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Abstract: This article deals with the optimization of the operation of hybrid microgrids. Both the
problem of controlling the management of load sharing between the different generators and energy
storage and possible solutions for the integration of the microgrid into the electricity market will be
discussed. Solar and wind energy as well as hybrid storage with hydrogen, as renewable sources, will
be considered, which allows management of the energy balance on different time scales. The Machine
Learning method of Decision Trees, combined with ensemble methods, will also be introduced to
study the optimization of microgrids. The conclusions obtained indicate that the development of
suitable controllers can facilitate a competitive participation of renewable energies and the integration
of microgrids in the electricity system.
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1. Introduction

In recent years, the microgrid paradigm has emerged, introduced in the early 21st
century by Lasseter [1] as an approach that considers generation and associated loads as a
subsystem or microgrid. A microgrid can be considered as a set of loads, generators and
storage that can be managed in isolation or connected to the rest of the grid in a coordinated
manner to supply electricity reliably [2–7]. In emergency situations (faults, disturbances,
etc.), the generators and the corresponding loads can be separated from the distribution
grid, maintaining service without damaging the integrity of the system. Although originally
associated with electricity grids, the concept has been broadened to any set of equipment,
such as loads, storage systems and generators, which operates as a unique manageable
system that can provide both electrical and thermal power or fuel to a given area [8].
Today, the operation of Distributed Energy Resources (DER) together with manageable
loads (domestic consumption or electric vehicles) and various forms of storage such as
batteries, supercapacitors or flywheels, is at the core of the hybrid microgrid concept [9].
A microgrid can operate interconnected to the utility through the main distribution grid,
using the so-called Point of Common Coupling (PCC), or in island mode, and can also be
interconnected with other microgrid systems, which can lead to more complex structures.

The management of hybrid microgrids presents many challenges [10,11], as they can
operate either in island mode or connected to the main grid through the PCC. Proper
management of the microgrid is, therefore, necessary for stable and economically efficient
operation in both situations. The management system must control and adjust both
frequency and voltage in either operating mode, share all the loads between the different
Distributed Generators (DG) and storage, control the flow with the main grid and optimize
operating costs. In grid-connected mode, voltage and frequency will be set by the main
grid, which has synchronous generators and large rolling storage systems.

A necessary step in the difficult process of managing a hybrid microgrid is the math-
ematical modeling of the aspects (power flow, generation, storage, etc.) of that grid, for
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a next analysis with method. Several methods are, today, applying for this aim: optimiz-
ing energy management. Different methods and algorithms have been developed, and
are developing [12,13], such as heuristic methods, optimization methods and Machine
Learning methods, which will be predominant in the near future since they can compete in
accuracy with the others, and because they can be adapted to different topologies, having
enough data.

We present in this article a detailed and deep mathematical modeling development,
which is not normally found in the bibliography, and is the basis of two heuristic methods
(Hysteresis Band Control and control by means of Fuzzy Logic) and the Decision Trees Ma-
chine Learning method, combined with ensemble methods, concluding with a comparison
of these methods in a microgrid.

This article is organized as follows: the next section presents the main challenges and
functions of hybrid microgrids, along with some benefits that can be derived from their
correct operation. Section 3 introduces energy management systems and their need to
be modeled mathematically. Section 4 then mathematically models the main aspects of
a hybrid microgrid to be taken into account when managing them, such as power flow
equations, the generation of electrical energy, its storage, power converters, energy con-
sumption and CO2 emissions and other factors. In Section 5, the metaheuristic techniques
are developed: they will be defined and their types will be classified according to the
process they follow. The main ones (the Hysteresis Band Control and control by means of
Fuzzy Logic) will be developed, although at the end of the chapter, mention will be made of
some techniques that are either evolutions of other techniques or that are less well known
but are widely used due to their good results. Section 6 introduces the Machine Learning
method of Decision Trees, their basis, classification and some applications, to continue
with the development of Decision Trees. In that section, bagging and boosting ensemble
methods are also introduced. Section 7 details the design and experimental results obtained
from the comparison operation of a laboratory microgrid. Section 8 discusses some of the
open lines of research, and finally ends with the conclusions, where the two main ones
are the mathematical modeling compiled in a single article, including hybrid components
(renewable energy and storage), and that the Decision Tree method can be applied to
the energy management of a hybrid microgrid, but without a great advantage over more
classical methods such as Hysteresis Band Control or the application of Fuzzy Logic.

2. Management of Hybrid Microgrids

The objective of the management and control of a microgrid is to provide the energy
demanded by the loads, using generation and storage systems efficiently and reliably,
both under regular conditions and when contingencies occur, whether or not there is a
connection to the external network.

Hybrid microgrids introduce a number of operational challenges that must be taken
into account in the design of their management and protection systems, due to certain
particularities that distinguish them from other systems. According to Olivares et al. [14],
the most relevant are:

• Power flows. In contrast to conventional grids, the integration of DGs in low voltage
can result in bi-directional power flows and lead to difficulties in protection systems
or undesirable flow patterns.

• Stability. Local oscillations may occur as a result of the interaction of DG management
systems and problematic transitions between stand-alone and grid-connected mode.

• Network model. The generally accepted assumptions of three balanced phases, induc-
tive transmission lines and constant loads become meaningless in this type of network,
leading to the need to adapt the models to the new situation. A hybrid microgrid is
intrinsically subject to load unbalance by the DGs themselves.

• Low inertia. The dynamic characteristics of DG equipment, fundamentally those that
are electronically coupled, are different from those based on large generation turbines.
If appropriate monitoring and management measures are not implemented, the low
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inertia of the system can lead to considerable frequency deviations in the isolated
mode of operation.

• Uncertainty. In hybrid microgrids there is greater uncertainty regarding demand and,
above all, generation, as the use of renewable energies means that generation is linked
to environmental conditions. Therefore, reliable and economic operation must take
into account weather forecasting.

Under these circumstances, the management system must ensure reliable operation of
the microgrid. The main functions that can be requested from the management system in
the microgrid are [14–16]:

• Control of voltages and currents in the various DGs, according to the standards and
adequately reducing oscillations.

• Frequency and voltage regulation in both stand-alone and grid-connected modes.
• Power balancing, when changes are produced in both generation and load, while

maintaining voltage and frequency within acceptable limits.
• Demand Side Management (DSM) mechanisms that allow some fluctuation in the

demand of a part of the loads to adapt to the requirements of the hybrid microgrid.
• Smooth transition between operating modes, using the most appropriate strategy

for each of them and promptly identifying the situations that produce the switching.
Resynchronization with the main network.

• Economic dispatch, distributing the load between the different DGs and storage
systems in such a way as to reduce the cost of operation, while maintaining reliability.
Optimization of the cost of operation will include maximizing the economic benefit in
the case of grid connection.

• Management of power flows between the microgrid and the main network and, where
appropriate, with other microgrids.

3. Energy Management System (EMS)

The architecture of a system is defined as the fundamental organization of a system,
including its components, the relationships between them and the environment and the
principles that govern its design and evolution [17,18]. Among the different control archi-
tectures, centralized, decentralized and distributed control architectures have been widely
used in industry. On the one hand, the centralized implementation stands out for having
greater precision, since the control of the process in question is carried out by a single
controller, which receives all the signals provided by the network sensors and, after the
control process, issues the values to be taken by the different actuators to achieve correct
operation [19]. It is therefore a master–slave configuration in which the controller tries to
optimize the operation of a set formed by all the subsystems of the network or process,
leaving aside the interest that the subsystems themselves may have in optimizing their
own operation at the expense of the common good. On the other hand, the decentral-
ized implementation delegates the control problem to several controllers, reducing the
computational expense, but also reducing the accuracy of the controller, as input/output
data may overlap. Undoubtedly, the great benefit of this type of architecture lies in the
ease of implementation with respect to centralized implementation, due to the reduction
of a problem into multiple problems of less difficulty. Halfway between centralized and
decentralized implementation is the distributed control architecture. In this architecture,
there are problems that are related to each other, allowing the coordination of subsystems.
This topology is characteristic of microgrids in which each subsystem has a control objective
that is different from the others. The higher the number of components in the microgrid,
the higher the data traffic between the different controllers and subsystems, thus requiring
more bandwidth in the communication system. However, a distributed implementation
can reduce data traffic compared to a centralized one, due to the reduced difficulty of the
‘local subproblems’ that make up the optimization problem.

A fundamental part of a microgrid is the control system, and more specifically, the
control strategy or method that will manage the operation of the microgrid in terms of
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energy generation and demand, so that the energy storage and the external distribution
network can satisfy, at all times, the energy balance in the system as a whole. The Energy
Management System (EMS) is the system that performs this task, trying to achieve an
efficient use of the different components of the microgrid [20,21]. In order to achieve this
goal of efficient use, mathematical modeling of the parts of the system is essential.

4. Mathematical Modeling
4.1. Power Flow Equations

Each interconnecting component of an electrical network is called a branch or line
and links a node n to another node m in the network. A line can be modeled by its single-
phase equivalent circuit. This equivalent circuit accounts for the electrical properties of
the conductors (conductivity and insulation) and the physical properties (diameter and
distance between conductors). The most commonly used equivalent circuit of a line is the
equivalent Π, although there are other models such as T. The complex admittance (inverse
of impedance) values are represented by the letter Y together with an arbitrary number
and each bus can have a generator connected to it at a voltage represented by the letter V +
bus number.

Expressing the magnitudes in complex form, assuming a permanent and balanced
sinusoidal regime, the system can be represented, in compact matrix notation, as follows:

I = YBUSV (1)

where I is the column vector of currents at each node, V is the column vector of voltages
at each node and YBUS is the admittance matrix. The admittance matrix is composed of
complex numbers and has well-known properties: it is symmetrical, each element Ynn of
the diagonal is the sum of the admittances of the equivalent circuits Π that are connected
to node n, and the off-diagonal elements Ynm are the negative of the admittance of the
equivalent Π connected between nodes n and m. Therefore, the admittance matrix is a
square matrix of the same dimension as the number of buses. For each current n of the
column vector, the power of bus n can be calculated as a factor of one, as follows:

sn =
Vn I∗n
Sbase

=
Vn

Sbase

(
N

∑
m=1

YnmVm

)∗
=

Vn

Sbase

N

∑
m=1

Y∗nmV∗m =
N

∑
m=1

vnvmejθnm(Gnm − jBnm), n = 1, . . . , N (2)

where vn is the modulus of Vn in per unit, θnm is the angle difference θn–θm, and Ynm is
the element nm of the admittance matrix Gnm + jBnm also in per unit (pu). With Euler’s
formula, one can write the above equation in rectangular coordinates in the complex plane
as shown below:

sn =
N

∑
m=1

vnvm(cos θnm + j sin θnm)(Gnm − jBnm) n = 1, . . . , N (3)

Remembering that the complex part of the apparent power is the reactive power and
the real part is the active power, the two can be separated as follows:

pn =
N
∑

m=1
vnvm(Gnm cos θnm + Bnm sin θnm) n = 1, . . . , N

qn =
N
∑

m=1
vnvm(Gnm sin θnm − Bnm cos θnm) n = 1, . . . , N

(4)

The above representation is compact and allows observation of the asymmetric and
non-linear character of the power flow equations, but to apply the relevant approximations
and obtain a linearization, the special structure of the admittance matrix is considered:
the elements of the diagonal Ynn are the negative of the sum of the off-diagonal elements
(negative of the admittance of the equivalent Π connected between nodes n and m) of the
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corresponding rows and of the shunt admittances of the bus (superscript sh). This can be
seen in the three bus example below:

YBUS =

Ysh
1 + Y2 + Y8 + Ysh

9 −Y2 −Y8
−Y2 Y2 + Ysh

3 + Y5 + Ysh
4 −Y5

−Y8 −Y5 Y8 + Ysh
7 + Y5 + Ysh

6

 =

Y11 Y12 Y13
Y21 Y22 Y23
Y31 Y32 Y33

 (5)

In the notation currently considered, with ynm = ymn, the admittance matrix is as follows:

YBUS =

ysh
12 + y12 + y13 + ysh

13 −y12 −y13
−y21 ysh

21 + y21 + y23 + ysh
23 −y23

−y31 −y32 ysh
31 + y31 + y32 + ysh

32

 (6)

Ynm =


−ynm i f m 6= n

N
∑

m=1,m 6=n
ynm + ysh

nm i f m = n
(7)

N

∑
m=1,m 6=n

ynm + ysh
nm = ysh

n +
N

∑
m=1,m 6=n

gnm + jbnm = j

(
bsh

n +
N

∑
m=1,m 6=n

bnm

)
+ gsh

n

N

∑
m=1,m 6=n

gnm (8)

Then, the active and reactive power equations for each node can be rewritten, based
on the admittance of each line between bus n and bus m, Ynm = −ynm = −gnm − jbnm, and
of the shunt of bus n as:

pn =

(
gsh

n +
N

∑
m=1,m 6=n

gnm

)
v2

n −
N

∑
m=1,m 6=n

vnvm(gnm cos θnm + bnm sin θnm) n = 1, . . . , N (9)

qn = −
(

bsh
n +

N

∑
m=1,m 6=n

bnm

)
v2

n −
N

∑
m=1,m 6=n

vnvm(gnm sin θnm − bnm cos θnm) n = 1, . . . , N (10)

You can group the summation terms, since the sum is over the same set, and take out
common factor vn in both equations by grouping the conductance and susceptance coefficients:

pn = gsh
n v2

n +
N

∑
m=1,m 6=n

gnmvn(vn − vm cos θnm)− bnmvnvm sin θnm n = 1, . . . , N (11)

qn = −bsh
n v2

n +
N

∑
m=1,m 6=n

−bnmvn(vn − vm cos θnm)− gnmvnvm sin θnm n = 1, . . . , N (12)

Different assumptions can now be made to linearize the power flow. Each approach
assumes a different approach to the problem; however, the following assumptions are
common according to the normal operation of an electrical power system [22,23]:

1. The voltage values, expressed in per unit (pu), are very close to l.
2. The difference between the angles of two interconnected buses is a small number

close to 0.

Based on the above, to eliminate the non-linearity of the trigonometric functions, they
are approximated by their Taylor series centered at zero and neglecting terms of order
equal to or greater than three:

cos θnm ∼ 1 +
θ2

nm
2

, sin θnm ∼ θnm (13)
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However, the quadratic term is non-linear and, in addition, there are products of
several variables, which is also a non-linear function. The power equations at each bus n
take the following form:

pn = gsh
n v2

n +
N

∑
m=1,m 6=n

gnmvn

(
vn − vm − vm

θ2
nm
2

)
− bnmvnvmθnm n = 1, . . . , N (14)

qn = −bsh
n v2

n +
N

∑
m=1,m 6=n

−bnmvn

(
vn − vm − vm

θ2
nm
2

)
− gnmvnvmθnm n = 1, . . . , N (15)

At this point, there is currently no consensus on the best approximation of the non-
linear terms. Several approaches consider a second-order approximation based on the
Taylor series of the products of two variables, which results in a linear form of the equations,
except for the losses. In fact, power losses are non-convex quadratic functions which forces
relaxations, such as piecewise linear function approximation or binary expansion, which
give rise to a mixed integer linear programming problem (known by its acronym as MILP
or MIP), or also convex relaxation, which generates a second-order conic programming
problem; both are linear cases considering v2

n as a variable [24–27].
Since MIP-type problems are more costly to solve in terms of resources and time than

continuous linear problems, other authors propose not considering the second order terms
of the Taylor series expansion, both of the trigonometric functions and of the products of
the variables, in such a way that the resulting flow is symmetric and allows calculating the
voltage and angle value at each bus, as well as the powers, however in this approximation,
losses are not represented [28].

Taking the first term of the trigonometric functions expansion, and according to
Yang et al. [29], three linear approximations of the term vn(vn − vm) are compared, being the
one with the least error, in terms of voltage and active power flow, the one that considers
a decomposition of the bus voltages as vn = 1 + ∆vn, where ∆vn is an order of magnitude
smaller than vn, therefore:

vn(vn − vm) = (1+ ∆vn)(∆vn − ∆vm) = ∆vn − ∆vm + ∆vn∆vn − ∆vm∆vn ∼ ∆vn − ∆vm (16)

In the resulting product of the expansion, the multiplication of the difference of the
voltages, ∆vn∆vn, is neglected with respect to its nominal value of 1 pu, since the result is at
most two orders of magnitude smaller than vn; thus vn(vn − vm) ' vn − vm. Furthermore,
the voltage squared multiplying the shunt terms is simply approximated by the value of
the voltage at that bus, and in the case of reactive power the shunt conductance is assumed
to be negligible compared to the shunt susceptance. This gives rise to a linear problem in
the voltage and angle variables [30,31].

Expanding the product terms of variables by their first order Taylor series gives
the following:

vnvmθnm ' vn,0vm,0θnm + (vnvm − vn,0vm,0)θnm,0 = θnm
vnvmθ2

nm ' vn,0vm,0θ2
nm + (vnvm − vn,0vm,0)θ

2
nm,0 = θ2

nm
(17)

where the subscript 0 denotes the point around which the expansion is performed, which
in the case of the voltages is vn,0 = vm,0 = 1, and in the case of the angle difference is
θnm,0 = θ2

nm,0 = 0, justified by the usual operating conditions in most power systems [23].
The power equations at each bus are then as follows

pn = gsh
n v2

n +
N

∑
m=1,m 6=n

gnm

(
v2

n − vnvm −
θ2

nm
2

)
− bnmθnm (18)
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qn = −bsh
n v2

n +
N

∑
m=1,m 6=n

−bnm

(
v2

n − vnvm −
θ2

nm
2

)
− gnmθnm (19)

Neglecting vnvm and θ2
nm, together with the approximation v2

n ' vn, the model of (29)
is obtained, while taking the voltage squared as independent variable, the above equations
can be rewritten, considering the following voltage product transformation:

vnvm =
v2

n + v2
m

2
− (vn − vm)

2

2
(20)

As

pn = gsh
n v2

n +
N

∑
m=1,m 6=n

gnm

(
v2

n − v2
m

2
+

(vn − vm)
2

2
− θ2

nm
2

)
− bnmθnm (21)

qn = −bsh
n v2

n +
N

∑
m=1,m 6=n

−bnm

(
v2

n − v2
m

2
+

(vn − vm)
2

2
− θ2

nm
2

)
− gnmθnm (22)

Approximating the terms with θ2
nm and (vn − vm)

2, which account for the losses,
by linear functions of θnm and v2

n − v2
m, we would now yield the method proposed by

Yang et al. [32], which is linear with respect to the voltage squared and the angle value.
However, rearranging the above expressions,

pn = gsh
n v2

n +
N

∑
m=1,m 6=n

gnm
v2

n − v2
m

2
− bnmθnm + gnm

(
(vn − vm)

2

2
− θ2

nm
2

)
(23)

qn = −bsh
n v2

n +
N

∑
m=1,m 6=n

−bnm
v2

n − v2
m

2
− gnmθnm − bnm

(
(vn − vm)

2

2
− θ2

nm
2

)
(24)

and considering the following approximation of (vn − vm)
2/2 around the point vn = vm = 1

(vn − vm)
2

2
' 1

2

[
(vn − vm)

vn + vm

2

]2
=

(
v2

n − v2
m
)2

8
(25)

the formulation of (26) is obtained:

pn = gsh
n v2

n +
N

∑
m=1,m 6=n

gnm
v2

n − v2
m

2
− bnmθnm + gnm

((
v2

n − v2
m
)2

8
− θ2

nm
2

)
(26)

qn = −bsh
n v2

n +
N

∑
m=1,m 6=n

−bnm
v2

n − v2
m

2
− gnmθnm − bnm

((
v2

n − v2
m
)2

8
− θ2

nm
2

)
(27)

In this case, given that the equations show the value of the angle difference θnm and its
square θ2

nm, as well as the square of the squared voltage difference (v2
n − v2

m)
2, it is necessary

to linearize these two terms by piecewise linear functions to properly estimate the losses.
At this point it is necessary to make a decision on the approximation of the power flow

equations to be implemented in solving the problem. However, it requires two additional
linearizations by piecewise functions, which makes it slower to solve than the simplified
method of (30), which does not include terms that account for losses but is computationally
faster since it only involves one linearization corresponding to the power limitation of
the lines.

Since the objective of implementing these equations is to ensure the correct operation
of the power system under study under different scenarios, the procedure involves the
resolution of these flows in all cases, as the number of scenarios is very high, a more
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elaborate description results in possibly unaffordable computation times, which depends
on the number of scenarios considered and the time intervals contained in each one.

In order not to limit the scenarios to be considered and the time steps, we implement
the model evaluated by Yang et al. [29] and Morvaj et al. [33], originating from (30).
As the case considered is a distribution network whose lines have a length of less than
5 km, without committing significant error, the shunt admittance of the lines can be
considered null [34,35]. Naming vnm = vn − vm, the linearized power flow equations are as
shown below:

pn = pG
n − pD

n =
N

∑
m=1,m 6=n

gnmvnm − bnmθnm =
N

∑
m=1,m 6=n

pnm n = 1, . . . , N (28)

qn = qG
n − qD

n =
N

∑
m=1,m 6=n

−bnmvnm − gnmθnm =
N

∑
m=1,m 6=n

qnm n = 1, . . . , N (29)

where the superscripts denote power generation, G, and power demand, D. Each summand
nm of the active and reactive power expressions is the power flow per each line linking bus
n to bus m.

On the other hand, the maximum power constraint through the lines is defined by
the inequality:

p2
nm + q2

nm ≤ s2
max,nm = i2max,nmv2

x ∀x = n, m (30)

where Smax, is the maximum apparent power in per unit (pu) that can circulate through each
line, imax, is the maximum current that can pass through the conductor and vx is the voltage
at bus n or m. The manufacturers provide the maximum current limit because the limiting
factor is the temperature of the conductor due to the heat caused by the passage of the
current. The model of the conductors is given by the standards and technical requirements
that can be found in the technical literature [36], and the value of the maximum current
in [37,38], which is 285 A for underground conductors (20 ◦C ground temperature and
70 ◦C conductor temperature), and 262 A for overhead conductors (at 75 ◦C conductor
temperature and 35 ◦C ambient temperature). This is what is known as the thermal limit of
the conductors and is a factor to be considered in lines shorter than 80 km, as is the case;
while between 80 and 320 km the limiting factor is the voltage drop, in lines longer than
320 km it is the stability of the angle [34]. The current limit depends on the conductor tem-
perature, since the electrical parameters of the conductor vary with temperature, however,
the change in these parameters would modify the power flow and therefore an iterative
calculation would be necessary, in fact, this maximum current decreases with ambient
temperature and the dynamics of heat transfer would have to be considered, which gives
rise to a non-linear problem: the current limit of the conductors increases non-linearly with
conductor temperature and decreases with ambient temperature [38]. This variation is not
considered to be significant and the maximum current is assumed to be fixed and equal to
that given above, at the given temperature.

4.2. Generation of Electrical Energy

The parameter representing the photovoltaic active power leaving the solar field and
entering the inverter at each bus, in each scenario and time instant, is given by the following
formula [39]:

Ppv(t) = Pnom
G(t)
Gn

[
1− α

(
T(t) +

G(t)
800

[NOCT − 20]− 25
)]

(31)

where T is the ambient temperature, Pnom is the power at nominal conditions, Gn is the
nominal irradiance in W/m2 (this value is sometimes generalized to 1000 [40]), G is the
incident irradiance in W/m2, α is the parameter of the power-temperature characteristic in
%/◦C, NOCT takes the value of 45 ◦C and is the nominal operating temperature of the cell
at 800 W/m2 with 20 ◦C ambient temperature and 1 m/s wind. The alpha factor of the effi-
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ciency is negative, which implies an increase in efficiency with decreasing temperature. The
inverter efficiency and other characteristics are introduced in more detail in later sections.

In the case of wind turbines, the parameter denoting the maximum energy extractable
from the device is calculated using its power curve, but applying the inverter efficiency to
the proportional part of the power flowing through the inverter:

Pmax
wt (t) = Pwt(t)(0.7 + 0.3ηb2b(t)) ' Pwt(t)(0.7 + 0.3 · 0.965) = 0.9895Pwt(t) (32)

Pwt(t) =


2100

[
1− e−(

c(t)
5.692 )

3.398
]

2 m/s ≤ c(t) < 20.5 m/s

4378− 111c(t) 20.5 m/s ≤ c(t) ≤ 25 m/s

0 any other case

(33)

This gives the upper limits of active power injection to the grid, those of reactive
power are related by means of the equations of the converters presented in the section
corresponding to power converters.

4.3. Electrical Energy Storage

This section presents the equations that give the state of charge of each storage system
on each bus, in each scenario and at each moment in time. The active and reactive power
variables that appear represent the energy output/input of the system through the converter
that connects the ESS (Energy Storage System) to the grid.

The following stochastic variables are defined for the load power, the discharge power
and the state of charge of each ESS at each bus n for time t:

PESS,n
in (t), PESS,n

out (t), SOC(t) ≥ 0 (34)

These powers are the real effective powers received or delivered by the ESSs, that is,
they include the load and converter efficiency in their definition, which is explained in the
following development.

The weight of the problem lies in the binary part, not in the linear part, therefore it
is convenient to create a variable for loading and another for unloading and to use only a
binary variable and its complementary to avoid simultaneous loading and unloading. This
restriction is as follows:

PESS,n
in (t) ≤ bESS,n(t)PESS,n

in,max, PESS,n
out (t) ≤ (1− bESS,n(t))PESS,n

out,max ∀ESS, n (35)

where the subscript max denotes the nominal power of each storage system (ESS) on each
bus n and the binary variable is bESS,n which takes the value 1 or 0 at each time t for each
ESS on each bus n and each scenario. This constraint forces the load to zero if there is
unloading and vice versa.

On the other hand, the load state model is estimated to be linear and without capacity
reduction due to unloading depth or gradation. The correctness of this assumption is
ensured by adding a number of constraints to limit the state of charge to a safe range of
each ESS. The state of charge of each ESS on each bus n at each time t and scenario is given
by the following expression:

SOCESS,n(t) = (1− α∆t)SOCESS,n(t− 1) + PESS,n
in (t)∆t− PESS,n

out (t)∆t ∀ESS, n (36)

where SOC represents the state of charge, the parameter α is the relative self-discharge
per unit time and ∆t is the time step. The upper limit of the state of charge of each ESS is
defined by the following constraints:

SOCmax
ESS,nDODESS,n ≤ SOCESS,n(t) ≤ SOCmax

ESS,n(1− DODESS,n) (37)
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where DOD is the relative depth of discharge parameter of each ESS on each bus, set to zero
for flow batteries and 0.1 for lithium-ion batteries and hydrogen cells, as already introduced
in the section on system components.

All these quantities are expressed in International System units, but to link these
subsystems to the grid they must be expressed in per unit, and for this purpose they are
simply redefined through the quotient between the base power. In addition, the definition
of the charging and discharging power variables relate them to the converter that connects
these systems to the grid and is where the charging and discharging efficiencies are applied,
as well as those of each converter, as noted at the beginning:

pESS,n
out =

PESS,n
out
Sbase

=
pESS2net,n(t)

ηESS,n
out ηESS,n

conv
, pESS,n

in (t) =
PESS,n

in (t)
Sbase

= pnet2ESS,n(t)η
ESS,n
in ηESS,n

conv (38)

where conv refers to the power converters and the subscripts ESS2net indicate power transfer
from the storage system to the grid and net2ESS from the grid to the storage system.

In the application case, the charging and discharging efficiencies are those justified in
the system components section and the efficiency of the converters is approximated in a
constant way based on the commercial model also chosen in the aforementioned section,
with a value of 0.98.

Finally, constraints are necessary to force the initial SOC equal to the final SOC, during
the time horizon, in order to increase the lifetime of the ESS. This variable, SOC0

ESS,n, is
not stochastic:

SOCESS,n(t0) = SOC0
ESS,n, SOCESS,n(T) = SOC0

ESS,n (39)

4.4. Power Converters

One aspect to consider for power converters is their performance curve: PV plants
and storage systems need to be able to deliver more than a certain percentage of the
inverter’s rated power for the power output to be effective and work above the bend of the
performance curve, whenever it is considered appropriate for them to inject power.

These curves describe a potential behavior and the three parameters that characterize
them can be adjusted from a number of real samples or from the curve itself to obtain
the continuous version. In other words, they are power functions that introduce non-
linearities to the problem and must therefore be linearized. This approximation error is
not remarkable since the performance reaches high values at relatively low powers. In this
case, a discretization of the curve into four intervals is chosen. In order to model the active
power output, parameters are created that represent the maximum power limit that can
be generated at any given time by each system on each bus and in each scenario. These
parameters are characterized by the super index max. Then, for example, the maximum PV
active power produced at each time t is given by the following formula:

Pmax
pv (t) =



η1Ppv(t) Ppv(t) ∈ [P0, P1]

η2Ppv(t) Ppv(t) ∈ (P1, P2]

η3Ppv(t) Ppv(t) ∈ (P2, P3]

...
ηuPpv(t) Ppv(t) ∈ (Pu−1, Pu]

=


0.98Ppv(t) 0.4 ≤ Ppv(t)/Pnom

0.972Ppv(t) 0.2 ≤ Ppv(t)/Pnom < 0.4

0.955Ppv(t) 0.08 ≤ Ppv(t)/Pnom < 0.2

0 any other case

(40)

where Ppv(t) is the active power coming from the solar field at time t, ηn are the yields
corresponding to the average of the discretized interval, Pnom is the nominal power of the
inverter of the solar field and Pu, Pu−1 are the powers of each interval. This expression is
applied to each PV system in each bus and scenario. In the specific case of the wind turbine
with doubly fed induction machine (DFIG) this efficiency only applies to the percentage of
the power that circulates through the converter, that is, about 30% of the generated power.
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Another important component of these machines is the ability to absorb/inject reactive
power. Based on the specific characteristics of each manufacturer’s model and for each
application, the operating region of the converters is limited differently. In the case of PV
inverters, the active power is limited to non-negative values so that the portion of the circle
with the positive semi-axis of abscissa (right half of the circle) is obtained, in other words,
the following constraints apply:[

sin
(

2πl
k

)
− sin

(
2π(l−1)

k

)]
ppv(t)−

[
cos
(

2πl
k

)
− cos

(
2π(l−1)

k

)]
qpv(t) ≤ sinv sin

( 2π
k
)

0 ≤ ppv(t) ≤ Pmax
pv (t)/Sbase, −sinv ≤qpv(t) ≤ sinv

(41)

where ppv is the decision variable of active power per unit that the inverter or group of
PV inverters deliver to the grid, qpv is the variable of reactive power per unit that the
PV inverter delivers to the grid and sinv is the parameter corresponding to the nominal
or maximum apparent power of the inverter also expressed in per unit (pu). Here sinv
is a deterministic parameter while ppv and qpv are stochastic variables. Again, the above
expression is applied to each bus where there is a PV installation.

For wind turbines, the constraint is similar except that the power factor fpwt, both
inductive and capacitive, is limited to maximum values of 0.95, as indicated by the manu-
facturer [41]:[

sin
(

2πl
k

)
− sin

(
2π(l−1)

k

)]
pwt(t)−

[
cos
(

2πl
k

)
− cos

(
2π(l−1)

k

)]
qwt(t) ≤ swt sin

( 2π
k
)

0 ≤ pwt(t) ≤ Pwt(t)/Sbase, − tan(cos−1( f pwt))swt ≤qwt(t) ≤ tan(cos−1( f pwt))swt

(42)

The following consideration should be noted: inverters only provide/absorb reactive
power from the grid if there is active power available in the solar field. Likewise, the DFIG
only manages reactive power when it is possible to generate active power. In principle, this
limitation is not due to the design of the inverters, but is normal practice in this type of
installation. In algebraic terms, this is achieved by modifying the restriction of the reactive
power limits. The photovoltaic case is shown as an example, but for all other converters it
is analogous:

−sinv Pmax
pv (t) > 0

0 Pmax
pv (t) = 0

}
≤ qpv(t) ≤

{
sinv Pmax

pv (t) > 0
0 Pmax

pv (t) = 0
(43)

The converters used in storage systems are a special case since the active power flow
can be both positive and negative (discharge and load), however, the approach applied is
to separate these two processes (to save binary variables and thus speed up the resolution)
and apply a similar constraint to each one together with the additional reactive limitations
presented by these converters:[

sin
(

2πl
k

)
− sin

(
2π(l−1)

k

)]
pESS2net(t)−

[
cos
(

2πl
k

)
− cos

(
2π(l−1)

k

)]
qESS(t) ≤ sESS sin

( 2π
k
)[

sin
(

2πl
k

)
− sin

(
2π(l−1)

k

)]
pnet2ESS(t)−

[
cos
(

2πl
k

)
− cos

(
2π(l−1)

k

)]
qESS(t) ≤ sESS sin

( 2π
k
) (44)

where the subscript ESS2net indicates power transfer from the storage system to the grid
and net2ESS from the grid to the storage system. These and the following constraints are for
each ESS, at each bus, at each time and in each scenario. The capacitive (cap) and inductive
(ind) reactive limits are defined by giving a range to the variable as follows:

− sin(cos−1( f pESS,ind))sESS ≤ qESS(t) ≤ sin(cos−1( f pESS,cap))sESS (45)

where sESS is the nominal apparent power of the converter of each storage system.
In this way, the P-Q operating curve of these converters is approximated in such a

way that there is a circle cut by a horizontal straight line at the top (capacitive power
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factor) and by another horizontal straight line at the bottom (inductive power factor).
This approximation is conservative in the sense that it does not consider power peaks
slightly above nominal, as these converters allow according to the manufacturer, nor does it
represent the performance variation in a non-linear way in two quadrants: first and fourth.
Note that these considerations could be added by combining circles that cut in such a way
that the operating area is only that enclosed by all of them at the same time, however, this
increases the computational time and it is not considered meaningful to implement this
detail in this case.

The complete energy balance corresponding to the pu power generation can now be
expressed as shown below:

pG
n (t) = pn

wt(t) + pn
pv(t) + pn

ESS2net(t)− pn
net2ESS(t) (46)

qG
n (t) = qn

wt(t) + qn
pv(t) + qn

ESS2net(t)− qn
net2ESS(t) (47)

Here all variables are expressed for each time point t, each bus n and stochastic scenario.

4.5. Energy Consumption

The consumption data are stochastic parameters as they vary over time, for each bus
and each scenario. They are defined on the basis of the demand curve proposed in the
literature [42,43], but modified to make it similar in shape to the Spanish typical curve. In
turn, in the aforementioned literature, it is proposed that different loads depend on whether
they correspond to the residential or industrial sector, and we have sought to maintain
this distinction. The power factor of each bus is also known from the benchmark and the
nominal power is given in its apparent form. The network demand is given as a percentage
of the nominal power of each bus. Then, the active power to be supplied at each bus n is
given by the following expression:

pD
n (t) =

1
Sbase

(Sindus(n) f pindus(n)rateindus(t) + Sres(n) f pres(n)rateres(t)) (48)

where res denotes residential and indus denotes industrial, furthermore here S corresponds
to the nominal apparent power of each bus. Equivalently, the reactive demand is con-
structed as follows:

qD
n (t) =

1
Sbase

(
Sindus(n)

√
1− f pindus(n)

2rateindus(t) + Sres(n)
√

1− f pres(n)
2rateres(t)

)
(49)

4.6. CO2 Emissions and Other Factors

Finally, to define the objective function, it is necessary to estimate the CO2 emissions
corresponding to the import of energy from the transmission grid. This is achieved by
applying a time-varying emissions factor that represents the number of metric tons of CO2
that it costs to produce one MWh unit of energy. This factor is considered to be similar to
the Spanish factor and depending on the case study will be constant over time or may vary.
This factor is deterministic because there is no correlation with other variables and there
are no studies of its prediction.

The CO2 emissions corresponding to the import of energy from the slack bus over a
period T are calculated using the following expression:

Emissions =
T

∑
t

fCO2(t)pslack(t)Sbase∆t (50)
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The effect of this factor is studied in different sections. Note that the slack bus powers
are free variables and if, for example, energy export is not allowed or the power factor is to
be limited, constraints such as the following must be added:

pslack(t) ≥ 0, qslack(t) ≥ 0 (51)

5. Heuristic Methods

Heuristic methods have been commonly used in the field of optimization, being able
to obtain solutions quickly to complex problems that, even with the use of clusters of
computers, may not have an optimal solution. To do so, they sacrifice solution accuracy at
the cost of reduced computational cost and time. Nevertheless, they are capable of finding
an exact solution to problems of relative simplicity.

These methods are often used in off-grids to find a suitable location for the devel-
opment of this type of microgrids [44,45]. In recent years, research is being carried out
on certain metaheuristic methods, such as Particle Swarm Optimization and Salp Swarm
Algorithm, among others, which are population-based methods with promising results [46].

Heuristic methods are also applied, with success, to improve the effectiveness of the
distribution network by means of reconfiguration. Reconfiguration of the distribution
network aims to find the optimal combination of all switches in the distribution, mainly
determining proper sizing and siting of DG together with network reconfiguration. In
this way, some researchers, like Muhammad et al. [47], use the discrete network reconfig-
uration of the data set method, employing the Water Cycle Algorithm (WCA) together
with dataset approach to reduce the complexity of search space. This type of method
has good convergence performance, and can obtain a global optimal solution for single-
objective optimization problems. Others, such as Helmi et al. [48], propose the Harris
Hawks Optimization (HHO) to minimize the power losses of the network.

However, all heuristic methods that are inspired by natural processes have parameters
that are highly dependent on their own algorithm; therefore, the algorithm may behave
differently affecting its performance [49]. Furthermore, according to Yang, and in relation
to computational cost, no consensus has been reached on what are the best values or
configurations of an algorithm, nor on possible ways to adjust these parameters to achieve
the best performance [50]. On the other hand, the selection of a method as the most
appropriate for solving a problem such as energy management in hybrid microgrids is an
open problem [51]. This is largely based on the “no free lunch” theorem [52] of mathematical
optimization, which shows that at the same time that a heuristic is very efficient for one
collection of problems, it is very inefficient for another collection.

So, there are a multitude of methods that can be applied in this field, without any of
them being clearly better than any other for any topology and type of grid, as we have
discussed in previous sections. Even though the optimal power flow is a non-convex prob-
lem [53], convex approximations for the power flow equations have been studied [54,55],
but generally assuming strong approximations, such as all generators are constant current
injections, which is far from real microgrids and further from hybrid microgrids [56].

In this paper, we try to optimize energy management without reconfiguring the
network, assuming that the location and schedule of DG and storage banks does not depend
on the utility, but on the consumers, and therefore, it is not in their hands to reconfigure
the network. Thus, we will not take into account, for example, the temporary shifting of
loads, which is currently possible with electric vehicles. The study of controllable loads
could be attacked by stochastic optimization algorithms, according to Hosseini et al. [57]
or Barbato et al. [58]. In the following, two heuristic methods known in the study of
microgrids will be described, namely: Hysteresis Band Control and Fuzzy Logic Control.

5.1. Hysteresis Band Control

The heuristic method of Hysteresis Band Control has been a certain success in the
field of microgrids. According to the example proposed by Ipsakis et al. [59], from which
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this control strategy will be explained, a hysteresis band consists of the operating range
existing between two limit values of a problem variable, in this case, the State of Charge
(SOC) or State of Charge of the accumulator. In this way, the storage units of the microgrid
in the example, electrolyzer and fuel cell, absorb energy or give it up according to the band
defined by the limit values mentioned:

• in case of lack of power, it will be the fuel cell that will give up power; and
• in case of reaching the maximum state of SOC, it will be the turn of the electrolyzer,

which will start to operate at that moment of excess power.

This way of operating has benefits such as reducing the number of start-ups and shut-
downs of the electrolyzer, which can reduce its life expectancy. Also, the example method
achieves a protection of the accumulator by excluding it from excessively long operation.

Appropriate SOC limit values must be calculated to achieve effective control and in
accordance with the operating requirements of the problem.

5.2. Control by Means of Fuzzy Logic

The Fuzzy Logic Control (FLC) method is characterized by reaching solutions to
problems in which the data, variables, or in short, the available information, is ambiguous
or imprecise, hence the term fuzzy. Therefore, fuzzy control is characterized by being
described by what could be called discard logic, that is: If a certain event occurs, then the
control signal will take the value ‘X’.

This is why Fuzzy Logic Control (FLC) lacks accuracy when it comes to providing
robust solutions. However, Fuzzy Logic Control has some advantages that make it attractive
for tackling certain types of problems, these are [60,61]:

• It provides an orderly and efficient working structure from information given orally
and fuzzily by human experts.

• Due to its simplicity, it is easy to understand and simplifies the design of the problem,
which gives it a quick implementation and a lower cost compared to other methods.

• It is capable of generating numerous output signals from any reasonable number of
inputs.

• It does not require a model to find approximate solutions to the control problem and
provides non-linear controllers.

We can brief the concept by explaining its methodology with the following steps:
firstly, the input data provided are processed and a smearing or merging is performed on
them. In this first step, certain qualitative characteristics are given a numerical value. Once
this is done, decisions are made in accordance with logical relationships called Fuzzy Rules.
Finally, the defuzzification process takes place, in which concrete data are obtained that
will be used to generate the appropriate control signals required by the problem.

Despite the ease of implementation of the heuristic methods described above, the
large number of restrictions and variables that appear in the microgrid under study make
them a bad strategy to follow for its control, as it is difficult to find optimal solutions to the
problem [62,63].

6. Machine Learning Methods

Machine Learning is a scientific discipline that tries to make systems learn automati-
cally. Learning, in this context, means identifying complex patterns in millions of pieces of
data [64,65]. The machine that actually learns is an algorithm that reviews the data and
is able to predict future behavior in some fields of knowledge [66–68]. Machine Learning
is therefore a process of knowledge induction, that is, a method of deriving a general
statement by generalizing from statements describing particular cases.

Machine Learning is learning from data, it is discovering the structure and patterns
underlying the data. The main objective of Machine Learning is to extract the information
contained in a dataset to acquire knowledge to make decisions about new datasets [69].
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Formally, and according to Mitchell [70], we can define the algorithms used by Machine
Learning as:

“A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P if its performance at tasks in T, as measured by P,
improves with experience E”.

These learning algorithms are based on a set of data on which to learn and then apply
the experience gained on other sets. It is necessary to evaluate its performance on a set
other than the one on which the system has been trained in order to obtain a valid estimate
of its generalizability to new examples. Thus, the available data set is divided into two
subsets: on the one hand, we have the training set and, on the other one, the validation set
or test set. In this way, the model is generated from the training data and evaluated in the
test set, in which the accuracy of the model can be measured. The obtained result on this
set is a good approximation to the expected one for the new data [71].

Therefore, generalization is one of the key aspects in the design of Machine Learning
algorithms [72]. At the same time, the models must fit the training set and capture all its
information. In this way, the problem of balancing bias and variance arises: bias measures
the average error of the model using different training sets, while variance measures the
sensitivity of the model to small changes in the training data [73]. In other words, very
complex models have a low bias and a high variance, which is known as overfitting. On
the other hand, simple models have a high bias but a very low variance. Overfitting
occurs when, by adding levels to the Decision Tree, the hypotheses are so refined that they
describe the examples used in the learning process very well; however, when evaluating
the examples, an error occurs. That is, it classifies the training data very well, but then it
fails to generalize the test set. This is because it learns down to the noise of the training
set, adapting to the regularities of the training set [74]. Therefore, overfitting will be an
important evaluation indicator to take into account in the study.

Machine Learning algorithms are usually divided into three categories, the first two
being the most common:

• Supervised learning: this type of algorithm is based on prior learning, usually related
to a system of labels associated with the data. This allows them to make decisions
based on the previous data or even make predictions from these data. An example
could be a spam detector, that is, a system that thinks it detects spam and labels an
email as spam based on the patterns it has learned from the email history (keywords
in the subject line, sender, text/image ratio, etc.).

• Unsupervised learning: unlike the previous type, these algorithms do not use prior
knowledge. What they use is all the available data with the aim of finding patterns
among them. If they find such patterns, they try to organize them in some way. For
example, unsupervised learning is applied when you want to extract patterns from
massive social media data, to recommend products or create advertising campaigns

• Reinforcement learning: in this less common case, an algorithm learns from its own
experience. A trial-and-error process is normally used in which correct decisions are
rewarded in some way (with reinforcement factors). In this way, the aim is to make
the best decision in different situations. Examples include: DNA classifications, facial
recognition, etc.

6.1. Operation with Machine Learning Models

The process to be followed for the construction of a Machine Learning system can be
divided into:

1. Data collection. This is usually a tedious process that takes up a large part of the
development of the system, since it is generally necessary to collect large amounts of data
in order to ensure that the used sample is representative of the set under study.

2. Feature selection. This is a critical step since it is necessary to extract those variables
that are useful to distinguish the patterns of each category.
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3. Choice of model. In this step, we will choose the model that best fits our problem
and that achieves the expected performance on the test set. This model, among other tasks,
must maintain the bias-variance balance explained above.

4. Model training. In this phase, the classifier is built, whose parameters are adjusted
from the training data set. Finding the parameters that fit our model is an optimization
problem since the objective is always to minimize a certain objective function.

5. Evaluation of the model. Using the test set, an error measure is set and the
performance of the model is obtained. If the result is not expected, it is necessary to test by
going back to each of the previous points and go through the process again.

In mathematical terms, the principle of Machine Learning, in a supervised learning
context, consists of starting from a sample of learning:

L =
{
(xn, yn)|n = 1, 2, . . . , N , xn ∈ <d, yn ∈ {1, 2, . . . , C}

}
(52)

constituted by n realizations of a pair of random variables (X, Y), to construct a
f : <d → {1, 2, . . . , C} function which, given a new X input vector, can predict with some

degree of certainty the variable Y = f (X). For each observation (xi, yi) of L, the variable
xi ∈ X is called the input variable or explanatory variable and yi ∈ Y the dependent or
output variable [75]. When the dependent variable is discrete or categorical, we speak
about a classification problem; and when it is continuous, about a regression problem. That
is to say, depending on the type of objects that we are trying to predict, there are two types
of problems:

• Classification problems: They try to predict the classification of objects on a set of pre-
fixed classes. For example, classifying whether a news is about sports, entertainment,
politics, etc.

• Regression problems: They try to predict a real value. For example, predict the value
of the stock market tomorrow from the stock market behavior that is stored (past).

One of the most widely used Machine Learning methods is Decision Tree Learning.
This is a method for approximation of discrete-valued functions, robust to noisy data and
able to learn disjoint expressions. There is a family of Decision Tree Learning algorithms:
ID3, C4.5, . . . In turn, based on these Decision Trees, hybrid methods have been created
that build more than one Decision Tree: Bagging, Boosting and Random Forest.

6.2. Decision Trees

Learning through Decision Trees is based on the principle of divide and conquer.
Let L a sample be defined as:

L =
{
(xn, yn)|n = 1, 2, . . . , N , xn ∈ <d, yn ∈ {1, 2, . . . , C}

}
(53)

where N is the number of elements in the data set, C the number of distinct classes and
d the number of variables defining the examples xn in the set. Each of these examples is
represented by a vector xn, which has its corresponding class label yn associated with it and
it is defined by different variables, which can be numerical (their values are real numbers)
or categorical (they take values in a finite set in which there is no ordering relationship).
Sometimes, these vectors xn are also cited as feature vectors.

A T Decision Tree is an ordered sequence of decisions, normally from questions, in
which the next decision depends on the answer to the current one. These decisions are
taken normally from questions that are formulated on the variables that define each x
element in order to assign them a y certain class. This process, including its corresponding
questions, decisions and bifurcations, is naturally represented by means of a tree.

In a Decision Tree, each node of the tree is an attribute (field) of the examples, and
each branch represents a possible value of that attribute. The first node is known as the
root node, which is successively connected to the other nodes until it reaches the leaf nodes,
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those that have no descendants, that is, the end of the branches of the tree. Each node is
assigned one of the questions of the sequence, while each leaf node is assigned a class label.

In this way, the question of the root node is asked of the whole set L, which is
subdivided until reaching the last nodes (leaves), which constitute a disjoint partition of the
initial feature space. This happens because, when given a node, one and only one branch
will be followed by each instance of the training set.

Decision Trees perform well with large volumes of data, as it does not require loading
all data into memory at once. The computation time scales well with a linearly increasing
number of columns [76].

The advantages of Decision Trees are that they are easy to understand and interpret,
rule generation is simple, it reduces the complexity of the problem, and training time is not
very long.

One of the disadvantages is that if an error is made at a high level, successive nodes
would be poorly created. In the construction of a Decision Tree, the most complicated
step is to determine which attribute to base a node on, because if there are many features,
the algorithm would have many options for the training data, and it would be difficult to
construct a Decision Tree.

However, Decision Trees can give good results if they are combined with ensemble
methods. With these methods, instead of learning a single model, several models are
learned, and the estimates from each model are combined.

Ensemble methods are combinations of models. In these techniques, it is necessary
both to define how different models are to be created and how the results of each model will
be combined to generate the final prediction. The aim of ensemble methods is to produce a
better prediction than individual models (individual members of the ensemble).

The most common ensemble methods are Bagging, Boosting and Random Forest. In
all of these methods, the training set is manipulated, but in each case with a different
strategy [77].

In Bagging, different samples are extracted from the training set (bootstrap samples),
and these bootstrap samples are used as if they were the true training set. Boosting, on
the other hand, always works with the full data set, that is, the complete dataset is always
used. In Boosting, we can manipulate the weights of the data in the training set to generate
different models. At each iteration, Boosting learns a model that minimizes the sum of the
weights of the misclassified data.

Finally, Breiman [78] presented an ensemble method called Random Forest where
bagging is used together with a random selection of attributes. At each node of each tree
in the forest, a subset of the available attributes at that node is randomly selected and the
best of them is selected according to the splitting criteria used in the base algorithm. The
number of randomly selected attributes is an input parameter.

7. Results

We have evaluated the following of the proposed models explained in the previous
sections, in order to measure the accuracy: Hysteresis Band Control, Fuzzy Logic Control,
and Decision Trees (DT). We propose the IEEE microgrid test system of 69-bus [79]. The
69-bus distribution network has a nominal voltage of 12.66 kV. Its base apparent power
is 10 MVA. This system has 69 nodes and 73 branches, including tie-lines, as shown in
Figure 1. The order of each branch is assumed to be that of the furthest node minus one
unit, except for the tie-lines in the base scheme which run from 69 to 73. Thus, a total of
73 remote switches are installed in the network, 68 of which are sectioned and ready for
possible reconfiguration. As mentioned, and described by Lan et al. [80], two wind units,
two solar panels and some switches are located in the microgrid, and a battery storage unit
is also installed in the hybrid microgrid. We have followed the same location:
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Figure 1. IEEE 69-bus test system.

In this article, we only show a first approximation of the methods to verify their
viability and check primary results. In addition to achieving adequate energy management
using all the tested models, regardless of the calculation time or the power and dedication
of the used computers, we can highlight that for loads without large hourly differences
(as it would have been the case for valley and peak periods with a large difference in the
power value), the system can be controlled by applying the aforementioned modeling.

From the test results, it can be found the Machine Learning model (Decision Tree) can
also recognize the states accurately for distribution systems, as we show in Table 1. We
used the root medium square error for the comparison.

Table 1. Root Medium Square Error (RMSE) (voltage of the network) with different models applied
to the IEE 69-bus distribution network.

RMSE

HBC 0.1781
FL 0.1563
DT 0.1471

HBC = Hysteresis Band Control; FL = Fuzzy Logic; DT = Decision Tree.

As we can see, the three tested methods have enough viability, taking into account the
characteristics of the network. We cannot conclude a better performance for the Decision
Tree-based model, because, although its result is better than the others, the test is based in a
single evaluation and more evaluations with different cases (for example, with different
cases of distribution of solar and wind generation and different loads) should be done in
the future.

In the case of the most modern method, Decision Trees, it should be noted that both
solar and wind generation have followed generation patterns established in advance,
according to the data of Lan et al. [80]. Obviously, in an analysis with a real system, these
future generation data should be based on historical data and take forecasting into account.
In Machine Learning methods, the reliability of data and predictions is very important, as
they are the foundation of this type of modeling; therefore, it is advisable to use more than
one database, which will usually reduce the error of calculation and analysis. These used
patterns have been the same for any unit of the same generation type; that is, all solar units
follow the same pattern, and all wind units follow the same pattern. This has been done to
simplify the performed analysis and in accordance with Kovousi–Fard and Khodei [81].

The evaluations are based on the values shown in Figure 2 (base case), which represents
the total energy consumption over a standard day.



Mathematics 2022, 10, 214 19 of 24

Figure 2. Total energy consumption value (kWh) over a standard day.

Figure 3 shows the values obtained in the energy storage units, including the battery
allocated at node 15. It presents the 24-h values of the state of the charge (SOC) of all the
devices (that is, those related to the PV systems and the aforementioned battery unit). As
can be seen, the energy storage units are strongly influenced by the solar behavior and are
discharged from 16–17 h onwards, as the PV power generated gradually decreases.

Figure 3. 24 h SOC (%) of three of the energy storage devices of the microgrid, allocated at node 18
(orange); node 28 (green); node 56 (blue).

Figures 4 and 5 show the two main cases studied: Figure 4 corresponds to the situation
where there is no distributed generation, and Figure 5 where there is distributed generation.
As can be seen in Figure 4, the voltage profile has been improved with the use of the three
methods, not being able to conclude which of the three is the best, mainly because, although
the three improve the initial case, depending on the section of the system to be analyzed,
the best method is one or the other. The tie-switch distributions generated by each method
are shown in Table 2.
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Figure 4. Case of no distributed generation. Voltage profile. Base case (blue); Hysteresis Band Control
method (orange); control by means of Fuzzy Logic (grey); Decision Trees method (yellow).

Figure 5. Case of distributed generation. Voltage profile. Base case (blue); Hysteresis Band Control
method (orange); control by means of Fuzzy Logic (grey); Decision Trees method (yellow).

Table 2. Case without distributed generation: tie-switches of the configuration of the system.

Initial HBC FL DT

Tie-switches 69, 70, 71, 72, 73 14, 55, 61, 69, 70 13, 57, 61, 69, 70 13, 57, 61, 69, 70
HBC = Hysteresis Band Control; FL = Fuzzy Logic; DT = Decision Tree.

The IEEE-69 system has also been tested with distributed generation. As mentioned
above, the distributions of wind and solar generation have followed the one published in
the literature references, but Table 3 shows the averages of a typical day for the four nodes
where they are located (6 and 68 for wind generation, and 25 and 50 for solar generation).
In addition, Table 3 shows the tie-switches for each method. It can be seen in Figure 5
how, in general, the three methods improve the voltage profile of the system again after
the reconfiguration of the system, being slightly different the solution (topology) found by
each of them.
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Table 3. Case with distributed generation: tie-switches of the configuration of the system and power
(node–kW).

Initial HBC FL DT

Tie-switches 69, 70, 71, 72, 73 13, 55, 64, 69, 70 13, 58, 64, 69, 70 13, 58, 64, 69, 70

P (kW)

6–27.52 6–27.52 6–27.52 6–27.52
25–30.45 25–30.45 25–30.45 25–30.45
50–30.45 50–30.45 50–30.45 50–30.45
68–342.05 68–342.05 68–342.05 68–342.05

HBC = Hysteresis Band Control; FL = Fuzzy Logic; DT = Decision Tree.

8. Conclusions

In this article, we presented the optimization of the operation of electrical hybrid
microgrids, focused particularly on the mathematical modeling. The set of loads (consume),
generators (with a predominance of the renewable energies) and storage systems (at the
present, particularly batteries) makes up the electrical hybrid microgrid. The management
of this type of networks presents many challenges and various options to be implemented.

The mathematical modeling of the different components is a very important step in
the control and management that, in recent years, is increasing with the irruption into the
market of new technologies or new models for the use of energy. The main contribution is
the mathematical modeling of several components of the hybrid microgrid. This modeling
can be used in different methods of control and management of the network, and its
feasibility has been shown in three methods, including one based on the Decision Tree
method, which belongs to the Machine Learning family. The results on a test system of
69 buses show that its implementation is possible.

The three methods have been compared both in the case of existence of distributed
generation and in the case of its non-existence, in order to obtain a better view of their
behavior. The three methods improve the voltage profile of the system, using a different
topology, although similar (the tie-switches used are topologically very close or even the
same), demonstrating their effectiveness. The integration of distributed generation in the
system causes small differences in the results of each method, these differences being more
noticeable the longer the line (or branch) in the system.

Nevertheless, although the results indicate that the Decision Trees method is partially
better than other algorithms, more tests are needed and they need to be carried out with
different typologies, not only of the network itself but also of its components. As a future
research line, further tests with different generation and load levels can be identified.
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