/LASC that meets the constraints using the bisection
method [12] and the modified Nelder and Mead downhill simplex method [13]. We then
scaled the LACs and converted them back to the position of the point shown in Figure 3.
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Note that the red curves are LAC and LASC segments, while the blue curves are
original LoCs on the hyperbolic paraboloid. The transformed unit tangent, normal, and
binormal vectors at the initial point are named ts(s0), ns(s0), and bs(s0), respectively. The
subscript s indicates that the vector is in terms of arc length, and the scaling ratio of
LAC/LASC is denoted as m.

The Coons patch requires two general parameters to shape the surface, which are
rendered in the parameter domain (u, v) ∈ [0,1] × [0,1]. Hence, we must reparametrize the
curvature of LAC, the torsion of LASC, and the Frenet–Serret formula in terms of the arc
length parameter to the general parameters u or v. Let the arc length s = uST ; then we have
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ϕ(u) = ds
du = ST , where ST is total arc length. Next, by applying s = uST into Equations (7)

and (8), we obtain the curvature of the LAC and the torsion of the LASC as well as their
derivatives in terms of parameter u:

κ(u) =


1

ρ0eΛuST
α = 0

(ρ0
α + ΛαuST)

− 1
α otherwise

, (32)

.
κ(u) =


−ΛST

ρ0eΛuST
α = 0

−ΛST(ρ0
α + ΛαuST)

−(1+ 1
α ) otherwise

, (33)

..
κ(u) =


(ΛST)

2

ρ0eΛuST
α = 0

(1 + α)(ΛST)
2(ρ0

α + ΛαuST)
−(2+ 1

α ) otherwise
, (34)

τ(u) =


1

µ0eΩuST
β = 0(

υβ + ΩβuST
)− 1

β otherwise
, (35)

.
τ(u) =


−ΩST

µ0eΩuST
β = 0

−ΩST
(
υβ + ΩβuST

)−(1+ 1
β ) otherwise

. (36)

The Frenet–Serret formula of the LAC/LASC in terms of parameter u is as follows:

tu(0) = ST(mts(s0)), (37)

nu(0) = ST(mns(s0)), (38)

bu(0) = ST(mbs(s0)), (39)
.
tu(u) = ST(κ(u)nu(u)), (40)

.
nu(u) = ST(−κ(u)tu(u) + τ(u)bu(u)), (41)

.
bu(u) = ST(−τ(u)nu(u)). (42)

Thus, by solving the initial value problems using the classical Runge–Kutta method,
the LAC and LASC segments shown in Figure 3 can be computed. Finally, an LAP can be
drawn based on these four curves.

4.1. Numerical Example

The details of Figure 2 are given as PA = {0, 0, 0}, PB = {−0.70773, 0, 0.50088},
PC = {0,−0.70773,−0.50088}, PD = {−1.00131,−1.00131, 0}, tA1 = {−1, 0, 0},
tA2 = {0,−1, 0}, tB1 = {−0.57701, 0, 0.81673}, tB2 = {0,−1, 0}, tC1 = {−1, 0, 0},
tC2 = {0,−0.57701,−0.81673}, tD1 = {−0.66647,−0.33353, 0.66676}, and tD2 = {−0.33353,
−0.66647,−0.66676} respectively. Hence, the above information was used to find the appro-
priate LAC and LASC segments to replace the original LoCs of the hyperbolic paraboloid.
Note that the curves from PA to PB and PA to PC are planar curves. Hence, we replaced
these two curves with LACs. On the other hand, the curves from PB to PD and PC to PD
are space curves. In fact, these two curves can be originated from two disjoint surfaces.
For numerical illustration, we replaced these space curves with LASCs. According to [18],
the LoCs of LA swept surfaces have the same monotonic curvature profile when the path
curve and profile curve are both LACs with αLAC = 2. Therefore, for the LAC, we set
αLAC = 2 and the initial radius of curvature ρ0LAC = 1 for the entire curve finding process.
For the LASC, we set αLAC = 2, βLASC = 2, ΩLASC = 1, and the initial radius of curvature
ρ0LASC = 1 for the entire curve-finding process as well. The curvature of the LAC and the
torsion of the LASC were inserted into the Frenet–Serret formula and numerically solved
using the classical Runge–Kutta method. The initial value of the unit tangent, normal, and
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binormal vectors were set as {1, 0, 0}, {0, 0, 1}, and {0, 1, 0}, respectively, and the initial
coordinate was at the origin {0, 0, 0}.

For the LAC, we set torsion τ = 0 in the Frenet–Serret formula, and the curvature
of the LAC can be obtained from Equation (7). Then, we used the bisection method to
compute the parameter ΛLAC and the arc length sLAC. The tolerance of this method was
set to 10−15. For the LASC, the curvature and torsion of the LASC can be obtained from
Equations (7) and (8), respectively. The bisection method was used to compute the arc
length sLASC, and the modified Nelder and Mead downhill simplex method was used
to compute the parameters ΛLASC and υLASC. The tolerance of these two methods was
set to 10−15 and 10−14, respectively. Finally, we fit the LAC segments with the shape
parameter ΛLAC = 12.71843 and the arc length sLAC = 6.76436, satisfying the constraints of
PA to PB and PA to PC. Meanwhile, the LASC segment with parameters ΛLASC = 6.28525,
υLASC = 7.30313, and arc length sLASC = 3.10842 satisfied the constraints of PB to PD and
PC to PD. In order to simplify labels, we named the LAC or LASC from PA to PB as CAB,
PA to PC as CAC, PB to PD as CBD, and PC to PD as CCD. The scaling ratios mAB, mAC,
mBD, and mCD for the curves CAB, CAC, CBD, and CCD are mAB = mAC = 0.13192 and
mBD = mCD = 0.38164, respectively. Because the curves are scaled, their vectors must
be scaled as well. During the reverse transformation, we also transformed its tangent,
normal, and binormal vectors at the origin to the original position. The scaled LAC and
LASC segments that met the constraints are shown in Figure 3. Table 1 shows the Frenet–
Serret equations for each curve as well as their transformed unit tangent, normal, and
binormal vectors.

Table 1. The properties for each curve segment.

Curve Frenet–Serret Equations

CAB

CAB(0) = PA
tAB(0) = SABmABts(s0) = SABmAB{−1, 0, 0}
nAB(0) = SABmABns(s0) = SABmAB{0, 0, 1}
bAB(0) = SABmABbs(s0) = SABmAB{0, 1, 0}
.
tAB(u) = SAB(κAB(u)nAB(u)).
nAB(u) = SAB(−κAB(u)tAB(u)).
bAB(u) = 0

CAC

CAC(0) = PA
tAC(0) = SACmACts(s0) = SACmAC{0,−1, 0}
nAC(0) = SACmACns(s0) = SACmAC{0, 0,−1}
bAC(0) = SACmACbs(s0) = SACmAC{1, 0, 0}
.
tAC(v) = SAC(κAC(v)nAC(v)).
nAC(v) = SAC(−κAC(v)tAC(v)).
bAC(v) = 0

CBD

CBD(0) = PB
tBD(0) = SBDmBDts(s0) = SBDmBD{0,−1, 0}
nBD(0) = SBDmBDns(s0) = SBDmBD{−0.59306, 0,−0.80516}
bBD(0) = SBDmBDbs(s0) = SBDmBD{0.80516, 0,−0.59306}
.
tBD(v) = SBD(κBD(v)nBD(v)).
nBD(v) = SBD(−κBD(v)tBD(v) + τBD(v)bBD(v)).
bBD(v) = SBD(−τBD(v)nBD(v))
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Table 1. Cont.

Curve Frenet–Serret Equations

CCD

CCD(0) = PC
tCD(0) = SCDmCDts(s0) = SCDmCD{−1, 0, 0}
nCD(0) = SCDmCDns(s0) = SCDmCD{0,−0.59306, 0.80516}
bCD(0) = SCDmCDbs(s0) = SCDmCD{0, 0.80516, 0.59306}
.
tCD(u) = SCD(κCD(u)nCD(u)).
nCD(u) = SCD(−κCD(u)tCD(u) + τCD(u)bCD(u)).
bCD(u) = SCD(−τCD(u)nCD(u))

Note that SAB = 6.76436, SAC = 6.76436, SBD = 3.10842, and SCD = 3.10842 are the total arc lengths of
each curve. In addition, the curvature κ and torsion τ in terms of parameters u or v can be obtained from
Equations (32) and (35), respectively.

Next, the general equation for the LAP is shown in Section 4. We implement four LA
equations (LACs and LASCs) into the Coons patch equations as follows:

Lc_LA(u, v) = (1− v)CAB(u) + vCCD(u), (43)

Ld_LA(u, v) = (1− u)CAC(v) + uCBD(v), (44)

Lb_LA(u, v) = (1− u)(1− v)CAB(0) + u(1− v)CAB(1) + (1− u)vCCD(0)
+uvCCD(1),

(45)

LAP(u, v) = Lc_LA(u, v) + Ld_LA(u, v)− Lb_LA(u, v). (46)

Hence, an LAP can be drawn using Equation (46). Figure 4a,b represents hyperbolic
paraboloid and LAP, respectively. Figure 4c shows the combination of both surfaces. The
zebra map on LAP shown in Figure 4d shows that it is a smooth surface.
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4.2. LoCs on Surfaces

In this subsection, the properties of LoCs on the hyperbolic paraboloid and its approx-
imated LAP are compared. Figure 5 displays the LoCs on the hyperbolic paraboloid and
the approximated LAP.
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Figure 5. LoCs on surfaces: (a) hyperbolic paraboloid; (b) approximated LAP.

The green curves labeled as Y1, Y2, Y3, and Y4 and the black curves labeled as X1,
X2, X3, and X4 are LoCs on the hyperbolic paraboloid, whereas the blue curves are the
boundaries and the LoCs of the original surface. The orange curves labeled as L1, L2, L3,
and L4 and purple curves labeled as J1, J2, J3, and J4 are the LoCs on the approximated LAP,
while the red curves are the boundaries of the surface.

Even though they are visually similar, we found that the curvature profile of LoCs
on LAP is different than the hyperbolic paraboloid, as shown in Figure 6. Although the
curvatures of LoCs on both surfaces were monotonically decreasing, the derivative of
the curvature profile of the approximated LAP was improved from non-monotonic to
monotonic. However, there was not much improvement on the torsion of LoCs, but it was
apparent that all the computed LoCs on approximated LAPs were indeed LACs. We can
clearly see that their LCGs approximate a line with gradient 2, illustrated with a red line in
Figure 6. This outcome is in line with the original setting, in which we used αLAC = 2 to
generate the boundary curves.

4.3. Surface Projection onto a Plane

Joo et al. [25] mapped a surface onto a plane by implementing geodesic curvature
along the LoC as the curvature of the curve on the plane. Since the boundary curve of the
approximated LAP is not the LoC of the surface, the geodesic curvature of the boundary
curve must be computed. The geodesic curvature of the boundary curve can be calculated
using the fact that du

ds = d2u
ds2 = 0 or dv

ds = d2v
ds2 = 0. By applying dv

ds = d2v
ds2 = 0 (for curves

CAB and CCD) or du
ds = d2u

ds2 = 0 (for curves CAC and CBD) into Equation (26), the geodesic
curvature equation of the boundary curves are shown below:

κg =


(

Γ2
11

(
du
ds

)3
)√

EG− F2 i f dv
ds = d2v

ds2 = 0(
−Γ1

22

(
dv
ds

)3
)√

EG− F2 i f du
ds = d2u

ds2 = 0
. (47)

At du
ds = d2u

ds2 = 0, the geodesic curvature of curve CAB can be computed by applying
v = 0, while v = 1 is used for curve CCD. The geodesic curvature of curve CAC can be
calculated by setting u = 0, while u = 1 is used for curve CBD at dv

ds = d2v
ds2 = 0. Contrarily,

the geodesic curvature of the LoC can be computed using Equation (24). By solving the
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Frenet–Serret formula, t′ = κn (where n = t× {0, 0, 1}, κ = κg and τ = 0), the LoC can be
mapped onto a plane [25].
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The following Algorithm 1 is the algorithm for mapping an LAP onto a plane.
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Algorithm 1: Mapping LAP onto a plane for fabrication

INPUT: 1, G1 data: Endpoints of boundary curves (PA, PB, PC, PD) and its tangent direction (tA1, tA2, tB1, tB2, tC1, tC2, tD2, and tD2),
2, LAC and LASC shape parameters: α, β, ρ0, Ω;
3. tol = 10−15 (by default)
Begin

Step 1 Compute the boundary curves from the given G1 data: If the LoC between two endpoints is a planar curve, the shape
parameter Λ and the arc length s of the LAC must be computed. The bisection method is used to compute shape parameter
Λ and arc length s of LAC as presented by Yoshida and Saito [12]. Then, scale and transform the generated LAC to the
original position. If the LoC between two endpoints is a space curve, shape parameter Λ, ν, and arc length s of LASC must
be computed. The bisection method and the modified Nelder and Meaddownhill simplex method are used to compute the
shape parameter Λ, ν, and arc length s of hteLASC, as demonstrated by Yoshida et al. [13]. Finally, scale and transform the
generated LASC to the original position.

Step 2 On the basis of the four generated LAC/LASCs boundaries, an LAP can be generated using Equation (31).
Step 3 Compute the two LoCs, denoted as C13D and C23D, and the boundary curves, denoted as B13D, as shown in Figure 1a.

Then, compute the intersection point’s position of LoCs and the boundary curve.
Step 4 Generate n number of LoCs orthogonal to C13D and C23D (denoted as Di3D, i = 1, . . . , n) that start from C13D and stop at

C23D, as shown in Figure 1b. The stopping points on C23D are denoted as Pi3D, i = 1, . . . , n.
Step 5 Compute the geodesic curvature along the LoCs and boundary curves.
Step 6 Draw the boundary curve onto a plane isometrically using its geodesic curvature, which is denoted as B12D (refer to

Figure 7a).
Step 7 On the basis of the position of the intersection point in step 4, C13D and C23D are developed onto a plane isometrically

(denoted as C12D and C22D as shown in Figure 7a) from a specific point on the boundary curve B12D. Note that the starting
angles of C12D and C22D from B12D are 90◦.

Step 8 On the basis of the geodesic curvature of Di3D and their stopping points Pi3D, 2D LoCs Di2D and their stopping points Pi2D
are computed starting from specific points on C12D. Then, join the stopping points Pi2D to form a curve P2D.

Step 9 Develop the second 3D boundary curve B23D (Figure 7c) onto a plane isometrically from a specific point on curve C12D and
denote it as B22D (Figure 7a). Note that the starting angle of B22D from C12D is 90◦. The length of B22D depends on the
length of B23D, starting at a point on C13D and stopping at a point on C23D.

Step 10 Repeat steps 4 to 9 until all the desired curves are projected onto a plane.
Step 11 Cut along the line and stick the boundaries together to create the desired LAP surface.

A simple overview of the planar curves generated by the algorithm for the approxi-
mated LAP of the hyperbolic paraboloid is shown in Figure 7. Figure 7c also shows the
visualization of LoCs (purple) and boundary curves (red). The LAP surface is fabricated
using paper by cutting and pasting the boundaries of the plane surface, as shown in Fig-
ure 7d. Finally, Figure 7e shows a close-up of the LoC, J3, which is twisted and uniformly
curves along the line. The complete implementation of the CUDA coding in Mathematica
for this paper is readily available on GitHub [30].
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Figure 7. An example of the fabrication process of approximated hyperbolic paraboloid using LAP:
(a) development of LoCs onto a plane; (b) development of LAP with gaps; (c) approximated LAP
with LoCs (purple) and boundary curves (red); (d) fabricated surface using a paper; (e) close-up view
of the LoC J3.

5. Conclusions and Future Work

In this work, we proposed the development of the Log Aesthetic Patch (LAP) using
the LAC and LASC as its boundary curves. To show its applicability, we used a hyperbolic
paraboloid as a numerical example and approximated it with LAP by applying LACs
and LASCs as the boundaries of the surface replacing its LoC boundaries. In comparison,
the curvature profile of all the LoCs and its derivatives on the approximated LAP are
always monotonic, indicating smoothness of a higher degree. The final section showed an
algorithm for LAP projection onto a plane.

Our future work includes implementing this technique to steel plate fabrication in
shipbuilding and investigating the generation of other types of LA surfaces.

Author Contributions: Conceptualization, R.U.G. and. Y.M.T.; methodology, Y.M.T. and R.U.G.; soft-
ware, Y.M.T.; validation, R.U.G., D.J.A.,and K.T.M.; writing—Y.M.T., R.U.G. and K.T.M.; supervision,
R.U.G. and W.E.O. All authors have read and agreed to the published version of the manuscript.
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