

Article

Invariant Algebraic Curves of Generalized Liénard Polynomial Differential Systems

Jaume Giné ^{1,*} and Jaume Llibre ²

- ¹ Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69, 25001 Lleida, Catalonia, Spain
- ² Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain; jllibre@mat.uab.cat
- * Correspondence: jaume.gine@udl.cat

Abstract: In this study, we focus on invariant algebraic curves of generalized Liénard polynomial differential systems x' = y, $y' = -f_m(x)y - g_n(x)$, where the degrees of the polynomials f and g are m and n, respectively, and we correct some results previously stated.

Keywords: Liénard differential systems; invariant algebraic curve; first integrals

MSC: Primary 34A05; Secondary 34C05; 37C10

1. Introduction and Statement of the Main Results

In this work, we study the generalized Liénard polynomial differential systems of the following form:

$$x' = y, \qquad y' = -f_m(x)y - g_n(x),$$
 (1)

where the degrees of the polynomials f and g are given by the subscripts m and n, respectively. These generalized Liénard systems are used to model different problems in numerous areas of knowledge and have been intensively studied in the last decades (see for instance [1,2] and references therein).

Consider F(x, y) = 0 an *invariant algebraic curve* of the differential system (1) where F(x, y) is a polynomial, then there exists a polynomial K(x, y) such that the following is the case.

$$\frac{\partial F}{\partial x}y + \frac{\partial F}{\partial y}(-f_m(x)y - g_n(x)) = KF$$
(2)

The knowledge of the algebraic curves of system (1) allows studying modern Darboux and Liouvillian theories of integrability (see [3] and references therein). In fact the existence of invariant algebraic curves is a measure of integrability in such theories. Another problem is finding a bound on the degree of irreducible invariant algebraic curves of system (1). This problem goes back to Poincaré for any differential system and is known as *Poincaré problem*.

In 1996, Hayashi [4] stated the following result.

Theorem 1. The generalized Liénard polynomial differential system (1) with $f_m \neq 0$ and $m + 1 \ge n$ has an invariant algebraic curve if and only if there is an invariant curve y - P(x) = 0 satisfying $g_n(x) = -(f_m(x) + P'(x))P(x)$, where P(x) or P(x) + F(x) is a polynomial with a degree of at most one, such that $F(x) = \int_0^x f(s) ds$.

Given *P* and *Q* polynomials, an algebraic curve of the form $(y + P(x))^2 - Q(x) = 0$ is called *hyperelliptic curve* (see for instance [5–8]). In such works, hyperelliptic curves are used to determine the algebraic limit cycles of generalized Liénard systems (1).

Theorem 1 is also announced in [9], where the author seems to not be aware that the theorem is false. Theorem 1 is not correct as the following proposition shows. More

Citation: Giné, J.; Llibre, J. Invariant Algebraic Curves of Generalized Liénard Polynomial Differential Systems. *Mathematics* **2022**, *10*, 209. https://doi.org/10.3390/ math10020209

Academic Editor: Ioannis G. Stratis

Received: 16 December 2021 Accepted: 5 January 2022 Published: 10 January 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). precisely, it shows the existence of hyperelliptic invariant algebraic curves for generalized Liénard systems (1).

Proposition 1. Under the assumptions of Theorem 1, the generalized Liénard polynomial differential system (1) has the following hyperelliptic invariant algebraic curves:

- (a) $F(x,y) = -(b+ax)\lambda + (y-b-ax)^2 = 0$ for $f_0(x) = -3a/2$ and $g_1(x) = a(b+ax-\lambda)/2$ with $a \neq 0$;
- (b) $F(x,y) = -Ax^2 + (y ax)^2$ for $f_0(x) = -2a$ and $g_1(x) = (a^2 A)x$ with $aA \neq 0$;
- (c) $F(x,y) = -bc/(2a) cx acx^2/(2b) + (b + ax y)^2 = 0$ for $f_0(x) = -2a$ and $g_1(x) = (2ab c)(b + ax)/(2b)$ with $ab \neq 0$.

Proposition 1 is proved in Section 2. In fact, the correct statement of Theorem 1 is the following.

Theorem 2. The generalized Liénard polynomial differential system (1) with $f_m \neq 0$ and $m + 1 \ge n$ has the invariant algebraic curve y - P(x) = 0 if $g_n(x) = -(f_m(x) + P'(x))P(x)$, being P(x) or P(x) + F(x) a polynomial of degree at most one, where $F(x) = \int_0^x f(s) ds$.

Theorem 2 is proved in Section 2.

Note that the mistake in the statement of Theorem 1 is the claim that unique invariant algebraic curves are of the following form y - P(x) = 0.

Demina in [10] also detected that Theorem 1 was not correct. She found counterexamples to Theorem 1 with invariant algebraic curves of degree 2 and 3 in the variable *y*.

Singer in [11] found the characterization of systems that are Liouvillian integrable. Christopher [12] rewrote this result stating that if a polynomial differential system in \mathbb{R}^2 has an inverse integrating factor of the following form:

$$V = \exp\left(\frac{D}{E}\right) \prod_{i=1}^{p} F_{i}^{\alpha_{i}},$$
(3)

where *D*, *E* and *F_i* are polynomials in $\mathbb{C}[x, y]$ and $\alpha_i \in \mathbb{C}$, then this differential system is *Liouvillian integrable*. For a definition of (inverse) integrating factor, see for instance Section 8.3 of [3].

We say that $\exp(g/h)$, with g and $h \in \mathbb{C}[x, y]$, is an *exponential factor* of the polynomial differential system (1) if there exists a polynomial L(x, y) of a degree with at most d where $d = \max\{m, n-1\}$ such that the following is the case.

$$\frac{\partial \exp(g/h)}{\partial x}y + \frac{\partial \exp(g/h)}{\partial y}(-f_m(x)y - g_n(x)) = K \exp(g/h).$$

More information on exponential factors can be found in Section 8.5 of [3].

The existence of an inverse integrating factor (3) for a polyomial differential system in \mathbb{R}^2 is equivalent to the existence of λ_i and $\mu_i \in \mathbb{C}$ is not all zero such that $\sum_{i=1}^p \lambda_i K_i + \sum_{j=1}^q \mu_j L_j = \operatorname{div}(P, Q)$, where K_i and L_i are the cofactors of some invariant algebraic curves and exponential factors of the given polynomial differential system, respectively. See, for more details, statement (iv) of Theorem 8.7 of [3].

We remark that the two kinds of invariant algebraic curves mentioned in Theorem 2 can appear simultaneously in some generalized Liénard polynomial differential systems (1) as the following example shows, which already appeared in [13].

The generalized polynomial Liénard differential system of the following:

$$x' = y, \qquad y' = -ex^3 - e^2/3x - (3x^2 + 4e/3)y,$$
 (4)

has invariant algebraic curves $f_1 = y + ex/3 = 0$ and $f_2 = y + x^3 + ex/3 = 0$. Moreover, system (4) is Liouvillian integrable because it has an inverse integrating factor $V = f_1 f_2^{1/3}$.

Let *U* be an open subset of \mathbb{R}^2 . A C^1 function $H : U \to \mathbb{R}$ is a *first integral* of system (1) if it is constant on the orbits of the system contained in *U*, or equivalently if the following is the case.

$$\frac{dH}{dt} = \frac{\partial H}{\partial x}y + \frac{\partial H}{\partial y}(-f_m(x)y - g_n(x)) = 0 \text{ on } U.$$
(5)

Consider *W* as an open subset of $\mathbb{R}^2 \times R$. A C^1 function $I : W \to \mathbb{R}$ is a *Darboux invariant* of system (1) if it is constant on the orbits of the system contained in *W*, or equivalently if the following is the case.

$$\frac{dI}{dt} + \frac{\partial I}{\partial x}y + \frac{\partial I}{\partial y}(-f_m(x)y - g_n(x)) = 0 \text{ on } W.$$
(6)

Moreover, given λ_i and $\mu_i \in \mathbb{C}$ that is not all zero such that $\sum_{i=1}^p \lambda_i K_i + \sum_{j=1}^q \mu_j L_j = -s$ for some $s \in \mathbb{C} \setminus \{0\}$, then the (multivalued) function of the following:

$$I = \prod_{i=1}^{p} F_{i}^{\alpha_{i}} \prod_{j=1}^{q} \left(\exp\left(\frac{g_{j}}{h_{j}}\right) \right)^{\mu_{j}} \exp(st)$$
(7)

is a *Darboux invariant* of the differential system (see for more details statement (vi) of Theorem 8.7 of [3]).

Under the assumptions of Theorem 2, there are generalized Liénard polynomial differential systems (1) that are Liouvillian integrable, as it is shown in the next result.

Proposition 2. Under the assumptions of Theorem 2, if the generalized Liénard polynomial differential system (1) has an invariant algebraic curve y - P(x) = 0, then the following statements hold:

- (a) If P(x) = -F(x) + ax + b, then system (1) has the Darboux invariant $(y P(x))e^{at}$;
- (b) If P(x) = b, then system (1) is Liouvillian integrable with the first integral $H = e^{y+F(x)}(y-b)^b$ if $b \neq 0$, and the first integral H = y + F(x) if b = 0.

Proposition 2 is proved in Section 2.

We note that Proposition 2 shows that Theorem 2 of [13] and Theorem 4 of [14] are not correct because their proofs are based on the incorrect Theorem 1.

Proposition 3. Consider the generalized Liénard polynomial differential system (1). Let P(x) be a polynomial, then y - P(x) = 0 is an invariant algebraic curve of system (1) if and only if $g_n(x) = -(f_m(x) + P'(x))P(x)$.

Proposition 3 is proved in Section 2. In fact, the statement of Proposition 3 already appears in [8] without proof.

Note that, in Proposition 3, there are no restrictions on the degrees of the polynomials f_m , g_n and P(x).

The Liouvillian integrability of the generalized Liénard polynomial differential system has been studied by several authors. The main result of [15] is that under restriction $2 \le n \le m$, system (1) has a Liouvillian first integral if and only if $g_n(x) = af_m(x)$, where $a \in \mathbb{C}$ (see also [16] for a shorter proof). Later on, the Liouvillian integrability of differential systems (1) having hyperelliptic curves of the form $(y + Q(x)P(x))^2 - Q(x)^2 = 0$ was studied (see [17]).

In summary, the Liouvillian integrability in the case where n > m is still open. In fact, the characterization of the invariant algebraic curves of system (1) for this case is not complete. Recently, cases m = 1 and n = 2 have been solved (see [18]).

Case n = m + 1 is the still the objective of several recent works. Thus, for instance in [10,19], some particular cases for m = 2 and n = 3 have been solved.

2. Proofs

Proof of Proposition 1. Assume that system (1) has an hyperelliptic invariant curve $F = (y + P(x))^2 - Q(x) = 0$. Then, from (2), denoting by K = K(x, y) the cofactor of F = 0, we obtain the following.

$$2g_n(x)P(x) + K(-P(x)^2 + Q(x)) + y(-2g_n(x) + 2P(x)(K + f_m(x) + P'(x)) - Q'(x)) - y^2(K + 2f_m(x) + 2P'(x)) = 0.$$

From this equality, we observe that $K = K(x) = -2(f_m(x) + P'(x))$:

$$f_m(x) = -P'(x) - \frac{P(x)Q'(x)}{2Q(x)}$$
, and $g_n(x) = -\frac{1}{2}Q'(x) + \frac{P^2(x)Q'(x)}{2Q(x)}$,

where fm(x) and $g_n(x)$ must be polynomials.

If we assume that deg P = p and deg Q = q, we obtain deg $f_m = p - 1$ and deg $g_n = \max\{q - 1, p^2 - 1\}$. Since $m + 1 \ge n$, we obtain $p \ge \max\{q - 1, p^2 - 1\}$, which implies p = 1. Consequently, $1 \ge q - 1$, which implies q = 1, 2.

If q = 1, then P(x) = ax + b with $a \neq 0$ and Q(x) must be proportional to P(x); that is, $Q(x) = \lambda P(x)$. Thus, $f_m = -3a/2$ and $g_n = a(ax + b - \lambda)/2$, and $F = (b + ax - y)^2 - (b + ax)\lambda$. Thus, statement (a) follows.

If q = 2, then we have P(x) = ax + b and $Q(x) = Ax^2 + Bx + C$ with $aA \neq 0$, and since f_m must be a polynomial, we obtain $f_m = -2a$; moreover, in order for g_m to be a polynomial, we obtain either b = B = C = 0 or A = aB/(2b) and C = (bB)/(2a) with $ab \neq 0$.

If b = B = C = 0, then $g_n = (a^2 - A)x$ and $F = -Ax^2 + (y - ax)^2$. Therefore, statement (b) is proven.

If A = aB/(2b) and C = (bB)/(2a), then g(x) = (2ab - B)(b + ax)/(2b) and $F(x, y) = -bB/(2a) - Bx - aBx^2/(2b) + (b + ax - y)^2$. By renaming *B* by *c*, we obtain statement (c). \Box

Proof of Proposition 2. We have system (1) with $g_n(x) = -(f_m(x) + P'(x))P(x)$ and the invariant algebraic curve y - P(x) = 0 is P(x) = -F(x) + ax + b. Then, by using Equation (2), we obtain the result where the cofactor of the invariant algebraic curve y - P(x) = 0 is K = -a. Consequently, system (1) has the Darboux invariant (7), which in our case becomes $I = (y - P(x))e^{at}$. Hence, statement (a) is proved. Assume now that P(x) = b. Therefore, g(x) = -bf(x), and the differential system becomes $\dot{x} = y$ and $\dot{x} = -(y + b)f(x)$, which has the Darboux first integral $H = e^{y+F(x)}(y-b)^b$ if $b \neq 0$, and the Darboux first integral H = y + F(x) if b = 0, as it is easy to verify using (6).

Proof of Proposition 3. First, we suppose that $g_n(x) = -(f_m(x) + P'(x))P(x)$, and we shall prove that y - P(x) = 0 is an invariant algebraic curve. From Equation (7), we have the following.

$$-P'(x)y - yf_m(x) - g_n(x) = K(y - P(x)).$$

By substituting $g_n(x)$, we obtain the following.

$$-P'(x)(y - P(x)) - f_m(x)(y - P(x)) = K(y - P(x)).$$

Dividing the previous equality by y - P(x), we obtain $K = -P'(x) - f_m(x)$, which is a cofactor of degree p - 1 + m of system (1). Note that the degree of the polynomial Liénard differential system is the degree of, i.e., the maximum of m + p and 2p - 1.

Now, we assume that y - P(x) is an invariant algebraic curve of system (1) with cofactor *K*. Then, from (7), we obtain

$$-P'(x)y - yf_m(x) - g_n(x) = K(y - P(x)).$$

From this equality, we obtain K = K(x); then, we have

$$(K(x) + f_m(x) + P'(x))y = K(x)P(x) - g_n(x).$$

Therefore, $K(x) = -(f_m(x) + P'(x))$ and $g_n(x) = K(x)P(x)$. Hence, $g_n(x) = -(f_m(x) + P'(x))P(x)$, and the proposition is proved. \Box

Proof of Theorem 2. By Proposition 3, we only need to prove that P(x) or P(x) + F(x) are polynomials with a degree of at most one. Since $m + 1 \ge n$ and n are the maxima of m + p and 2p - 1 where p is the degree of the polynomial P(x), we have $m + 1 \ge m + p$; consequently, $p \le 1$, and the theorem is proved. \Box

Author Contributions: Conceptualization, J.G. and J.L.; Formal analysis, J.G. and J.L.; Investigation, J.G. and J.L.; Methodology, J.G. and J.L.; Writing—original draft, J.G. and J.L.; Writing—review & editing, J.G. and J.L. All authors have read and agreed to the published version of the manuscript.

Funding: The author is partially supported by the Agencia Estatal de Investigación grant PID2020-113758GB-I00 and an AGAUR (Generalitat de Catalunya), grant number 2017SGR 1276. The second author is partially supported by the Agencia Estatal de Investigación, grant PID2019-104658GB-I00, and the H2020 European Research Council, grant MSCA-RISE-2017-777911.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to the referees for their valuable comments and suggestions to improve this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Fercec, B.; Giné, J. Formal Weierstrass integrability for a Liénard differential system. J. Math. Anal. Appl. 2021, 499, 14. [CrossRef]
- 2. Giné, J. Liénard equation and its generalizations. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 2017, 27, 1750081. [CrossRef]
- 3. Dumortier, F.; Llibre, J.; Artés, J.C. Qualitative Theory of Planar Differential Systems; UniversiText; Springer: New York, NY, USA, 2006.
- 4. Hayashi, M. On polynomial Liénard systems which have invariant algebraic curves. *Funkc. Ekvacioj* 1996, 39, 403–408.
- 5. Liu, C.; Chen, G.; Yang, J. On the hyperelliptic limit cycles of Liéenard systems. *Nonlinearity* **2012**, 25, 1601–1611. [CrossRef]
- 6. Qian, X.; Yang, J. On the number of hyperelliptic limit cycles of Liénard systems. Qual. Theory Dyn. Syst. 2020, 19, 43. [CrossRef]
- Qian, X.; Shen, Y.; Yang, J. Invariant algebraic curves and hyperelliptic limit cycles of Liénard systems. *Qual. Theory Dyn. Syst.* 2021, 20, 14. [CrossRef]
- 8. Zołądek, H. Algebraic invariant curves for the Liénard equation. Trans. Amer. Math. Soc. 1998, 350, 1681–1701. [CrossRef]
- 9. Zhang, X. Integrability of Dynamical Systems: Algebra and Analysis, Developments in Mathematics; Springer: Singapore, 2017.
- 10. Demina, M.V. Invariant algebraic curves for Liénard dynamical systems revisited. Appl. Math. Lett. 2018, 87, 42-48. [CrossRef]
- 11. Singer, M.F. Liouvillian first integrals of differential equations. *Trans. Amer. Math. Soc.* **1992**, *333*, 673–688. [CrossRef]
- 12. Christopher, C.J. Liouvillian first integrals of second order polynomial differential equations. *Electron. Differ.* **1999**, *7*, 1–7.
- 13. Giné, J. A note on: "The generalized Liénard polynomial differential systems x' = y, y' = -g(x) f(x)y, with deg $g = \deg f + 1$, are not Liouvillian integrable" [Bull. Sci. math. 139 (2015) 214–227]. *Bull. Sci. Math.* **2020**, *161*, 102857. [CrossRef]
- 14. Llibre, J.; Valls, C. The generalized Liénard polynomial differential systems x' = y, y' = -g(x) f(x)y, with deg $g = \deg f + 1$, are not Liouvillian integrable. *Bull. Sci. Math.* **2015**, 139, 214–227. [CrossRef]
- 15. Llibre, J.; Valls, C. Liouvillian first integrals for generalized Liénard polynomial differential systems. *Adv. Nonlinear Stud.* **2013**, *13*, 825–835. [CrossRef]
- 16. Chèze, G.; Cluzeau, T. On the nonexistence of Liouvillian first integrals for generalized Liénard polynomial differential systems. *J. Nonlinear Math. Phys.* **2013**, *20*, 475–479. [CrossRef]
- 17. Llibre, J.; Valls, C. Liouvillian first integrals for a class of generalized Liénard polynomial differential systems. *Proc. Roy. Soc. Edinburgh Sect. A* 2016, 146, 1195–1210. [CrossRef]
- 18. Demina, M.V.; Valls, C. On the Poincaré problem and Liouvillian integrability of quadratic Liénard differential equations. *Proc. Roy. Soc. Edinburgh Sect. A* 2020, *150*, 3231–3251. [CrossRef]
- 19. Demina, M.V. Novel algebraic aspects of Liouvillian integrability for two-dimensional polynomial dynamical systems. *Phys. Lett.* A **2018**, *382*, 1353–1360. [CrossRef]