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Abstract: This paper presents a two-dimensional mathematical model of compound eye vision.
Such a model is useful for solving navigation issues for autonomous mobile robots on the ground
plane. The model is inspired by the insect compound eye that consists of ommatidia, which are
tiny independent photoreception units, each of which combines a cornea, lens, and rhabdom. The
model describes the planar binocular compound eye vision, focusing on measuring distance and
azimuth to a circular feature with an arbitrary size. The model provides a necessary and sufficient
condition for the visibility of a circular feature by each ommatidium. On this basis, an algorithm is
built for generating a training data set to create two deep neural networks (DNN): the first detects the
distance, and the second detects the azimuth to a circular feature. The hyperparameter tuning and
the configurations of both networks are described. Experimental results showed that the proposed
method could effectively and accurately detect the distance and azimuth to objects.

Keywords: robot vision; compound eye; two-dimensional model; distance measurement; azimuth
measurement; deep learning; training data set generation; deep neural network

1. Introduction

Robotics is a rapidly developing industrial area. The modern classification of robots
is based on the environment in which the robot operates and its functionality. One of the
most important functions is the ability of the robot to move in the operating environment.
Robots capable of movement are classified as mobile. Robots that do not have functionality
for movement are classified as fixed. An example of a fixed robot is a robot manipulator,
widely used in assembly production. Such a robot operates in an environment adapted
for its functioning. In contrast, mobile robots have to operate in boundless spaces in a
changing environment under conditions that are not known in advance [1]. Mobile robots
are divided into two subclasses: autonomous and non-autonomous. The non-autonomous
mobile robot rely on operator control. The robot transmits the signals coming from the
sensors to the operator via wireless channels. The information obtained allows the operator
to detect hazards, obstacles, and distances to objects. The operator decides on the robot’s
further actions and sends him the appropriate commands. The autonomous robot has no
connection with the operator and must make decisions about further actions on its own.

A crucial element of mobile robots is the use of sensors. One of the most important
sensors for autonomous mobile robots is the distance sensor, which detects the distance
from the robot to the object. Using two distance sensors or rotating one sensor, the robot
can detect the azimuth of an object relative to the direction of its movement. The distance
sensor is classified as active or passive [2]. The active distance sensor emits a signal of a
certain nature and detects its reflection from the object. The time difference between the
sent and received signals allows the robot to measure the distance to the object. Ultrasonic
and laser distance sensors work in this way [3]. The infrared distance sensor works on a
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different principle: the light intensity decreases in proportion to the square of the distance
to the object. This ratio is used to measure the approximate distance between the robot
and the object. The laser triangulation [4] is the third way to calculate the distance to
an object. Active distance sensors have two common disadvantages: first, they consume
additional energy to generate rays, and second, a robot with active sensors can be detected
by an external observer, which is not always permissible. The passive sensor does not
emit any signals. It uses only the light reflected by the object. A well-known example of
passive sensors is a digital camera [4]. The distance between the object and an observer
can be calculated by using visual information gained from a pair of images taken by two
cameras, which is known as stereo image [5]. A stereo camera requires sophisticated
controls, including panning, tilting, zooming, focusing on, and tracking a moving object [6].
For this reason, the use of stereo cameras in fully autonomous robots is difficult.

Video sensors inspired by compound eyes of insects are promising alternatives to digi-
tal cameras [7]. Such video sensors have no moving parts and do not require any control.
The insect vision has the following three basic configurations: apposition, superposition,
and neural superposition compound eyes [8]. Each configuration has its advantages and
disadvantages. Apposition compound eyes consist of hundreds up to tens of thousands of
microlens receptor units, called ommatidia, arranged on a curved surface. Each ommatid-
ium consists of a microlens (facet lens) and a small group of rhabdomere (photoreceptor)
bundles, called the rhabdom. The pigments form opaque walls between adjacent omma-
tidia to avoid the light focused by one microlens on the receptor of the adjacent channel [7].
There are no moving or dynamically transforming parts in the apposition compound eye,
and it does not need to be controlled by the nervous system. The spatial acuity of the
apposition compound eye is determined by the interommatidial angle ∆φ = D/R, where
D is the diameter of the facet lens and R is the local radius of curvature of the eye [9]. The
superposition eye gathers light beams from adjacent ommatidia. This effectively enhances
the photosensitivity, but reduces the effective acuity due to the blurring effect. In the neural
superposition eye, one rhabdomere in several adjacent ommatidia shares an overlapped
field of view with the other. A large amount of overlap can lead to an increase in the
signal-to-noise ratio. Therefore, overlapping fields provide a better resolution of motion
than that implied by the distance between the facets of the compound eye, a phenomenon
known as hyperacuity [10].

The apposition vision configuration is the most promising for robotics because of its
simplicity. In recent years, great progress has been achieved in the design of video sensors
inspired by the artificial composite eyes of this structure [11]. The first artificial compound
eye, constructed in 1991, had a weight of 1 kg, a diameter of 23 cm, and consisted of 118
artificial ommatidia with a facet diameter of 6 mm [12,13]. The artificial compound eye,
created in 2013, has a weight of 1.75 g, a diameter of 12.8 mm, and consists of 630 artificial
ommatidia with a facet diameter of 172 µm [14]. Modern technologies allow creating the
curved microlens arrays with a diameter of 500 µm, consisting of microlens with a diameter
of 20 µm [15].

In this paper, we present a mathematical model of the planar binocular compound eye
vision, focusing on measuring distance and azimuth to a circular feature with an arbitrary
size. The model provides a necessary and sufficient condition for the visibility of a circular
feature by each ommatidium. On this basis, an algorithm is built for generating a training
data set. We used the generated data set to create two ANNs: the first detects the distance,
and the second detects the azimuth to a circular feature. The rest of the paper is organized
as follows. Section 2 provides a review of known methods for measuring the distance and
azimuth to an object using passive optical sensors. In Section 3, we present a mathematical
model of the planar compound eye vision. Section 4 is devoted to the issues of generating
a training set based on the presented model of planar compound eye vision. Section 5
describes two deep neural networks that calculate the distance and azimuth to a circular
feature based on data yielded by a planar binocular compound eye system. In Section 6,
we describe the computational experiments with the developed neural networks. Section 7
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discusses the issues related to the main contribution of this article, the advantages and
disadvantages of the proposed approach, possible applications, and some other aspects of
the presented model. Section 8 summarizes the obtained results and outlines the directions
of future research.

2. Related Work

This section presents an overview of works devoted to mathematical models and
methods for measuring distance and azimuth to an object based on passive optical sensors.
One of the simplest methods is bearing-based distance measurement [16] (see Figure 1).

 

 

Figure 1. Simple bearing-based distance measurement model: dobject = (hcamera − hobject) tan ϕ.

This method calculates distance dobject to an object from known height hcamera of the
observing camera, angle ϕ of the camera tilt, and height hobject of the object:

(hcamera − hobject) tan ϕ. (1)

This simple model is only valid when hcamera > hobject and ϕ < π
2 . In addition, we

need to know height hobject of the object, which is not always feasible in practice. The
measurement error as a function of ∆ϕ can be estimated as follows:

derror(∆ϕ) =
∣∣∣(tan(ϕ + ∆ϕ)− tan(ϕ)) · (hcamera − hobject)

∣∣∣. (2)

It is obvious from this equation that the error is rising exponentially for positive ∆ϕ
with fixed hcamera and hobject. Thus, this method is not applicable when the height of the
camera is comparable to the height of the object.

In [17–19], a monocular vision model is proposed for determining the 3D position of
circular and spherical features. This model uses a 2D image representing a perspective
projection of a feature and the effective focal length of the camera to find the feature’s
location, with respect to the camera frame. The described method can be generalized
for 3D quadratic features, such as ellipsoid, paraboloid, hyperboloid, and cylindroid,
but not for features of arbitrary shape. In addition, this method has a relatively high
computational complexity and cannot provide sufficient accuracy in measuring the distance
to the visible object.

The next method for determining the distance to a visible object is based on using
two video cameras having the same specifications, which are conjugated in a certain way
to generate a stereo image in the form of two 2D images [20–24]. This method is based
on epipolar geometry [25,26]. The sense of the method is as follows. Let Cl be the center
of the left video camera, Cr be the center of the right video camera, and P be the point to
detect distance. The epipolar plane is the plane determined by three points (Cl , Cr, P). In
this model, the image sensor matrices are located in the same plane perpendicular to the
epipolar plane. Let Pl and Pr be the images of point P in the left and right image sensor
matrices, accordingly. Denote by ul , ur the distances from the points Pl , Pr to the centers of
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the corresponding image sensor matrices. Then, distance d between point P and the center
of the stereo camera system can be calculated as follows:

d =
b f

ul + ur
, (3)

where b is the distance between video cameras, and f is the focal length. To find the point
of interest in the left image, we must perform the object segmentation procedure [26].
This gives us point Pl . To find the corresponding point Pr on the right image, we must
perform the stereo matching procedure [27] for both images. First of all, we must perform
a careful camera calibration process [28]. All of this makes it difficult to use this method for
autonomous mobile robots. In addition, this technique cannot provide high measurement
accuracy.

Another passive method to measure the distance to an object is to use a plenoptic
camera [29]. A plenoptic or light-field camera acts like a micro camera array that records not
only the light intensity but a combination of light intensity and the direction of incident light
rays. The distance estimation is based on disparities observed in neighboring microlens
images, similar to stereo camera approaches. The plenoptic camera can give 3D information
for every point of the scene with one camera, one main lens, and a microlens array placed
directly in front of the image sensor. The price that has to be paid for these additional
features is a significant reduction in the effective image resolution [30]. A geometric optical
model to measure the distance to an object using a light field image is proposed in [31]. The
distance dout between main lens and an object can be calculated by the following equation:

dout =
D

2 tan ϕ
+
√

R2 + D2/4− R + T/2, (4)

where R represents the radius of curvature of main lens; T represents the central thickness
of main lens and D is the pupil diameter of main lens. The angle ϕ is calculated by

ϕ = arcsin(n1 sin ψ)− arcsin
(

D
2R

)
, (5)

where n1 is the refractive index of the main lens; ψ is the included angle between the normal
and the refractive light rays in the main lens. The refractive angle ψ can be calculated by the
following known camera parameters: the focal length fx of microlens array, the distance
din between the microlens array and main lens, and the length H of corresponding light
field [31]. The described method also requires a complex camera calibration process [30],
does not provide a high measurement accuracy at long distances [32], and it is poorly suited
for autonomous mobile robots.

By reviewing the related papers, one notices a lack of work devoted to mathematical
models of distance measurement using artificial binocular compound eye vision systems.
At the same time, the progress made in manufacturing artificial compound eyes and their
unique features make this issue urgent.

3. Two-Dimensional Model of Compound Eye Vision

The 2D model of binocular compound eye vision includes two circular compound
eyes located symmetrically relative to the y-axis, the centers A and B of which lie on the
x-axis (see Figure 2).
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Figure 2. The 2D model of binocular compound eye vision includes two circular compound eyes
located symmetrically relative to the y-axis, the centers A and B of which lie on the x-axis. Each
composite eye consists of m ommatidia, represented as equal-sized isosceles triangles.

The distance from the origin to the center of each eye is equal to h. The composite
eye consists of m ommatidia, represented as equal-sized isosceles triangles. The legs have
the length l, and the base has the length s. The angle between the legs is equal to γ. It is
obvious that

γ =
2π

m
. (6)

In this model, we assume that h > l, and m > 4. Taking into account (6), it follows

γ 6
π

2
. (7)

Let us number the ommatidia counterclockwise from 0 to m− 1, starting with the
ommatidium, which lies on the x-axis (see the right eye in Figure 2). In the model, the
ommatidium field of view is defined as a solid angle bounded by its legs. In Figure 3a, the
gray solid angle depicts the field of view of the ommatidium with number 1. If a point lies
on the bound between adjacent ommatidia, then it is visible only for the ommatidium with
the larger number. Thus, the fields of view of different ommatidia do not intersect, and
their unions form a solid angle of 360◦.

Let us build a ray tracing model. Consider the polar coordinate system (rB, ϕB)
with the origin in the point B and the angle measured from the x-axis. The following
Proposition 1 gives an equation to calculate the number of ommatidia, which observes the
point with given polar coordinates (see Figure 3a).

0

0

12

3

1

( , )

(a)

( , )

,

( , )

(b)

Figure 3. Ray tracing: (a) Point (rB, ϕB) is visible for ommatidium 1. (b) Circular feature is visible for
three ommatidia.



Mathematics 2022, 10, 181 6 of 24

Proposition 1. Let the point (rB, ϕB) be given in polar coordinates with center B. The number k
of the ommatidium, to whose field of view the point (rB, ϕB) belongs, is determined by the equation

k =
⌊ m

2π
ϕB

⌋
. (8)

Proof. It follows from Equation (6) that the angle ϕB must satisfy the system of inequalities{
ϕB > 2π

m k;
ϕB < 2π

m (k + 1).
(9)

Convert this system to the form{
k 6 m

2π ϕB;
k > m

2π ϕB − 1.
(10)

By the definition of the greatest integer less than or equal to m
2π ϕB, it follows (8).

The next proposition extends Proposition 1 for the case of circular features (see
Figure 3b).

Proposition 2. Let a circular feature with radius g and center (rB, ϕB) in polar coordinates with
center B be given. This circular feature or part of it belongs to the field of view of the ommatidium
with the number k if and only if⌊

m
2π

(
ϕB − arcsin

(
g
rB

))⌋
6 k 6

⌊
m
2π

(
ϕB + arcsin

(
g
rB

))⌋
. (11)

Proof. Consider the tangents to the circle at the points (r̄B, ϕ̄B) and (r̃B, ϕ̃B) passing
through the point B in Figure 3b. We have

ϕ̄B = ϕB − arcsin
g
rB

; ϕ̃B = ϕB + arcsin
g
rB

. (12)

Taking into account Proposition 1, it follows (11).

Definition 1. In the context of the model under consideration, an object is invisible to the compound
eye if and only if it lies in the field of view of only one ommatidium.

The following proposition gives us a sufficient condition for the visibility of the circular
feature.

Proposition 3. Let a circular feature with radius g and center (rB, ϕB) in polar coordinates with
center B be given. Let γ be the view field angle of an ommatidium. The inequality

g > rB sin
γ

2
(13)

is a sufficient condition for the visibility of the circular feature.

Proof. Let us assume the opposite: the circular feature with radius g and center (rB, ϕB) is
invisible, and inequality (13) holds. Consider the tangent to the circle at the point (r̄B, ϕ̄B)
passing through the point B in Figure 4.
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( , )
( , )

Figure 4. A circular feature is considered invisible if it is located in the field of view of only one
ommatidium.

Let α be the angle between this tangent and the ray from the point B to the point
(rB, ϕB). Taking into account Definition 1, inequality (7) and inequality (13), we obtain

g = rB sin α 6 rB sin
γ

2
< g. (14)

Thus we have a contradiction.

Definition 2. In the context of the model under consideration, the binocular field of view (BFV)
is the solid angle θ between the tangents to the compound eye circles drawn from the origin in the
direction of the positive y-axis (see Figure 5).

0

BFV

Figure 5. Binocular field of view (BFV). An object located in this area is fully visible with both
compound eyes.

BFV is uniquely determined by the angle ψ between the right tangent and the x axis.
Obviously,

ψ = arcsin
l
h

. (15)

It follows
θ = π − 2 arcsin

l
h

. (16)

BFV has the following three important properties.

Property 1. Any object lying in BFV does not cross the compound eyes.
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Property 2. Any object lying in the BFV is entirely visible to both compound eyes.

Property 3. Any circular feature lying in BFV is invisible to all ommatidia located in the negative
region of the y-axis.

The following proposition gives us a necessary and sufficient condition for a circular
feature to lie entirely in BFV.

Proposition 4. Let a circular feature with the radius g and the center (r, ϕ) in the polar coordinates
centered at the origin be given (0 6 ϕ < 2π). This circular feature lies entirely inside the BFV
defined by the angle ψ if and only if

ψ + arcsin
g
r
6 ϕ 6 π − ψ− arcsin

g
r

. (17)

Proof. Consider a circular feature with the radius g and the center (r, ϕ) that touches the
right bound of BFV in the Figure 6.

0

BFV

Figure 6. A circular feature lies entirely inside the binocular field of view if and only if
ψ + arcsin(g/r) 6 ϕ 6 π − ψ− arcsin(g/r).

Using right triangle properties, we have

g = r sin(ϕ− ψ). (18)

It follows
ϕ = ψ + arcsin

g
r

. (19)

Hence, a circular feature with the radius g and the center (r, ϕ) lies to the left of the
right BFV bound if and only if

ϕ > ψ + arcsin
g
r

. (20)

In the same way, we obtain that a circular feature with the radius g and the center
(r, ϕ) lies to the right of the left BFV bound if and only if

ϕ 6 π − ψ− arcsin
g
r

. (21)

Below, in the algorithm generating the training data set (see Section 4), we will need
equations that convert the polar coordinates (r, ϕ) centered at the origin to the polar
coordinates (rA, ϕA) centered at the point A = (0,−h) for the left compound eye, and to
the polar coordinates (rB, ϕB) centered at the point B = (0, h) for the right compound eye.
The following proposition provides us with such equations.
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Proposition 5. Let 0 6 ϕ 6 π, 0 < h, 0 < r be given. For the polar coordinates (r, ϕ) centered
at the origin, the following equations convert them to the polar coordinates (rB, ϕB) centered at the
point B = (0, h), and to the polar coordinates (rA, ϕA) centered at the point A = (0,−h):

rB =
√

h2 + r2 − 2hr cos ϕ; (22)

ϕB = π − arccos
h− r cos ϕ√

h2 + r2 − 2hr cos ϕ
; (23)

rA =
√

h2 + r2 + 2hr cos ϕ; (24)

ϕA = arccos
h + r cos ϕ√

h2 + r2 + 2hr cos ϕ
. (25)

Proof. Take a look at Figure 7b.

(a) (b)

= (0, ) 0 0 = (0, )

Figure 7. Converting into “central” polar coordinates (r, ϕ): (a) “local” polar coordinates (rA, ϕA) of
the left eye; (b) “local” polar coordinates (rB, ϕB) of the right eye.

By the law of cosines, we have:

rB =
√

h2 + r2 − 2hr cos ϕ; (26)

β = arccos
h2 + rB

2 − r2

2hrB
. (27)

Taking into account that β = π − ϕB, it follows

ϕB = π − arccos
h− r cos ϕ√

h2 + r2 − 2hr cos ϕ
. (28)

In the same way, in the context of Figure 7a, we can obtain Equations (24) and (25).

4. Algorithm for Generating Training Data Set

Based on the proposed 2D model of binocular compound eye vision, we developed
Algorithm 1 for generating annotated data sets, for training artificial neural networks
capable of determining the distance and azimuth to the observed objects. The data set
M ⊂ R2 × {0, 1}m/2 × {0, 1}m/2 consists of elements of the form (r, ϕ, ΩA, ΩB). Each
element corresponds to one observed circular feature with the following four parameters.
The pair (r, ϕ) determines the polar coordinates of the circle feature center. The parameter
ΩA is the bit map with the length of m/2 produced by the left compound eye: ΩA[i] = 1 if
and only if the ith ommatidium of left eye observes the circular feature (i = 0, . . . , m/2− 1).
The parameter ΩB is the bit map with the same length of m/2 produced by the right
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compound eye: ΩB[j] = 1 if and only if the jth ommatidium of right eye observes the
circular feature (j = 0, . . . , m/2− 1).

Algorithm 1 Generating a training data set

1: input h, l, m, n, rmin, rmax, gmax;
2: γ := 2π/m;
3: ψ := arcsin(l/h);
4: M := ∅;
5: for i = 1 . . . n do
6: repeat
7: r := rnd(rmin, rmax);
8: gmin := r sin(γ/2);
9: if gmin > gmax then continue;

10: g := rnd(gmin, gmax);
11: if g > r then continue;
12: ϕ := rnd(ψ + arcsin(g/r), π − ψ− arcsin(g/r));
13: rB :=

√
h2 + r2 − 2hr cos ϕ; ϕB := π − arccos h−r cos ϕ√

h2+r2−2hr cos ϕ
;

14: LB :=
⌊

m
2π

(
ϕB − arcsin

(
g

rB

))⌋
; RB :=

⌊
m
2π

(
ϕB + arcsin

(
g

rB

))⌋
;

15: rA :=
√

h2 + r2 + 2hr cos ϕ; ϕA := arccos h+r cos ϕ√
h2+r2+2hr cos ϕ

;

16: LA :=
⌊

m
2π

(
ϕA − arcsin

(
g

rA

))⌋
; RA :=

⌊
m
2π

(
ϕA + arcsin

(
g

rA

))⌋
;

17: for j = 0 . . . m/2− 1 do
18: if LB 6 j 6 RB then
19: ΩB[j] := 1;
20: else
21: ΩB[j] := 0;
22: end if;
23: if LA 6 j 6 RA then
24: ΩA[j] := 1;
25: else
26: ΩA[j] := 0;
27: end if;
28: end for;
29: until (r, ϕ, ΩA, ΩB) ∈M;
30: M := M∪ {(r, ϕ, ΩA, ΩB)};
31: end for.

Let us make brief comments on the steps of Algorithm 1. Step 1 performs the input of
the algorithm parameters:

h : the distance from the origin to the centers of compound eyes (see Figure 2);
l : the radius of compound eye;
m : the number of ommatidia in compound eye;
n : the number of elements in the training data set;
rmin : the minimum distance from the origin to the center of circular feature;
rmax : the maximum distance from the origin to the center of circular feature;
gmax : the maximum radius of circular feature.

Step 2 calculates the angle γ of the ommatidium field of view according to Equation (6).
In Step 3, the angle ψ of the binocular field of view is calculated using Equation (15). In
Step 4, the set M is initially defined as an empty set. Steps 5–31 implement a for loop
that inserts n elements into M. The repeat/until loop (Steps 6–29) generates one new
element of the training data set. Step 7 generates the distance r from the origin to the
center of circular feature using the rnd function, which calculates a random real number
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from the interval [rmin, rmax]. Step 8 calculates the minimum radius of circular feature
by inequality (13), which provides a sufficient condition for its visibility. Step 9 checks
the condition gmin > gmax. If this condition is true, then it forces the repeat/until loop to
begin the next iteration. Step 10 calculates the radius g of circular feature as a random real
number from the interval [gmin, gmax]. Step 11 checks the condition g > r. If this condition
is true, then it forces the repeat/until loop to begin the next iteration. Step 12 randomly
generates the angle ϕ so that the circular feature of the radius g and the center (r, ϕ) in
polar coordinates lies entirely inside the binocular field of view (see Proposition 4). Step 13
converts polar coordinates (r, ϕ) to polar coordinates (rB, ϕB) using Equations (22) and (23).
Based on Proposition 2, Step 14 determines, for the right compound eye, the interval
[LB, RB], which includes the numbers of the ommatidia that observe the circular feature. In
the same way, Steps 15, 16 determine the interval [LA, RA], which includes the numbers of
the ommatidia that observe the circular feature in the case of the left compound eye. Using
the obtained data, Steps 17–28 generate the new element (ΩA, ΩB, r, ϕ) to include in the
training data set. If the obtained element does not have a duplicate in M, it is added to the
training data set in Step 30.

Let us estimate the computational complexity of Algorithm 1. We assume that the
assignment operator, all arithmetic operations, and all comparison operations take one
time unit. Let the rnd function be calculated by the Lehmer pseudo-random number
generator [33] using the following equation:

xk+1 = a · xk mod m, (29)

where the modulus m is a prime number. The function rnd(vmin, vmax) is defined as follows:

rnd(vmin, vmax) = vmin + (xk+1 mod (vmax − vmin)). (30)

Then we can assume that the rnd function takes 5 time units. We also assume that the
square root and all trigonometric functions are calculated using the first four terms of the
Taylor series:

f (x) = f (a) +
f ′(a)

1!
(x− a) +

f ′′(a)
2!

(x− a)2 +
f ′′′(a)

3!
(x− a)3. (31)

In this case, the calculation of one function will take 17 time units. The Table 1
summarizes the defined cost of operations and functions.

Table 1. Cost of operations and functions.

Term Type Cost

+,−,×, /, bc, mod Arithmetic operations 1
>,<,6,>, 6= Comparison operations 1

:= Assignment operator 1
rnd Random number generator 5√

x Square root 17
sin, cos, arcsin, arccos Trigonometric functions 17

Table 2 presents the cost of steps of the repeat/until loop in Algorithm 1.
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Table 2. Cost of steps of repeat/until loop.

Step No. Type Cost Step No. Type Cost

7 state 6 14 state 48
8 state 20 15 state 121
9 if 1 16 state 48

10 state 6 17–28 for 3m
11 if 1 29 until 2 + m

12 state 44
13 state 122 Total 419 + 4m

So, the cost of the repeat/until loop is 419 + 4m time units. The conditions in steps
9, 11, 29 discard approximately 50% of the generated circular features. Therefore, the
cost estimation of the for loop (steps 5–31) is 2n(419 + 4m). Hence, the computational
complexity TAlgorithm 1(m, n) of Algorithm 1 can be estimated as follows:

TAlgorithm1(m, n) = O(m · n) + O(n), (32)

where n is the number of precedents, and m is the number of ommatidia in the compound eye.
We implemented the described algorithm in the form of web application named

CoViDSGen (compound vision data set generator). The web application CoViDSGen is
accessible at https://sp.susu.ru/covidsgen (accessed on 6 November 2021). This system is
implemented using Python programming language and the Flask web framework [34]. As
an implementation of the rnd function invocated in the steps 7, 10, and 12 of Algorithm 1,
we used the random.uniform function from the numpy library. The CoViDSGen source
code is freely available at https://github.com/artem-starkov/covidsgen (accessed on 6
November 2021). CoViDSGen allows you to set the parameters of Algorithm 1 in a dialog
box. As a result, you can load a text file in CSV format that includes elements of the training
data set.

5. Design of Deep Neural Networks

The deep neural network (DNN) [35,36] is one of the most promising and rapidly
developing techniques used to control the autonomous mobile robot behavior. This tech-
nology is used for navigation [37–39], object detection and recognition [40,41], obstacle
avoidance [42,43], autonomous driving [44,45], and other applications. One of the main
factors limiting the use of DNNs in robotics is the need to create large annotated data sets
(up to one hundred thousand copies) for training a neural network [46]. In many use cases,
collecting or labeling data is very difficult or not possible at all [47]. One more factor limit-
ing the design of robotic imaging systems based on compound eyes is the necessity to use
expensive facilities and complicated fabrication procedures for manufacturing compound
vision sensors [48]. Mathematical modeling and computer simulation of compound eye
vision systems are effective ways to overcome these limitations.

Using the 2D model of binocular compound eye vision presented in Section 3, we
investigated the capability of DNN to determine the distance and azimuth to a visible
object. To train DNN, we generated a data set in CSV format using Algorithm 1. This
data set consists of 100,000 elements and is obtained with the parameters presented in
Tables 3 and 4.

https://sp.susu.ru/covidsgen
https://github.com/artem-starkov/covidsgen
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Table 3. Parameters of model.

Para-Meter Semantics Value

m Number of ommatidia in compound eye 720
l Compound eye radius 20
h Distance between compound eye centers 40
γ Ommatidium angle of view 0.05◦

θ BFV angle 120◦

Table 4. Parameters of objects.

Para-Meter Semantics Value

rmin Minimum distance to circular feature 1000
rmax Maximum distance to circular feature 5000
gmin Minimum radius of circular feature 0.5
gmax Maximum radius of circular feature 500

The parameters of the model of compound eye vision system (see Table 3) are compara-
ble to the proportions of the robber fly vision system [49]. The angle γ of ommatidium field
of view is calculated by Equation (6). The angle θ of BFV is calculated by Equation (16). The
parameters of observed objects are presented in Table 4. All observed objects are the circular
features of different radii located at different distances from the observer. The estimation of
gmin is obtained using the equation gmin = rmin sin(γ/2) inspired by inequality (13). All
100,000 elements of the training data set were generated in one pass (single execution)
of Algorithm 1. We inspected the obtained data set using a machine learning platform
“Weights & Biases Sweeps (W&B)” [50]. The results are presented in Figures 8–11.
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Figure 8. Precedent distribution obtained after data set generation in one pass.
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Figure 9. Precedent distribution obtained after data set generation in multiple passes.
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Figure 10. Spatial distribution of object centers after one pass data set generation.

Figure 11. Spatial distribution of object centers after multiple pass data set generation.

The histogram in Figure 8 shows that, after data set generation in one pass, most of
objects accumulate in the interval [500, 3000] of distances to the observer. Such a skew can
severely affect the quality of neural network training. The explanation of this anomaly is
presented in Figure 10, which shows a diagram of the spatial distribution of object centers
in the BFV zone after generation in one pass. For each orbit with radius r, Algorithm 1
generates approximately the same number of objects. However, the length of the orbit
increases linearly with the growth of its radius. Therefore, the density of objects decreases
with increasing distance r from the observer. To overcome this issue, we used the method
of multi-pass generation of the training data set. To do this, we divided the interval of values
[0, 5000], specifying the distance to object, into 1000 segments of length 5. In each ith
segment (i = 1, . . . , 1000), using Algorithm 1, we generated 1000 + 200(i− 1) precedents.
In total, we received 100,900 precedents. The resulting distribution relative to the distance r
to the object is shown in Figure 9; the spatial distribution of the observed object centers
is shown in Figure 11. The data set generated in this way is freely available at https:

https://github.com/artem-starkov/covidsgen/tree/main/dataset
https://github.com/artem-starkov/covidsgen/tree/main/dataset
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//github.com/artem-starkov/covidsgen/tree/main/dataset (accessed on 6 November
2021).

For the sake of simplicity, we decided to design two separate feedforward DNNs: the
first to determine the distance and the second to determine the azimuth to a circular feature.
To search for an optimal set of neural network hyperparameters, we constructed a common
hypermodel for both networks. A diagram of the hypermodel is shown in Figure 12.

[ReLU, Tanh, 

Sigmoid]

[ReLU, Tanh, 

Sigmoid]

[ReLU, Tanh, 

Sigmoid]

[ReLU, Tanh, 

Sigmoid]

Dense

input:      720

Dense

[2048, 3072, 4096, 

5040, 5760]
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[3072, 4096, 5120,

5760, 6480, 7200]
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[2160, 2880, 3600,

4096, 5120, 6144]

Dense

output:        1

Figure 12. DNN hypermodel structure. Based on this hypermodel, we performed a limited random
search for optimal sets of neural network hyperparameters.

The hypermodel includes the input layer, three hidden layers, and the output layer.
All of these layers are fully connected (have dense connections). For the input layer and all
hidden layers, the activation functions to choose from are [ReLU, Tanh, Sigmoid]. The input
layer has 720 neurons receiving external data: 360-bitmap from the left compound eye and
360-bitmap from the right compound eye. The output layer has a single neuron producing
the ultimate result: the distance for the first DNN and the azimuth for the second DNN.
For the first hidden layer, the numbers of neurons to choose from is [2048, 3072, 4096, 5040,
5760]. For the second and the third hidden layers, the numbers of neurons to choose from
is [3072, 4096, 5120, 5760, 6480, 7200] and [2160, 2880, 3600, 4096, 5120, 6144], respectively.

Based on this hypermodel, we performed a limited random search for optimal sets of
neural network hyperparameters using W&B [50]. As an optimization algorithm, we tested
SGD (stochastic gradient descent) and RMSProp [51]. The batch size ranged from 4 to 64. As a
loss function, we used MAE (mean absolute error) [52] calculated by the following equation:

MAE =
1
n

n

∑
i=1
|yi − xi|, (33)

where n is the number of elements of the training data set, yi is the DNN output, and xi is
the true value. The generated data set of 100,000 items was divided as follows:

• training sample: 68,000 items;
• validation sample: 12,000 items;
• test sample: 20,000 items.

The preliminary computational experiments with the hypermodel showed that a
training sample with fewer than 60,000 items degrades the quality of training. For instance,
a 50% reduction in the training sample results in a 20% decrease in detection accuracy. At
the same time, an increase in the training sample of over 68,000 items does not improve
accuracy.

We used Keras and TensorFlow in Python to implement the hypermodel that was
trained and tested on the Google Colab cloud platform [53] equipped with nVidia Tesla P4
graphics card. As a result, we obtained two DNNs shown in Figure 13.

https://github.com/artem-starkov/covidsgen/tree/main/dataset
https://github.com/artem-starkov/covidsgen/tree/main/dataset
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(a) AD

(b) DD
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Figure 13. (a) AD network receives a 720-bitmap from the compound eye vision system as input data
and produces the azimuth of the object. (b) DD network receives the same 720-bitmap and produces
the distance to the object.

The AD network includes the input layer, three hidden layers, and the output layer.
The number of neurons in these layers is 720, 5760, 6480, 2880, and 1, respectively. All these
layers are fully connected. For the input layer and the third hidden layer, the activation
function is ReLU. For the thirst and second hidden layers, the activation function is Tanh.
The input layer receives external data: 360-bitmap from the left compound eye and 360-
bitmap from the right compound eye. The output layer produces the ultimate result: the
azimuth to the object. The implementation of the AD network is presented in Appendix A.

Figure 13b illustrates the structure of the DD neural network that detects the distance
to the object. The DD network includes the input layer, three hidden layers, and the output
layer. The number of neurons in these layers is 720, 5040, 3600, 2880, and 1, respectively. All
of these layers are fully connected. For the input layer, the second and third hidden layers,
the activation function is ReLU. For the first hidden layer, the activation function is Sigmoid.
The input layer receives the same external data: 360-bitmap from the left compound eye
and 360-bitmap from the right compound eye. The output layer produces the ultimate
result: the distance to the object. The implementation of the DD network is presented in
Appendix B.

To assess the quality of the neural network models obtained, we used the following
two metrics: MAPE (mean absolute percentage error) [54] defined by the equation

MAPE =
100
n

n

∑
i=1

∣∣∣∣yi − xi
xi

∣∣∣∣, (34)

and the coefficient of determination R2 [55] defined by the equation

R2 = 1−
n

∑
i=1

(yi − xi)
2

/
n

∑
i=1

(yi − ymean)
2, (35)

where

ymean =
1
n

n

∑
i=1

yi. (36)

The MAPE is often used in practice because of its very intuitive interpretation in
terms of relative error. The coefficient of determination R2 gives some information about
the goodness of fit of a neural network model to the training data set. The models with
R2 > 0.8 can be considered quite good. The final training parameters and values of these
metrics are presented in Table 5.
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Table 5. Final parameters of neural networks.

Parameter Azimuth Detection Distance Detection

Optimizer RMSProp SGD
Batch size 64 32

Learning rate 0.004 0.001
Training time 2 h 3 m 49 s 48 m 53 s

MAPE 0.832 7.713
R2 0.998 0.899

6. Computational Experiments

To test the accuracy of both designed neural network models, we performed a series of
computational experiments. When developing the experiments, we took into account the
following important point. It is well known that insects clearly see only moving objects [56].
The image motion can be a result of the movement of the object or the insect itself. The insect
vision senses static images as a set of very blurred spots. Therefore, in our experiments,
we simulated the movement of circular features of different radii along the three different
trajectories shown in Figure 14.

0

BFV

120°

0

BFV

120°

0

BFV

120°

(a) Horizontal (b) Circular (c) Vertical

Figure 14. Types of trajectories for testing: (a) the object is moving along a strait line in front of the
compound eye vision system; (b) the object is moving in an arc around the compound eye vision
system; (c) the object is moving along a vertical line, being the central axis of the compound eye
vision system.

The first type of trajectory is horizontal (see Figure 14a). Such trajectory is defined by a
straight line parallel to the x-axis and located at a distance of r from the origin. The segment
that is the intersection of this line with the BFV area has a length of 2 tan(60◦)r ≈ 3.5r.
For this type of trajectory, we generated a set of circular features with a radius of g in the
amount of 1.5r/g, uniformly distributed along the trajectory. We fed the set of precedents
constructed in this way to neural networks presented in Figure 13. The results for g = 5,
g = 50, and g = 500 are presented in Figure 15. Here and after Accuracy = 100%−MAPE.
Diagram (a) in Figure 15 shows that the AD neural network (see Figure 13a) demonstrates
great accuracy in determining an object’s azimuth. For all investigated trajectories, the
accuracy of detecting the azimuth of large (g = 500) and medium (g = 50) objects is about
99%; for small objects (g = 5), the accuracy is more than 95%. Diagram (b) in Figure 15
shows the results obtained by the DD neural network (see Figure 13b) when detecting the
distance to the object.
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(a) Azimuth detection (b) Distance detection
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Figure 15. Computational experiments, simulating the horizontal movement of a circular feature
with the radius g.

We can see that, in this case, the accuracy of determining the distance to large objects
decreases from 98% to 74% with increasing distance to the trajectory from 1000 to 5000.
In this interval, the accuracy decreases from 94% to 71% for medium objects and from
90% to 50% for small objects. Increasing the trajectory distance to 10,000, the accuracy of
determining the distance to the object decreases to 38% for large objects, 36% for medium,
and 25% for small. We should note that both neural networks learned at distances in
the segment [1000, 5000]. The experiments show that the AD neural network can work
adequately at longer distances. This is explained by the fact that the object images shrink
with increasing distance; small objects disappear, and large ones seem small. Therefore, the
neural network can use the experience gained from training at shorter distances to detect
azimuth at longer distances.

The second type of trajectory is circular (see Figure 14b). Such a trajectory is defined
by a circle with radius r and the center at the origin. The arc that is the intersection of
this circle with the BFV area has a length of 2πr120/360 ≈ 2.1r. For this type of trajectory,
we generated a set of circular features with a radius of g in the amount of r/g, uniformly
distributed along the trajectory. We fed the set of precedents constructed in this way to the
AD neural network (see Figure 13a). The results are presented in Figure 16.

We can see that the AD neural network demonstrates great accuracy in determining
an object’s azimuth. For all investigated trajectories, the accuracy of detecting the azimuth
of large (g = 500) and medium (g = 50) objects is more then 99%; for small objects (g = 5),
the accuracy is more than 97%. The results obtained in this experiment look a little better
than ones obtained when the object moves along a horizontal trajectory (see Figure 15a).
This is because the ends of the horizontal segment of the trajectory are farther from the
observer than its middle. In contrast, in the case of circular trajectory, the distance to the
observer is always constant.

The third type of trajectory is vertical (see Figure 14c). Vertical trajectory coincides
with the central axis of the BFV area. In our experiment, this trajectory has a length of
9000. For this type of trajectory, we generated a set of circular features with a radius of
g in the amount of 4500/g, uniformly distributed along the trajectory. We fed the set of
precedents constructed in this way to the DD neural network (see Figure 13b). The results
are presented in Figure 17.
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Figure 16. Computational experiments, detecting the azimuth of an object of radius g moving along
a circular trajectory.
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Figure 17. Computational experiments, detecting the distance to an object of radius g moving along
the vertical trajectory.

The diagram shows that the accuracy of distance detection for all objects does not
decrease below 70% in segment (1000, 10,000). Thus, the results obtained in this experiment
look much better than ones obtained when the object moves along a horizontal trajectory
(see Figure 15b). This is because the objects, in the case of vertical trajectory, are located on
the central axis of the BFV area. We can conclude that to detect the distance to the object
more accurately, the binocular compound eye vision system must turn frontally to the
observed object.

Experiments showed that increasing the radius g of a circular feature improves the
accuracy of determining the distance and azimuth. However, a tradeoff between size and
accuracy is achieved when the dimensions of the object reach the boundaries of the BFV
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region (see Figure 5). Further expansion of the object size beyond the BFV region leads to a
decrease in the accuracy of azimuth and distance measurements. In the extreme case, when
the object completely overlaps the visible horizon, our neural networks can say nothing
about the distance and azimuth to the object.

7. Discussion

In this section, we will discuss the following issues.

1. What is the main contribution of this article?
2. What are the advantages and disadvantages of the proposed approach compared to

other known methods?
3. Is the 2D model of compound eye vision applicable in practice?
4. What are the future applications of the proposed model?
5. What confirms the adequacy of the model?

Let us start answering the indicated questions. The main contribution of the article
is a mathematical model of planar compound eye vision and a method for detecting the
azimuth and distance to the observed object, which does not require the use of active
sensors. Another important result is that DNNs based on the proposed model are able to
detect azimuth and distance with high accuracy.

The advantage of the proposed method is a potentially more accurate measurement
of azimuth and distance to the object compared to other known methods using passive
sensors. The disadvantage of the described method is its inapplicability for the case when
the observer and the object are static, relative to each other. Below, we explain why.

The 2D model of compound eye vision can be used to develop ground-based au-
tonomous mobile robots. To operate on a surface, it is enough for the robot to have two
planar compound eyes, each of which has one row of optical sensors (artificial ommatidia)
installed in a circle. Similar implementations are known in the literature (see, for exam-
ple, [13]). The optical sensor of the artificial compound eye transmits a signal to the neural
network only when it detects an increase in light intensity. The signal will be especially
strong if the adjacent optical sensor simultaneously detects a decrease in light intensity. In
such a way, the neural network can sharply see the bounds of a moving object. That is why
the object must move relative to the compound eye vision system in order to be detected.

The future applications of the proposed model are the following. First, the 2D model of
compound eye vision can serve as a basis for designing physical optical systems for ground-
based mobile robots. Such robots can participate in the mitigation of the consequences of
accidents at nuclear power plants and extinguish fires at industrial facilities. Second, the
proposed model makes it possible to construct an synthetic data set for prior supervised
learning a neural network to detect the azimuth and distance to the observed object. After
that, the pre-trained neural network is embedded in the physical prototype, and the final
reinforcement learning is performed.

To confirm the adequacy of the developed model, we must implement it in the form
of a physical prototype and check its operability. This is the subject of our future research.
Nevertheless, when developing this model, we used the bionic principles inspired by the
compound eyes of insects. To simulate a binocular compound eye system, we used the
parameters comparable to the proportions of the robber fly vision system. This allows us to
hope that the adequacy of the model will be confirmed in practice.

8. Conclusions

In this paper, we proposed a 2D model of the binocular compound eye vision inspired
by insect eyes. The model includes two circular compound eyes located on a plane. The
compound eye includes one row of ommatidia (optical sensors), arranged in a circle. The
ommatidia are represented by equal-sized isosceles triangles. In the model, the omma-
tidium field of view is defined as a solid angle bounded by its legs. A ray tracing model
was built on this basis. Using this model, an algorithm was developed for generating
labeled data sets for training artificial neural networks capable of determining the distance
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and azimuth to the observed objects. Using the data sets generated by this algorithm, we
designed and trained two feedforward deep neural networks: one to determine the distance
and the other to determine the azimuth to circular features. To test the accuracy of both
designed neural network models, we simulated the movement of circular features along
different trajectories. Computational experiments have shown that the designed networks
can detect azimuth with an accuracy of about 99% and the distance with an accuracy of
about 80% for medium and large circular features.

Our future research directions on this subject are the following. We plan to investigate
the dependence of the accuracy of azimuth and distance detection on the following param-
eters of the binocular compound eye vision system: the diameter of compound eyes, the
distance between the eyes, and the number of ommatidia in the eye. We also plan to create
a prototype of a planar binocular compound eye vision system to validate the described
mathematical model. The same prototype will be used for reinforcement learning of the
neural networks trained on synthetic data in the present study. Our next goal is to create
and investigate a three-dimensional model of a binocular compound eye vision system
focused on azimuth and distance detection.

Author Contributions: Software, A.E.S.; writing—original draft, L.B.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the Ministry of Science and Higher Education of the
Russian Federation (gov. order FENU-2020-0022).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Implementation of Deep Neural Network Detecting Azimuth

dataset_path = ’dataset.csv’
x, r, fi = [], [], []
with open(dataset_path) as file:

reader = csv.reader(file, delimiter=’;’)
for row in reader:

x.append(row[:720])
r.append(row[720])
fi.append(row[721])

x, r, fi = np.array(x).astype(np.int64), np.array(r).astype(np.float),
np.array(fi).astype(np.float)

X_train, X_test, y_train, y_test = train_test_split(x, fi, test_size=0.2)

model = Sequential()
model.add(Dense(720, input_shape=(720,)))
model.add(Activation(’relu’))
model.add(Dense(5760))
model.add(Activation(’tanh’))
model.add(Dense(6480))
model.add(Activation(’tanh’))
model.add(Dense(2880))
model.add(Activation(’relu’))
model.add(Dense(1))
model.compile(optimizer=RMSProp(learning_rate=0.003), loss=’mae’, metrics=[’mae’, ’mape’])
model.summary()
model.fit(X_train, y_train, epochs=100, batch_size=64, verbose=1)
score = model.evaluate(X_test, y_test)
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Appendix B. Implementation of Deep Neural Network Detecting Distance

dataset_path = ’dataset.csv’
x, r, fi = [], [], []
with open(dataset_path) as file:

reader = csv.reader(file, delimiter=’;’)
for row in reader:

x.append(row[:720])
r.append(row[720])
fi.append(row[721])

x, r, fi = np.array(x).astype(np.int64), np.array(r).astype(np.float), np.array(fi).astype(np.float)
X_train, X_test, y_train, y_test = train_test_split(x, r, test_size=0.2)

model = Sequential()
model.add(Dense(720, input_shape=(720,)))
model.add(Activation(’relu’))
model.add(Dense(5040))
model.add(Activation(’sigmoid’))
model.add(Dense(3600))
model.add(Activation(’relu’))
model.add(Dense(2880))
model.add(Activation(’relu’))
model.add(Dense(1))
model.compile(optimizer=SGD(learning_rate=0.001,decay=1e-5,nesterov=True),loss=’mae’,
metrics=[’mae’,’mape’])
model.summary()
model.fit(X_train, y_train, epochs=80, batch_size=32, verbose=1)
score = model.evaluate(X_test, y_test)
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