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Abstract: In this study, a link between the squared norm of the second fundamental form and
the Laplacian of the warping function for a warped product pointwise semi-slant submanifold
Mn in a complex projective space is presented. Some characterizations of the base NT of Mn are
offered as applications. We also look at whether the base NT is isometric to the Euclidean space
Rp or the Euclidean sphere Sp, subject to some constraints on the second fundamental form and
warping function.
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1. Introduction and Statement of Results

Throughout the article, we shall utilize the acronyms listed as: ‘WP’ for warped
product, ‘WF’ for warping function, ‘CPS’ for complex projectve spaces, “WPPSS” for
warped product pointwise semi-slant submanifold, and ‘SFF’ for second fundamental
form. An essential goal in Riemannian geometry is to find the relationship between
extrinsic and intrinsic invariants on some given warped product manifolds. One way is
to study the warping functions which arise as solutions of the Euler–Lagrange equations
and partial differential equations for conditions on curvature functions. The philosophy
of finding some Riemannian invariants to search the best relationship between intrinsic
and extrinsic invariant for a given Riemannian manifold. In this respect, B.Y. Chen [1,2]
provided the inequality for the second fundamental form as a main intrinsic invariant
and characterized the Laplacian of the warping function as a main extrinsic invariant
for CR-warped products in complex space forms. He also demonstrated the complete
classification, that satisfied the equality case of this inequality. Many achievements in
warped product submanifolds theory acquired for some different space forms (see [3–6]).
Another critical concept in differential geometry is the theory of warped product manifolds.
Robertson-Walker spacetime, asymptotically flat spacetime, Schwarzschild spacetime, and
Reissner-Nordstrom spacetime are applications of warped product manifolds found in
general relativity theory in physics. Besides, the spacetime, as mentioned earlier, models
can be viewed as examples of the warped product manifolds theory, (for more details
see [5–8]).

On the other hand, Sahin [9] derived both types of WPSS’s, NT × f Nϑ and Nϑ × f NT ,
in a Kaehler manifold are trivial where NT and Nϑ are holomorphic and slant submanifolds.
By considering the slant angle ϑ as a function ϑ : Mn −→ R, Chen-Gray [10] studied
pointwise slant submanifolds of almost Hermitian manifolds. Applying this notion to
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warped product submanifolds in Kaehler manifolds, Sahin [11] discussed pointwise semi-
slant submanifolds and WPPSS in a Kaehler manifold. He also classified that a WPPSS of
type NT × f Nϑ is nontrivial with examples. In this case, such a class of WPPSS’s succeeds
to generalize the class of CR-warped product submanifolds [12,13]. Ali et al. [3] studied
WPPSS in complex space form and acquired an inequality for the squared norm of the SFF
in terms of holomorphic constant section curvature by using Gauss equation.

In the present study, the WPPSS of complex projective spaces with positive constant sec-
tional curvature is considered. In this case, C∗ = C− {0} and Cm+1

∗ = Cm+1 − {0} and as-
sume the action C∗ on Cm+1

∗ is expressed by γ, that is (z0, z1, . . . , zm) = (γz0, γz1, . . . , γzm).
The set of all equivalent classes derived from this action are represented by CPm. If π(z)
denotes the equivalent classes contained z, then Cm+1

∗ → CPm is a surjection, and it is
known that CPm admits a complex structure induced from the complex structure on Cm+1

with a Kaehler metric such that the constant holomorphic sectional curvature equal to
4 [2,13]. It may be remarked that the almost complex J on CPm(4) is induced by the almost
complex structure on Cm+1 via the Hopf fibration ` : S2m+1 → CPm(4) [2,13]. Hence,
CPm(4) is a Kaehler manifold with constant holomorphic sectional curvature is equal to 4.
Inspired by this notion, our method is to derive the extrinsic condition for the SFF, squared
norm and Laplacian of the WF in a warped product pointwise semi-slant submanifold of
complex projective space CPm(4). In this respect, we use the equation of Gauss instead the
equation of Codazzi in [2] and announce our first result.

Theorem 1. Let Ψ : Mn = NT × f Nϑ −→ CP2m(4) be an isometric immersion from a WPPSS
NT × f Nϑ into the CPS CP2m(4) with constant holomorphic sectional curvature is equal to 4. Then
the following equality is satisfied

S = q
(
||∇χ||2 + p− ∆χ

)
, (1)

where ∇χ and ∆χ are the gradient and the Laplacian of the WF χ = ln f on NT , respectively.
Moreover, S is the squared norm of the SFF of components NT and Nϑ, respectively.

A relevant observation is that the second fundamental form in the left-hand side in (1)
has the relation with pointwise slant function ϑ. We reach the following result as a result of
Theorem 1.

Theorem 2. Let Ψ : Mn = NT × f Nϑ −→ CP2m(4) be an isometric immersion from a WPPSS
NT × f Nϑ into CPS CP2m(4). Then the following equality is satisfied

‖hν‖2 + 2q cot2 ϑ||∇χ||2 = q
(

p− ∆χ
)
, (2)

where hν is a component of h in Γ(ν) and ϑ is regarded as pointwise slant function. Moreover Γ(ν)
set of tangent vectors under invariant subspace ν.

Immediately as a result of Theorem 2, we consider the warping function ln f to be a
harmonic function and get the following:

Corollary 1. Let Ψ : Mn = NT × f Nϑ −→ CP2m(4) be an isometric immersion from a compact
WPPSS NT × f Nϑ into CPS CP2m(4) such that ln f is a harmonic function. Then we have

‖hν‖2 + 2q cot2 ϑ||∇χ||2 = pq. (3)

In Geometry and Physics, boundary estimations are well-studied topics. Calin-Chang [14]
presented the geometrical approach to Riemannian manifolds and derived applications
to partial differential equations such as Lagrangian formalism on Riemannian manifolds.
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A Riemannian manifold can be thought of as a compact Riemannian submanifold with
boundary, i.e., ∂M 6= ∅. Following that, we demonstrate the following theorem:

Theorem 3 ([15]). Let Mn be a connected and compact Riemannian manifold and ω is a positive
differentiable function defined on Mn such that ∆ω = 0, and ω/∂M = 0 on Mn. Then ω = 0.

The gradient ~∇ω is given by

g(~∇ω, X) = Xω, and ~∇ω =
n

∑
i=1

ei(ω)ei, (4)

and the Laplacian ∆ω of ω is defined as:

∆ω =
n

∑
i=1
{(∇ei ei)ω− ei(ei(ω))}

= −
n

∑
i=1

g(∇ei gradω, ei) = −trHess(ω). (5)

Similarly, assume that Mn is a compact Riemannian manifold and ω is a positive
differentiable function on Mn, the energy function of Dirichlet is defined as [15];

E(ω) =
1
2

∫
M
||∇ω||2dV, (6)

where dV denotes the volume element of Mn. Involving the pointwise slant function
ϑ : Mn −→ R in a WPPSS Mn = NT × f Nϑ, and taking into account Theorem 3, and also
the Dirichlet energy formulae (6). More precisely, we consider the Dirichlet energy function
approach to warped product submanifold, and we establish the following result.

Theorem 4. Let Ψ : Mn = NT × f Nϑ be an isometric immersion of a connected and compact
WPPSS into CPS CP2m(4). Then the warped product NT × f Nϑ is a simply Riemannian product
of NT and Nϑ if the Dirichlet energy function of the warped function satisfies:

E(χ) =
1
4q

tan2 ϑ
∫

M

(
pq− ‖hν‖2

)
dV, (7)

where 0 < E(χ) < ∞ represents the Dirichlet energy of the WF χ = ln f and dV is the volume
element of Mn.

Another goal of our equality (2) is to provide potential applications to the gradient
Ricci curvature by considering a compact Riemannian manifold, and taking into account
the Green’s Theorem (see [16] for more detail). As a consequence, we give the following:

Theorem 5. Let Ψ : Mn = NT × f Nϑ be an isometric immersion of a compact WPPSS NT × f Nϑ

into a CSP CP2m(4). If the following equality is satisfied for the warped product submanifold Mn

‖hν‖2 = q
{

p +
∫

M
Ric(∇χ, •)dV

}
, (8)

then, the following conclusion is true for Mn:

(i) The WPPSS NT × f Nϑ is a CR-warped product into the CPS CP2m(4).
(ii) The WPPSS NT × f Nϑ into a CPS CP2m(4) is a simply Riemannian product of NT and Nϑ.

The following implication follows directly from Theorem 5.
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Corollary 2. Assume that Ψ : Mn = NT × f Nϑ be an isometric immersion of a compact WPPSS
NT × f Nϑ into a CPS CP2m(4). If Mn is Ricci flat and having following equality

‖hν‖2 = pq, (9)

then, the following statements are hold for Mn:

(i) The WPPSS NT × f Nϑ is a CR-warped product, which isometrically immersed into CPS
CP2m(4).

(ii) The WPPSS NT × f Nϑ into a CPS CP2m(4) is simply a Riemannian product of NT and Nϑ.

The next observation is devoted to Obata [17], which is characterized a specific Rieman-
nian manifolds by second-order ordinary differential equations. He derived the necessary
and sufficient conditions for an n-dimensional complete and connected Riemannian man-
ifold (Mn, g) to be isometric to the n-sphere Sn(c) if there exists a non-constant smooth
function ω on Mn that satisfies the second-order differential equation Hω = −cωg, where
Hω is stand for Hessian of ω and c is a constant sectional curvature. A number of investiga-
tions devoted to this subject and, therefore, characterizations of spaces, the Euclidean space
Rn, the Euclidean sphere Sn and the CPS CPn, are important topics in geometric analysis.

For example, Deshmukh-Al-Solamy [18] demonstrated that an n-dimensional compact
connected Riemannian manifold whose Ricci curvature satisfies the bound
0 < Ric ≤ (n− 1)(2− nc

χ1
)c for a constant c and χ1 is the first non-zero eigenvalue of the

Laplace operator, then Mn is isometric to Sn(c) if Mn admitted a non-zero conformal gra-
dient vector field. They also demonstrated that if Mn is Einstein manifold with Einstein
constant χ = (n− 1)c, then Mn is isometric to Sn(c) with c > 0 if it is admitted conformal
gradient vector field. Taking into consideration the Obata equation [17], Barros, et al. [19]
demonstrated that a compact gradient almost Ricci soliton (Mn, g,∇ω, π), whose Ricci
tensor is Codazzi with constant sectional curvature, is isometric to a Euclidean sphere and
ω is a height function in this case. Similar results have acquired in [8,18,20–23]. After these
observations, we state following next result, which is a version of Theorem 1 employing
the partial differential equation.

Theorem 6. Let Ψ : Mn = NT × f Nϑ be an isometric immersion of a WPPSS NT × f Nϑ into

the CPS CP2m(4). Then a connected, compact base NT is isometric to the sphere Sp(
√

π1
p ) if the

following equality is satisfied,

‖∇2χ‖2 =
π1

pq
(
S− pq

)
, (10)

where π1 > 0 is a positive eigenvalue linked to the eigenfunction χ = ln f and ∇2χ is a Hessian
tensor of the function χ. Moreover, in this case a constant curvature c is equal to

√
π1
p .

Following result is motivated by the Bochner formula.

Theorem 7. Let Ψ : Mn = NT × f Nϑ be an isometric immersion of a WPPSS NT × f Nϑ into a
CPS CP2m(4) with connected and compact base NT . Then NT is isometric to the sphere Sp(c) if
the following relation holds:

Ric(∇χ,∇χ) = π1

( p + 1
pq

){
pq− S

}
, (11)

where π1 > 0 is a positive eigenvalue linked to the eigenfunction χ = ln f .

Rio, Kupeli, and Unal [24] use a standard differential equation, which is a variant of
Obata’s differential equation, to describe the Euclidean sphere. If a complete Riemannian
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manifold Mn admits a real-valued non-constant function ω with the formula ∆ω+π1ω = 0,
then Mn is isometric to a warped product of the Euclidean line and a complete Riemannian

manifold with the equation d2φ

dt2 + π1φ = 0 as φ is warping function. In this regard, we
arrive to the following conclusion:

Theorem 8. Let Ψ : Mn = NT × f Nϑ be an isometric immersion of a WPPSS NT × f Nϑ into
a CPS CP2m(4) and the base NT is a connected, compact manifold. If the following equality
is satisfied,

Ric(∇χ,∇χ) = π1

( p + 1
pq

){
pq− S

}
, (12)

where π1 < 0 is a negative eigenvalue linked to the eigenfunction χ = ln f , then NT is isometric
to a warped product of the Euclidean line and a complete Riemannian manifold with the equation
d2φ

dt2 + π1φ = 0 as φ is warping function.

Tashiro [25] also demonstrated more general results similar to the results of Obata [17].
The following theorem is also of interest from viewpoint of the characterization of the
Euclidean space by a differential equation. We are now able to give the following:

Theorem 9. Let Ψ : Mn = NT × f Nϑ be an isometric immersion of a WPPSS NT × f Nϑ into a
CPS CP2m(4) such that base NT is a connected and compact manifold. Then NT is isometric to the
Euclidean space Rp if the following equality is satisfied:

π1

(
p +

π1

p
− S

q

)
= Ric(∇χ,∇χ) (13)

where π1 > 0 is positive eigenvalue of the non-constant warping function χ = ln f .

In the present paper, we consider only the non-trivial WPPSS of the type Mn =
NT × f Nϑ to be isometrically immersed into a CPS because other types of warped products
are trivial in Kaehler manifold. Then, we will consider connected, compact Riemannian
submanifolds whose boundaries are non-empty and provide some new, necessary, and
sufficient conditions for a WPPSS, which can be reduced to a Riemannian product manifold.
We have following motivational example:

Example 1. The pioneering work of Solomon [26] regarding the harmonic map from a compact
Riemannian manifold into a sphere Sm, the standard sphere with codimension two, totally geodesic
subsphere removed, This sphere is isometric to the warped product Sn−1

+ × f S1 of an open hemisphere
and a circle, for warping function f ∈ C∞(Sn−1

+ ). Zhang [27] also considered the warped product
manifold Hn × f R with n-dimensional hyperbolic space whose sectional curvature is −1 and
Euclidean line R, and demonstrated that if the warping function f of the warped product manifold
Hn × f R has a critical point, then Hn × f R is isometric to the hyperbolic space Hn+1 if and only if
there exists a real number k > 0 such that f (x) = k cosh r(x), where r(x) denotes the hyperbolic
distance from x to a fixed point t ∈ Hn.

2. Preliminaries

Let M̃ be an 2m-dimensional manifold and J be an almost complex structure with a
Riemannian metric g that satisfies J2 = −I, and g(JU1, JV1) = g(U1,V1), for all vector
fields U, V ∈ X(TM̃), The structure (M̃2m, J, g) is then referred to as a Hermitian mani-
fold. Yano and Kon [16] define a Kaehler manifold as a complex structure that satisfies
(∇̃U1 J)V1 = 0, for any U1,V1 ∈ X(TM̃).

Let Mn be an isometrically immersed into an almost Hermitian manifold M̃2m with
induced metric g. Assume that ∇ and ∇⊥ are the induced Riemannian connections on the
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tangent bundle TM and the normal bundle T⊥M of Mn, respectively, then the Gauss and
Weingarten formulas are given by

∇̃U1V1 = ∇U1V1 + h(U1,V1), (14)

∇̃U1 N = −ANU1 +∇⊥U1
N, (15)

for each U1,V1 ∈ X(TM) and N ∈ X(T⊥M), where h and AN are the second fundamen-
tal form and the shape operator (corresponding to the normal vector field N), respec-
tively, for the immersion of Mn into M̃2m. These are related as follows: g(h(U1,V1), N) =
g(ANU1,V1), where g denotes the Riemannian metric on M̃2m as well as the metric induced
on Mn. Now, for any U ∈ X(TM) and N ∈ X(T⊥M), we have

(i) JU1 = TU1 + FU1, (ii) JN = tN + f N, (16)

where TU1(tN) and FU1( f N) are the tangential and normal components of JU1(JN),
respectively. If T is identically zero, then the submanifold Mn is called a totally real
submanifold. The Gauss equation for a submanifold Mn is defined as:

R̃
(
X1,Y1,Z1,W1

)
=R(X1,Y1,Z1,W1) + g

(
h(X1,Z1), h(Y1,W1)

)
− g
(
h(X1,W1), h(Y1,Z1)

)
, (17)

for any X1,Y1,Z1,W1 ∈ X(TM), where R̃ and R are the curvature tensors on M̃2m and Mn,
respectively. If M̃2m is a CPS form of a constant holomorphic sectional curvature is equal to
4 and it is denoted by CP2m(4), then the curvature tensor R̃ of CP2m(4) is expressed as.

R̃(X1,Y1)Z1 =g(X1,Z1)Y1 − g(Y1,Z1)X1 + g(X1, JZ1)JY1 − g(Y1, JZ1)JX1

+ 2g(X1, JY1)JZ1. (18)

The mean curvature vectorH for an orthonormal frame {e1, e2, · · · en} of the tangent
space TM on Mn is defined by

‖H‖2 =
1
n

trace(h) =
1
n2

m

∑
r=n+1

( n

∑
i=1

hr
ii

)2
, (19)

where n = dim M. Additionally, we set

(i) ||h||2 =
n

∑
i,j=1

g(h(ei, ej), h(ei, ej)) and (ii) S =
p

∑
i=1

n

∑
j=p+1

(
hr

ij
)2. (20)

Now, an important Riemannian intrinsic invariant called the scalar curvature of Mn is
defined by τ̃(Tx Mn), that is

2τ̃(Tx Mn) = ∑
1≤α<β≤n

K(eα ∧ eβ). (21)

The notations Kαβ and K̃αβ are the intrinsic and extrinsic sectional curvatures of the
span {eα, eβ} at x, thus from Gauss Equation (18), we have

2τ(Tx Mn) = Kαβ = 2τ̃(Tx Mn) +
m

∑
r=n+1

(
hr

ααhr
ββ − (hr

αβ)
2
)

= K̃αβ +
m

∑
r=n+1

(
hr

ααhr
ββ − (hr

αβ)
2
)

(22)
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where Kαβ and K̃αβ denote the sectional curvature of the plane section spanned and eα

at x in the submanifold Mn and at the Riemannian space form M̃m(c), respectively. The
following consequences are acquired from (18) and (22) as:

τ(Tx Np
1 ) =

m

∑
r=n+1

∑
1≤i<j≤p

(
hr

iih
r
jj − (hr

ij)
2
)
+ τ̃(Tx Np

1 ). (23)

Similarly, we have

τ(Tx Nq
2 ) =

m

∑
r=n+1

∑
p+1≤a<b≤n

(
hr

aahr
bb − (hr

ab)
2
)
+ τ̃(Tx Nq

2 ). (24)

A holomorphic submanifold is one in which J preserves every tangent space of Mn,
that is, J(Tx M) ⊆ Tx M, for each x ∈ Mn. Similarly, for each x ∈ Mn, the totally real
submanifold is defined as follows: J translates any tangent space of Mn into normal space,
that is, J(Tx M) ⊆ T⊥M. Aside from the holomorphic and totally real submanifolds, the
CR-submanifold, slant submanifold, semi-slant submanifold, pointwise semi-slant sub-
manifold, and pointwise slant submanifold are other important classes of submanifolds of
a Kaehler manifold determined by the behavior of the tangent bundle of the submanifold
under the action of the complex structure of the ambient manifold. In [11–13] contains a
comprehensive taxonomy of these submanifolds. We refer to [11,28] for several examples
of a pointwise semi-slant submanifold in a Kaehler manifold, as well as related difficulties.
Let us represent the dimensions of the complex distribution DT and pointwise slant distri-
bution Dϑ of pointwise semi-slant submanifold in a Kaehler manifold M̃2m with p and q,
respectively, using the Definition 3.1 [11]. Then the following observations apply.

Remark 1. Mn is invariant and pointwise slant submanifold for p = 0 and q = 0, respectively.

Remark 2. If the slant function ϑ : Mn → R is globally constant on Mn and ϑ = π
2 , then Mn is

a called CR-submanifold.

Remark 3. Mn is defined as a proper pointwise semi-slant submanifold if the slant function neither
ϑ = 0 nor ϑ = π

2 .

We will follows the definition of the warped product manifold of [3,29]. According
them, the following remarks are consequences of Lemma 2.1 [3];

Remark 4. A WPM Mn = N1× f N2 is said to be trivial or simply a Riemannian product manifold
if the WF f is a constant function along N1.

Remark 5. If Mn = N1 × f N2 is a WPM, then N1 is totally geodesic and N2 is totally umbilical
submanifold of Mn, respectively.

From [30] (Equation (3.3)), the following relation is acquired.

p

∑
α=1

q

∑
β=1

K(eα ∧ eβ) =
q∆ f

f
. (25)

Further, ∇ ln f is the gradient of ln f which is defined as:

g(∇ ln f , X) = X(ln f ). (26)

3. Non-Trivial WPPSS

In this section, some basic facts and some key results recall which will be used in the
proof of our main results. First, we remember that if the two factors of the warped product
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submanifold are holomorphic and pointwise slant submanifolds, then it is called a WPPSS
of almost Hermitian manifolds. Therefore, in such a case, there are two types of WPPSSs of
a Kaehler manifold such that

(i) Nϑ × f NT , and (ii) NT × f Nϑ, we choose dim NT = p & dim Nϑ = q.

For the first case, let us recall Theorem 4.1 in [11] which showed that a proper WPPSS
Mn = Nϑ × f NT in a Kaehler manifold M̃2m does not exist such that Nϑ is a proper
pointwise slant submanifold and NT is a holomorphic submanifold of M̃2m.

On the other hand, proceeding to the second case, let us recall Theorem 5.1 in [11] that
many non-trivial WPPSS’s of the form NT × f Nϑ with examples are studied. Now, for NT

and Nϑ are holomorphic and pointwise slant submanifolds of M̃2m. The following lemma
and theorems will be useful in the sequel.

Lemma 1 ([11]). Let Mn = NT × f Nϑ be a WPPSS of a Kaehler manifold M̃2m. Then

g(h(X1,Z1), FTZ1) =− (X1 ln f ) cos2 ϑ‖Z1‖2, (27)

g(h(Z1, JX1), FZ1) =(X1 ln f )‖Z1‖2, (28)

g(h(X1,Y1), FZ1) =0, (29)

for any X1,Y1 ∈ X(TNT) and Z1 ∈ X(TNϑ).

Theorem 10 ([3]). Let Ψ : Mn = NT × f Nϑ −→ M̃2m be isometrically immersed from a WPPSS
NT × f Nϑ into a Kaehler manifold M̃2m. Then NT is always a minimal submanifold of M̃2m.

Theorem 11 ([31]). Let Ψ be Dϑ-minimal isometric immersion of a WPPSS NT × f Nϑ into a
Kaehler manifold M̃2m, then Ψ is a Nϑ-totally geodesic.

The above notion was extended into the complex space forms and also to describe
brief method to demonstrate the triviality for both inequality and equality results in [31],
which holds on a compact Riemannian submanifold whose boundary is empty.

Theorem 12 ([3]). On a compact orientable WPPSS Mn = NT × f Nϑ in a complex space form
M̃2m(c), the following inequality holds:

||h||2 ≥ pqc
2

, (30)

where p and q are dimensions of NT and Nϑ, respectively. Then Mn is simply a Riemannian
product manifold.

For the equality case of inequality (30), the following result was demonstrated.

Theorem 13 ([3]). Let Mn = NT × f Nϑ is compact orientable WPPSS in a complex space form
M̃2m(c). Then Mn is simply a Riemannian product if and only if it is satisfied

||hν||2 =
pqc
4

, (31)

where hν is a component of h in X(ν).

Now, we demonstrate some interesting results.
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4. Proof of Theorem 1

Proof. Using the Gauss Equation (17), we get

n2‖H‖2 = ||h||2 + 2τ(Tx Mn)− 2τ̃(Tx Mn). (32)

We assume that {e1, . . . , ep, ep+1, . . . , en} and {en+1, . . . , em} are orthonormal frames
of X(Tx Mn) and X(T⊥Mn), such that {e1, . . . , ep} and
{ep+1, . . . , en} are the frames of X(TNT) and X(TNϑ). From (21), we have

τ(Tx Mn) = ∑
1≤α<β≤n

Kαβ

=
p

∑
α=1

n

∑
A=p+1

KαA + ∑
1≤i<j≤p

Kij + ∑
p+1≤a<b≤n

Kab (33)

Using (25) and (21), we derive the following relation

τ(Tx Mn) =
q∆ f

f
+ τ(Tx Np

T) + τ(Tx Nq
ϑ). (34)

From (22)–(24), one obtains:

τ(Tx Mn) =
q∆ f

f
+ τ̃(Tx Np

T) +
m

∑
r=n+1

∑
1≤α<β≤p

hr
ααhr

ββ

−
m

∑
r=n+1

∑
1≤α<β≤n1

(hr
αβ)

2 + τ̃(Tx Nq
ϑ) (35)

+
m

∑
r=n+1

∑
p+1≤a<b≤n

hr
aahr

bb −
m

∑
r=n+1

∑
p+1≤a<b≤n

(hr
ab)

2.

Equations (32) and (35) give(
n

∑
i=1

hn+1
ii

)2

=
m

∑
r=n+1

n

∑
i=1

(hii)
2 +

2q∆ f
f

+ 2τ̃(Tx Np
T) + 2τ̃(Tx Nq

ϑ)

+ 2
m

∑
r=n+1

∑
1≤α<β≤n1

hr
ααhr

ββ − 2τ̃(Tx Mn) (36)

− 2
m

∑
r=n+1

∑
1≤α<β≤p

(hr
αβ)

2 + 2
m

∑
r=n+1

∑
p+1≤a<b≤n

hr
aahr

bb

− 2
m

∑
r=n+1

∑
p+1≤a<b≤n

(hr
ab)

2.

Exercising the computations, we derive(
n

∑
i=1

hn+1
ii

)2

=
m

∑
r=n+1

p

∑
i=1

(hii)
2 +

m

∑
r=n+1

n

∑
j=p+1

(hjj)
2 + 2

m

∑
r=n+1

n

∑
i,j=1
i 6=j

(hij)
2

+
2q∆ f

f
+ 2τ̃(Tx Np

T) + 2
m

∑
r=n+1

∑
1≤α<β≤p

hr
ααhr

ββ

− 2
m

∑
r=n+1

∑
1≤α<β≤p

(hr
αβ)

2 + 2τ̃(Tx Nq
ϑ)− 2τ̃(Tx Mn)

(37)



Mathematics 2022, 10, 244 10 of 18

+ 2
m

∑
r=n+1

∑
p+1≤a<b≤n

hr
aahr

bb − 2
m

∑
r=n+1

∑
p+1≤a<b≤n

(hr
ab)

2.

As from Theorem 10 that Mn is a NT-minimal warped product submanifold, we have

2
m

∑
r=n+1

∑
1≤α<β≤p

hr
ααhr

ββ +
m

∑
r=n+1

n

∑
i=1

(hii)
2 = 0. (38)

From Theorem 11, we find that

2
m

∑
r=n+1

∑
p+1≤a<b≤n

hr
aahr

bb +
m

∑
r=n+1

n

∑
j=p+1

(hjj)
2 =

( n

∑
A=1

hAA

)2
. (39)

On substituting (38) and (39) in (37), we get

2τ̃(Tx Mn) =
2q∆ f

f
+ 2τ̃(Tx Np

T) + 2τ̃(Tx Nq
ϑ)

− 2
m

∑
r=n+1

{
∑

1≤α<β≤p
(hr

αβ)
2 + ∑

p+1≤a<b≤n
(hr

ab)
2 −

n

∑
i,j=1
i 6=j

(hij)
2

}
(40)

Thus, from binomial properties, we arrive at

∑
1≤α<β≤p

(hr
αβ)

2 + ∑
p+1≤a<b≤n

(hr
ab)

2 −
n

∑
i,j=1
i 6=j

(hij)
2 =

p

∑
α=1

n

∑
β=p+1

(
hr

αβ

)2. (41)

If we substituting X = W = ei and Y = Z = ej in (18), we get

R̃(ei, ej, ej, ei) =

{
g(ei, ei)g(ej, ej)− g(ei, ej)g(ei, ej) + g(ei, Jej)g(Jej, ei)

− g(ei, Jei)g(ej, Jej) + 2g2(Jej, ei)

}
. (42)

Taking summing up over the basis vector fields of TMn. For 1 ≤ i 6= j ≤ n, we obtain

2τ̃(TMn) = n(n− 1) + 3 ∑
1≤i 6=j≤n

g2(Pei, ej). (43)

Next, we assume that Mn is a warped product of holomorphic and proper pointwise
slant submanifolds in a CPS CP2m(4). Thus, we set the following frame of orthonormal
vector fields as:

e1, e2 = Je1, · · · , e2d1−1, e2d1 = Je2d1−1,

e2d1+1, e2d1+2 = sec ϑTe2d1+1, · · · , e2d1+2d2−1e2d1+2d2 = sec ϑTed1−1.

Using the orthonormal frame, we have

g2(Jei, ei+1) =1 f or i ∈ {1, · · · , p− 1},
= cos2 ϑ f or i ∈ {p + 1, · · · , p + q− 1}.

Thus, it is easily seen that

n

∑
i,j=1

g2(Pei, ej) = p + q cos2 ϑ. (44)
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From (43) and (44), it follows that

τ̃(TMn) =
1
2

{
n(n− 1) + 3

(
p + q cos2 ϑ

)}
. (45)

Similarly, for TNp
T , we derive

τ̃(TNp
T) =

1
2

p(p− 1) +
3
2

p. (46)

Now using fact that ||T||2 = q cos2 ϑ, for pointwise slant bundle TNϑ [3], one derives

τ̃(TNq
ϑ) =

1
2

q(q− 1) +
3
2

q cos2 ϑ. (47)

Therefore, combining Equations (40), (41), (45)–(47), we get the essential result (1).
Thus, the proof is completed.

Proof of Theorem 2

Proof. Let X = eα(1 ≤ α ≤ p) and Z = e∗β(1 ≤ β ≤ q), be the orthonormal basis. Then
from the definition of the bilinear form h, we have

||h(eα, e∗β)||2 =
m

∑
r=1

p

∑
α=1

q

∑
β=1

g
(
h(eα, e∗β), er

)2
+

p

∑
α=1

q

∑
β=1
||hν(eα, e∗β)||2.

The term in the right hand side is a FDϑ-component and the second term is a ν-
component. Using the adapted orthonormal frame for vector fields of Np

T and Nq
ϑ for

pointwise semi-slant submanifold [3], and lemma 1, we obtain:

||h(eα, e∗β)||2 = q
(

csc2 ϑ + cot2 ϑ
)
||∇ ln f ||2 + ||hν||2,

which implies that

||h(eα, e∗β)||2 = q
(
1 + 2 cot2 ϑ

)
||∇ ln f ||2 + ||hν||2. (48)

From (1) and (48), we get the essential result (2). This completes the proof of the
theorem.

5. Application of Theorem 1 to Demonstrate Theorem 4

Proof. Equation (2) for the equality case is the following

pq = q∆χ + ‖hν‖2 + 2q cot2 ϑ||∇χ||2. (49)

Taking integration on Mn over the volume element dV with nonempty boundary,
we get ∫

Mn
pqdV =

∫
Mn
‖hν‖2dV + q

∫
Mn

(
∆χ
)
dV + 2q cot2 ϑ

∫
Mn
||∇χ||2dV. (50)

From (6) and setting ω = χ = ln f and (50), it follows that∫
Mn

pdV =
1
q

∫
Mn
‖hν‖2dV +

∫
Mn

∆χdV + 4 cot2 ϑE(χ). (51)

If the equality assumption in (7) is satisfied, we get the following relation from (51).∫
Mn

∆χdV = 0 on Mn,



Mathematics 2022, 10, 244 12 of 18

which gives with χ = ln f as

∆(ln f ) = 0. (52)

If Mn is a connected and compact WPPSS, from (52) and Theorem 3 it implies that
ln f = 0 =⇒ f = 1, that is, f is a constant on NT . Hence, from Remark 4, the warped
product submanifold Mn is a simply Riemannian product manifold. This completes the
proof of the theorem.

6. Classifications of the Ricci Curvature and Divergence of the Hessian Tensor

Let us define the (0, 2)-tensor T on M with a (1, 1)-tensor by the following equation:

g(T(Z1),Y1) = T(Z1,Y1).

for all Y1,Z1 ∈ Γ(TM). Thus, we get

div(ωT) = ωdivT + T(∇ω, •) and ∇(ωT) = ω∇T + dω⊗ T,

for all ω ∈ C∞(M). In particular, we have div(ωg) = dω. In addition, the following general
facts are well-documented in the literature [32].

(i) div∇2ω = Ric(∇ω, •) + d∆ω and (ii)
1
2

d‖∇ω‖2 = ∇2ω(∇, •). (53)

6.1. Proof of Theorem 5

Proof. Applying Ricci identity (53) to the warping function ω = χ = ln f , we get

div∇2χ = d
(
∆χ
)
+Ric(∇χ, •). (54)

We have Mn as a compact warped product submanifold without boundary, and we
have dV as an integration along the volume element.

∆χ =
∫

Mn

(
div∇2χ

)
dV−

∫
Mn
Ric(∇χ, •)dV. (55)

Using the Stokes theorem on a compact manifold Mn (see [14]) in (55) to get

∆χ = −
∫

Mn
Ric(∇χ, •)dV. (56)

On the other hand, from (34) we have

q∆χ + 2q cot2 ϑ||∇χ||2 = pq− ‖hν‖2. (57)

Equations (56) and (57) give

2 cot2 ϑ||∇χ||2 −
∫

Mn
Ric(∇χ, •)dV =p− 1

q
‖hν‖2,

or equivalently

p = −
∫

Mn
Ric(∇χ, •)dV +

1
q
‖hν‖2 + 2 cot2 ϑ||∇χ||2. (58)

The above equation along with (8) yields

2 cot2 ϑ||∇χ||2 = 0,
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which either cot2 ϑ = 0, or ||∇χ||2 = 0.

Case 1: When cot2 ϑ = 0, that is cos2 ϑ
sin2 ϑ

= 0, which implies that cos ϑ = 0. Then from
Remark 2, we conclude that a pointwise slant submanifold Nϑ becomes a totally real sub-
manifold; hence, Mn becomes a CR-warped product submanifold of a complex projective
m-space CPm(4). The proof of (i) from Theorem 5 is now complete.
Case 2: When ||∇χ||2 = 0, that is, ∇χ = 0, which implies that grad ln f = 0. it shows that
f is a constant function on NT . Hence, from Remark 4, we conclude that Mn is a trivial
WPPSS of a CPS CP2m(4). This is the second part (ii) of Theorem 5.

6.2. Proof of Corollary 2

If Mn is a Ricci flat and this means that the Ricci curvature of Mn has vanished
everywhere, that is

Ric(∇χ, •) = 0.

Using (8) in the above equation, we get the proof of the corollary.

7. Application to the Ordinary Differential Equation
Proof of Theorem 6

Proof. Let we define the following equation as∥∥∇2χ + tχI
∥∥2

= ‖∇2χ‖2 + t2(χ)2‖I‖2 + 2tχg(∇2χ, I).

As we define ‖I‖2 = trace(I I∗) = p and g(∇2χ, I∗) = tr(∇2χI∗) = tr(∇2χ). Then,
from (5), one obtains: ∥∥∇2χ + tχI

∥∥2
= ‖∇2χ‖2 + pt2(χ)2 − 2tχ∆χ. (59)

Let π1 be an eigenvalue of the eigenfunction χ = ln f such that ∆χ = π1χ. Then
above equation reduce to∥∥∇2χ + tχI

∥∥2
= ‖∇2χ‖2 +

(
pt2 − 2tπ1

)
(χ)2. (60)

On the other hand, we obtain

∆
(ω2

2
)
= −div

(
∇
(ω2

2
))

= div
(
ω∇ω

)
= ω∆ω− ‖∇ω‖2.

Setting ω = χ = ln f and utilizing the Stokes theorem on a compact manifold Mn,
we have ∫

NT×{q}
χ2dV =

1
π1

∫
NT×{q}

‖∇χ‖2dV. (61)

It follows from (60) and (61), we find that∫
NT×{q}

‖∇2χ + tχI‖2dV =
∫

NT×{q}
‖∇2χ‖2dV +

∫
NT×{q}

( pt2

π1
− 2t

)
‖∇χ‖2dV. (62)

Putting t = π1
p in (62) and taking integration both sides, we get

∫
NT×{q}

∥∥∥∇2χ +
π1

p
χI
∥∥∥2

dV =
∫

NT×{q}
‖∇2χ‖2dV − π1

p

∫
NT×{q}

‖∇χ‖2dV. (63)
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Using integration on (1) and the Stokes theorem once more, we have∫
NT×{q}

‖∇χ‖2dV =
1
q

∫
NT×{q}

(
S− pq

)
dV. (64)

From (63) and (64), we derive∫
NT×{q}

∥∥∥∇2χ +
π1

p
χI
∥∥∥2

dV =
∫

NT×{q}
‖∇2χ‖2dV − π1

p

∫
NT×{q}

{S
q
− p

}
dV. (65)

If Equation (10) is satisfied, then from (65), we get∥∥∥∇2χ +
π1

p
χI
∥∥∥2

= 0 =⇒ ∇2χ = −π1

p
χI. (66)

Since the warping function χ = ln f is a non-constant because of warped product
manifold Mn is a non-trivial. Inlvolving the Obata’s theorem [17] for a differential equation
with setting constant c = π1

p > 0 as π1 > 0 in (66). We conclude that NT is isometric to

the sphere Sn(
√

π1
p ) with constant curvature c =

√
π1
p . This complete the proof of the

theorem.

8. Application of Bochner Formula as Proof of Theorem 6

If we remember the Bochner formula (see, for example, [33]), the following relationship
holds for a differentiable function χ = ln f defined on a Riemannian manifold:

1
2

∆‖∇χ‖2 = ‖∇2χ‖2 + Ric(∇χ,∇χ) + g
(
∇χ,∇(∆χ)

)
.

Integrating the above equation with the aid of Stokes theorem, we get∫
NT×{q}

‖∇2χ‖2dV+
∫

NT×{q}
Ric(∇χ,∇χ)dV +

∫
NT×{q}

g
(
∇χ,∇(∆χ)

)
dV = 0. (67)

Now, using ∆χ = π1χ and some rearrangement in (67), we derive∫
NT×{q}

‖∇2χ‖2dV =− π1

∫
NT×{q}

‖∇χ‖2dV −
∫

NT×{q}
Ric(∇χ,∇χ)dV. (68)

Inserting (68) into (63), we get∫
NT×{q}

∥∥∥∇2χ +
π1

p
χI
∥∥∥2

dV =− π1

∫
NT×{q}

‖∇χ‖2dV − π1

p

∫
NT×{q}

‖∇χ‖2dV

−
∫

NT×{q}
Ric(∇χ,∇χ)dV,

which implies that∫
NT×{q}

∥∥∥∇2χ +
π1

p
χI
∥∥∥2

dV =− π1

( p + 1
p

) ∫
NT×{q}

‖∇χ‖2dV

−
∫

NT×{q}
Ric(∇χ,∇χ)dV. (69)

From (64) and (69), we find that∫
NT×{q}

∥∥∥∇2χ +
π1

p
χI
∥∥∥2

dV =− π1

( p + 1
pq

) ∫
NT×{q}

SdV −
∫

NT×{q}
Ric(∇χ,∇χ)dV

+ π1

( p + 1
1

)
Vol(NT),
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or equivalent to the following∫
NT×{q}

∥∥∥∇2χ +
π1

p
χI
∥∥∥2

dV =π1

( p + 1
pq

) ∫
NT×{q}

{
pq− S

}
dV

−
∫

NT×{q}
Ric(∇χ,∇χ)dV. (70)

The following equality holds in (70) if the equality in (11) is satisfied, that is∫
NT×{q}

∥∥∥∇2χ +
π1

p
χI
∥∥∥2

dV = 0,

which means that

∇2χ = −π1

p
χI. (71)

Therefore, for a ordinary differential Equation (71) with constant c =
√

π1
p > 0 as

π1 > 0, we invoke Obata’s theorem [17]. It implies that NT is isometric to the sphere
Sp(
√

π1
p ). This completes the proof of the theorem.

8.1. Proof of Theorem 8

In the hypothesis of the theorem, we assumed that the base manifold NT is connected
and compact and hence from (70), we have∫

NT×{q}

∥∥∥∇2χ +
π1

p
χI
∥∥∥2

dV =π1

( p + 1
pq

) ∫
NT×{q}

(
pq− S

)
dV

−
∫

NT×{q}
Ric(∇χ,∇χ)dV. (72)

If the statement of the theorem and Equation (12) is satisfied, then from (72), we have∥∥∥∇2χ +
π1

p
χI
∥∥∥2

= 0,

which implies that

∇2χ = −π1

p
χI. (73)

As we assumed that π1 < 0 in the hypothesis of the theorem, therefore we invoke
the result [24]. Then, NT is isometric to a warped product of the Euclidean line R and
a complete Riemannian manifold L, that is, R×φ L, where the warping function φ on R
satisfies the equation d2φ

dt2 + π1φ = 0. This completes the proof of the theorem.

8.2. Proof of Theorem 9

Let us consider the following equation:∥∥∇2χ− tI
∥∥2

= ‖∇2χ‖2 + t2‖I‖2 − 2tg(∇2χ, I), (74)

which implies the fact that the Hessian ∇2χ and identity operator I, are linked by the
following equation: ∥∥∇2χ− tI

∥∥2
= ‖∇2χ‖2 + t2 p− 2t∆χ.



Mathematics 2022, 10, 244 16 of 18

Putting t = π1
p in the above equation, and integrating along the volume element dV,

we derive ∫
NT×{q}

∥∥∥∇2χ− π1

p
I
∥∥∥2

dV =
∫

NT×{q}

(
‖∇2χ‖2 +

π2
1

p

)
dV. (75)

Using (68), we obtain∫
NT×{q}

∥∥∥∇2χ− π1

p
I
∥∥∥2

dV =− π1

∫
NT×{q}

‖∇χ‖2dV −
∫

NT×{q}
Ric(∇χ,∇χ)dV

+
∫

NT×{q}

π2
1

p
dV. (76)

Using (64), we obtain∫
NT×{q}

∥∥∥∇2χ− π1

n1
I
∥∥∥2

dV =− π1

q

∫
NT×{q}

SdV −
∫

NT×{q}
Ric(∇χ,∇χ)dV

+
∫

NT×{q}

π1

p
(p2 + π1)dV.

From the above equation, one obtains:

∫
NT×{q}

∥∥∥∇2χ− π1

p
I
∥∥∥2

dV =
∫

NT×{q}

(
π1 p +

π2
1

p
− Sπ1

q

)
dV −

∫
NT×{q}

Ric(∇χ,∇χ)dV. (77)

If Equation (13) is satisfied, then from (77), we arrive at∫
NT×{q}

∥∥∥∇2χ− π1

p
I
∥∥∥2

dV = 0.

It follows from the definition of the norm

∇2χ =
π1

p
I,

which implies that

∇2χ(X, X) =
π1

p
g(X, X), (78)

for any X ∈ X(NT). Note that if the potential function χ = ln f is a constant then Mn

is a trivial warped product submanifold that leads to a contradiction as Mn is a non-
trivial. Hence (78) is a differential equation [25] with positive constant c = π1

p > 0, as
π1 > 0. Therefore, NT is isometric to the Euclidean space Rp. This complete the proof of
the theorem.

9. Conclusions

On warped product submanifolds, the current work has used an ordinary differential
equation. Some characterisation theorems for the base of a WPPSS in a CPS have been
researched based on the optimization of the warping function of a WPPSS in a CPS. In sum-
mary, the study of warped product submanifolds has recently gotten increased attention
due to its importance in mathematics and application to other fields such as mathematical
physics. Robertson-Walker spacetime is a classic cosmological model of the universe that
consists of a perfect fluid whose molecules are galaxies. Theorems that relate the intrinsic
and extrinsic curvatures play an important role in physics in differential geometry of sub-
manifolds [15]. Furthermore, the concept of second order differential Equations (PDEs) has
made a significant contribution to the study of issues in fluid mechanics, heat conduction in
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solids, diffusive transport of chemicals in porous media, and wave propagation in strings,
as well as in solid mechanics. The eigenvalue challenges are attempts to find every possible
real π1 such that a nontrivial solution to second order partial differential Equations (PDEs)
∆χ + π1χ = 0 exists [34]. Similarly, eigenvalue equations in differential geometry are
intriguing topics with a physical grounding. Finding isometrics on a given manifold is
a prominent task in Riemannian geometry. As a result, the article features outstanding
Riemannian geometry and ordinary differential equation combinations.
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