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Abstract: With the steady growth of energy demands and resource depletion in today’s world, energy
prediction models have gained more and more attention recently. Reducing energy consumption
and carbon footprint are critical factors for achieving efficiency in sustainable cities. Unfortunately,
traditional energy prediction models focus only on prediction performance. However, explainable
models are essential to building trust and engaging users to accept AI-based systems. In this paper,
we propose an explainable deep learning model, called EXPECT, to forecast energy consumption
from time series effectively. Our results demonstrate our proposal’s robustness and accuracy when
compared to the baseline methods.

Keywords: time series forecasting; energy consumption; missing values; embeddings; long short-
term memory; explainable artificial intelligence

1. Introduction

We changed footnote format throughout paper, please confirm. The rapid burgeoning
of energy needs and technological developments have rocketed power consumption. In
this respect, smart meters, which are electronic devices that provide real-time record energy
consumption, increasingly replacing traditional electric meters. In 2019, according to the
IoT Analytics report (https://iot-analytics.com/product/smart-meter-market-report-20
19-2024/, accessed on 17 November 2021), the global penetration rate of smart meters
is 41.2%, which is expected to rise to nearly 59% by 2028. This transition was accompa-
nied by an urgent need to modernize and enhance energy systems to reach sustainable
development goals. Thus, an increasing number of research communities and industrial
partners have taken up the challenge of analyzing smart meter data and proposing models
to predict energy consumption. Moreover, it is worth mentioning that, since electricity is
simultaneously consumed as it is generated at the power plant, it is pivotal to accurately
predicting the energy consumption in advance for a stable power supply. Besides, in
energy consumption, we are used to relying on the most efficient—either machine or deep
learning-based—predictive models to unveil valuable knowledge towards gainful insights.
Notwithstanding, a common criticism of such models is that their decision-making process
is a “black box”; it is tricky to grasp how an algorithm makes a particular decision since
most focus on performance and accuracy, vastly overlooking the explainability aspect. On
the other hand, explainable Artificial Intelligence (XAI) is a growing facet of technical Al
development in which humans can understand the solution results. In energy consumption,
there is no more room for unquestionably relying on black-box system decisions whenever
companies are hardly working on providing a personalized supportive role via virtual
agents.

In this paper, we introduce the EXPECT framework (the EXPECT acronym stands for
EXplainable Prediction model for Energy ConsumpTion), which relies on a deep learning-
based technique to unveil the consumption patterns from the time-series data. The most
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challenging task is the feature engineering step, during which we have been facing a
considerable amount of missing values. Acting the furthest from a random completion,
we provide a new technique that extensively uses external information that makes the
dataset reliable for the knowledge-building process. In addition, we also pay attention to
the explainability of the provided predictions to make the latter more trusted by end-users.

We organize the rest of this paper as follows: Section 2 scrutinizes the wealth of works
done so far in the field of energy consumption prediction. Section 3 painstakingly describes
the introduced EXPECT framework. Then, we report the results of the experiments in
Section 4. Finally, we conclude the paper and identify avenues for future work in Section 5.

2. Scrutiny of the Related Work

Time series forecasting has been deeply investigated in the literature for a decade.
The primary purpose of this research field is to discover significant characteristics from
the time-series data that can be used for forecasting future values. As a result, a myriad
of research using time series forecasting has been proposed in different areas, including
marketing, finance, and energy consumption [1–3]. This study presents a comprehensive
review of the most pioneering approaches in the literature dealing with energy consumption
prediction. We can identify two major streams: (i) Standalone models, which apply to
a single technique; and (ii) Hybrid models, which integrate more than one standalone
technique. Table 1 shows the abbreviations which will be used in the related work. We
summarize the most recent studies in Table 2. In the following, we detail these categories.

Table 1. List of abbreviations. The abbreviations including in the text are reported alphabetically.

Abbreviation Full form

AE AutoEncoder
ARIMA AutoRegressive Integrated Moving Average
ARMA Autoregressive Moving Average
ANN Artificial Neural Network
CNN Convolutional Neural Network
EA Evolutionary Algorithm
LR Linear Regression
LSTM Long Short-Term Memory
RT Regression Tree
SVR Support Vector Regression
XGboost eXtreme Gradient Boosting

Table 2. Related works on time series energy forecasting.

Category Reference XAI
Statistical Techniques Machine Learning Techniques Deep Learning Techniques

LR ARMA ARIMA ANN XGBoost SVR EA RT CNN LSTM AE

Standalone

[4] No × ×
[5] No ×
[6] No ×
[7] No ×
[8] No ×
[9] No ×
[10] Yes ×

Hybrid

[11] No × ×
[12] Yes × ×
[13] No × ×
[14] No × × ×
[15] No × ×
[16] Yes × ×
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2.1. Standalone Models

Based on the techniques, we split standalone models into three categories: statistical,
machine learning, and deep learning.

2.1.1. Statistical Techniques

Several conventional statistical models have been widely used in non-linear time series
forecasting problems and have shown their outstanding performance in energy consump-
tion forecasting. In this paper, we focus on the most recently used approaches, such as
linear regression (LR), autoregressive moving average model (ARMA), and autoregressive
integrated moving average model (ARIMA).

The ARMA model is one of the most popular univariate models in stationary random
sequence analysis since it combines the advantages of the autoregressive and the moving
average models [17]. However, in real life, most time series are non-stationary. The ARIMA
model overcomes this limitation by introducing a differencing process. According to [18],
the proposed approach models stationariness and trend in time series data, considering
both autoregressive and mobile environments. In this respect, the authors in [4] performed
a comparative study between ARIMA and ARMA models for household electric consump-
tion. The used data in the different models were collected in the period ranging from
December 2006 to November 2010. Based on their results, the authors concluded that the
ARIMA model is more suitable for monthly and quarterly forecasting. In contrast, the
ARMA model is likely appropriate for daily and weekly forecasting. In the same study, the
authors conducted other evaluations using the linear regression analysis, which relies on
causal relationships, one of the statistical methods used for energy consumption forecasting
in buildings. In another study, the authors applied a single and multiple linear regression
analysis on hourly and daily data to predict the energy consumption in the residential
sector [5]. The authors have proven that the time resolution of the observed data has a
relevant impact on the prediction performance.

2.1.2. Machine Learning Techniques

Machine learning methods have been increasingly used to tackle time series forecasting
problems. Some studies proposed artificial neural networks (ANNs) for energy demand
prediction and optimization. For instance, Beccali et al. integrated a two-layer ANN
with multilayer perceptron in a decision-making tool that provides fast forecasting of the
energy consumption in commercial and educational buildings [6]. They identified the
most suitable architectures of two ANNs by the data provided from the energy audits
of 151 public buildings in four regions of South Italy. In their proposed framework, the
first ANN provided the actual energy performance building, while they dedicated the
second ANN to evaluating the best refurbishment actions. Both of them were trained
on an extensive set of data and provided good performance. In another study, Aslam
et al. pointed out that, although ANN models have good learning capability, it often
causes underfitting and over-fitting problems [19]. Another widely explored technique
in time series forecasting is the SVR model. In this respect, Zhong et al. developed
an efficient vector field-based SVR method aimed to establish an energy consumption
prediction model [8]. Their approach was based on a multi-distortion of feature space
which eliminates the high nonlinearity of the dataset. In the same study, the authors
mentioned that their improved algorithm enhanced the performance of SVR from three
aspects, including prediction accuracy, robustness, and generalization capabilities. In
another study, the XGBoost model has been used to construct a prediction model to forecast
electricity load [9]. The authors outlined that their model can capture the non-linear
relationships in a small-scale dataset provided by the Australian Energy Market Operator
(AEMO). Their approach increased the number of features by converting daily data into
weekly data and then applied XGboost for feature selection. As a result, they recorded good
performance on monthly predictions. However, the authors also reported that the XGboost
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did not perform well with high electricity loads. The obtained results were presented
without being compared to alternative approaches.

2.1.3. Deep Learning Techniques

Deep learning, which is a rising method to solve complex tasks, has shown promising
results in different areas for prediction purposes [20]. In recent years, deep architectures
have been extensively used to address the energy consumption prediction problem [10]. In
this respect, Kong et al. presented a system to forecast the short-term energy consumption
using deep learning techniques [7]. The proposed system takes advantage of the ability
of the long short-term memory (LSTM) recurrent neural network to learn the long-term
temporal dependencies and tendency relationships. Furthermore, the authors performed a
comparative study using a publicly available set of real residential smart meter data with
the existing prediction methods. As a result, their proposed approach outperforms its
competitors in short-term load forecasting. Another study carried out by Kim et al. [10] lies
in the same trend. The authors built an explainable deep learning model to predict house-
hold electricity consumption for 15, 30, 45, and 60 min resolutions. Their proposed model
proceeds as follows: based on the energy demand, the projector defines the current demand
pattern, called a state, from which the predictor predicts the future energy demand. Thus,
various explanations are given besides predictions. The experimental results show high
and stable performance on very complex data of 5 years compared with previous studies.

Most of the models for time series forecasting have rarely been used alone in the
literature. They tried to combine the advantages of different predictive models to have
more accurate and reliable forecasts. These are called hybrid models. In the following, we
will describe some of these approaches.

2.2. Hybrid Approaches

Hybrid models can deal with real-world problems, often complex. A single machine
learning model may not capture the complexities of energy and operational data. For
instance, the study carried in [11] focuses on the benefit of using two widely popular and
effective forecasting models, that is, ARIMA and ANN. According to the authors, a real-
world time series combines linear and nonlinear components. After a prior decomposition
of the series into low and high-frequency signals, they apply the ARIMA and ANN models
separately. Hence, the stationarity and linearity of the load is handled by the ARIMA
model, and the residual error is described by ANN, which fits the nonlinear characteristic.
Similarly, other methods can be combined to improve forecasting accuracy. Kim and Cho
presented an efficient CNN-LSTM neural network for time series energy forecasting [12].
The authors pointed out that the CNN layer can extract the features between several
energy consumption variables. The LSTM layer is appropriate for modeling temporal
information of periodic trends in time series components. In another study, an improved
adaptive neuro-fuzzy inference system for hourly near-real-time predictions of energy
consumption was introduced [13]. The authors proposed a new version of the swarm-based
meta-heuristic firefly algorithm to improve their hybrid machine learning approach. The
robustness of the developed model was tested on a public dataset containing six commercial
buildings located in different sites. Other studies combined different machine learning
techniques [14]. In their proposed model, the authors adopted linear (ARIMA and SVR)
and nonlinear methods (GA) to enhance the prediction accuracy. As a result, the integrated
framework performs well on the Taiwanese primary energy consumption dataset. The
authors confirm that hybrid models can model complex autocorrelation structures in the
data more accurately. Later, Yucong and Bo proposed the EA-XGboost framework, which
relies on ARIMA and XGboost models to predict building energy consumption [15]. First,
the ARIMA model is applied to each Intrinsic Mode Functions (IMF) generated from the
time series data. Afterwards, the XGboost model processes the result as a feature with other
energy-related factors. Recently, Ilic et al. proposed an explainable boosted linear regression
(EBLR) algorithm for time-series forecasting [16]. Their iterative model operates into two
phases: In the first phase, a base model, such as linear regression, is trained to obtain the
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preliminary forecasts. Then, a set of rules is identified by a regression tree through a feature
generation based on residual exploration in the second phase. This process creates a single
and interpretable feature to the base model to improve its performance. Results reveal that
the proposed method achieves the best forecasting accuracies.

2.3. Discussion

The above-mentioned state-of-the-art techniques have been successfully applied to
energy consumption forecasting. However, each technique has certain advantages and
should be appropriately applied to a specific case. In the following, we shed light on the
benefits and limitations of each technique discussed previously.

Prominent different statistical methods have been widely used for time series forecast-
ing. The main reason for this success is their robustness and flexibility. Moreover, these
methods rely on simplifying the expected task for the model by considering a priori knowl-
edge and performing well with limited data availability. Nevertheless, some weaknesses
have been found in the literature, the main one being missing nonlinearity. The essential
cons of these models stand in the fact that they groundlessly assume linear relationships
between past values. Unfortunately, this is not always the case with real-world data, thence
inhibiting prediction performance [3]. Furthermore, these methods are most suitable for
only short and medium ranges [21].

Later, machine learning techniques were proposed to overcome the limits of statistical
methods. Their primary benefit stands in capturing the nonlinear patterns of the series.
For instance, as mentioned in [8], SVR performs well for small datasets and can maintain
a good generalization ability. However, although machine learning methods successfully
overcome the drawback of statistical models in nonlinear relationships, they can yield,
sometimes, a dull performance for purely linear time series [11].

Recently, deep learning methods have proved their accuracy and computational
relevance. They can abstract features by creating a synthesis of different nonlinear transfor-
mations. Besides that, these methods can approximate almost any continuous function and
can extract cross-series information for features to enhance individual forecasting. Besides
these strengths, deep learning methods face several limitations. Apart from demanding
vast amounts of data and extensive computational times, methods based on deep learning
have difficulties when extrapolating data [19].

To summarize, we cannot assume that a technique is universally suitable to model a
real-world time series. The selection of a forecasting method depends on data availability
and the defined objectives. Therefore, it is of paramount importance to understand the
time series before conducting a forecast. Besides, any forecasting method has its unique
strengths and limitations. Therefore, a significant part of the success lies in choosing the
appropriate method for the forecasting problem.

3. EXPECT: EXplainable Prediction Model for Energy ConsumpTion Framework

This section thoroughly describes our proposed framework for predicting and explain-
ing energy consumption. We use a dataset (https://ieee-dataport.org/competitions/fuzz-
ieee-competition-explainable-energy-prediction#files, accessed on 17 November 2021) that
was made available by the Fuzz-IEEE competition on explainable energy prediction [22].
The EXPECT framework provides accurate predictions for 3248 smart meters upon the
one-year data. It is worth mentioning that dealing with this dataset was the furthest from a
straightforward task because of many missing values. To give a mouthwatering illustration
of the missing value rate: on average, the consumption dataset contains 51.62% of missing
values. Note, moreover, that the missing values are not equally distributed over the smart
meters. For instance, the worst smart meters have only 2.47% of data available, whereas the
best one has 98.91%. The concept of missing values is a significant issue in many real-world
datasets, yet there are no standard methods for dealing with it appropriately. Thus, it is
crucial to understand how to overcome this challenge to manage data and generate a robust
model successfully. We propose several imputation algorithms designed to deal with the
different missing values appearing in our datasets. After this explanatory data analysis

https://ieee-dataport.org/competitions/fuzz-ieee-competition-explainable-energy-prediction#files
https://ieee-dataport.org/competitions/fuzz-ieee-competition-explainable-energy-prediction#files
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step, the EXPECT prediction model aggregates both consumption and weather information
and feeds them to the embedding proposed layers in order to extract the temporal and
environmental hidden features. Afterwards, we establish an LSTM-based neural network
model to forecast energy consumption. The energy consumption values generated by our
model are evaluated and analyzed by several error metrics. Finally, to increase our model’s
trust, we rely on an agnostic method (ad-hoc and causality-based) to explain the generated
predictions. However, towards scalability, the embedding layer in our system makes us
lose the traceability of the original features. Thus, none of the well-known explainability
frameworks (LIME, SHAPE) can be applied. One solution for this problem was to use the
graphical interpretation for the explanation. Therefore, we chose the partial dependence
plot (PDP) method [23], which shows the marginal effect that one or two features have
on the predicted outcome of a machine learning model. This method is mainly based on
interpreting the generated plots.

The overall architecture of our framework, depicted by Figure 1, puts forward four key
steps: (a) Exploratory data analysis; (b) Feature engineering; (c) Model training; and (d)
Prediction & Explainability. In the following, we detail the distinct steps of the workflow:

Figure 1. The overall architecture of the proposed framework.

3.1. Exploratory Data Analysis

We usher the process by inspecting the dataset to get an overview of some issues that
may occur on real data, such as outlying observations, missing values, and other messy
features, to name but a few. As shown in Figure 1, distinct types of data were provided:

• Consumption data: Historical half-hourly energy readings for 3248 smart meters
having a different range of months’ worth of consumption. The available data for
a given (fully anonymized) meter_id may cover only one month or more during
the year.

• Additional data: Some collected additional information was made available for a
subset of the smart meters. Indeed, only 1859 out of 3248 contain some additional
information, including: (a) categorical variables: dwelling type for 1702 smart meters,
heating fuel for 78 smart meters, hot water fuel for 76 smart meters, boiler age for
74 smart meters, etc.; and (b) numerical variables: number of occupants for 74 smart
meters, number of bedrooms for 1, 859 smart meters, etc.

• Weather data: Daily temperature associated with 3248 smart meters, including the
average, minimum, and maximum temperature values, respectively. The location and
the postcode/zip code were anonymized for privacy issues.

The most thriving and challenging issue with this dataset is that both the energy
and additional information data contain a non-trivial amount of missing values, requiring
an effective method of filling those values. Thus, our framework relies on an efficient
algorithm that we introduce to fill appropriately in the incomplete data. In a first step, we
propose an algorithm whose pseudo-code is sketched by Algorithm 1 to fill in missing
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values of the consumption data. The algorithm starts by checking the rate of missing values
for each smart meter through the GET_FILLED_RATE function (line 3). We then compared
that rate to a pre-defined threshold α, set equal to 0.6 in our case (line 4). Finally, according
to the rate threshold, we filled in the missing values with either the SEASONAL_FILLING

procedure (line 6) or the CUSTOMIZED_FILLING procedure (line 9).

Algorithm 1: Filling missing data for consumption.
Input: M: the consumption of smart meters with missing values, A: additional

data, α: rate.
Output: M: the consumption of smart meters with filled in values.

1 foreach Mi ∈ M do
33 ri ←GET_FILLED_RATE (Mi);
4 if ri > α then
66 SEASONAL_FILLING (Mi, M);
7 else
99 CUSTOMIZED_FILLING (Mi, A, M);

10 end if
1212 return (M);
13 end foreach

In the following, we thoroughly describe the above routines. Thus, the pseudo-code of
the SEASONAL_FILLING procedure is shown by Algorithm 2. The latter requires a prior of
the time series based on the weather data. Thus, we identified 4 distinct energy-temperature
regimes (seasons) according to Figure 2:

• Season 1: This is defined from January to the end of March (beginning of April). This
season is flagging out gradually, decreasing energy consumption;

• Season 2: It runs from April to June (beginning of July). During this season, energy
consumption tends to decrease. The shape of the plot indicates a decrease in energy
consumption starting from May to June. In addition, the temperature in this season
tends to increase;

• Season 3: It goes from July to September (beginning of October). We identify frequent
but more minor energy variations during this season compared to season 2, growing
as temperature increases;

• Season 4: It covers October to the end of December. Frequent and large energy
fluctuations characterize it, with relatively large mean consumption. As a rule of
thumb, the temperature is decreasing in this season.

Figure 2. Average monthly energy consumption by year.
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Algorithm 2: SEASONAL_FILLING (Mi, M).
Input: Mi: the consumption of current meter, M: the consumption of smart meters

with missing values.
Output: M: the consumption of smart meters with filled in values.

1 foreach oi ∈ Mi do
2 NewVal ← oi;
3 if NewVal = ∅ then
4 (Season, DayO f Week, Time)← GET_CONTEXT (oi, Mi);
5 Obs← GET_OBS_SEASON (oi);
6 Exit← False ;
7 repeat
8 foreach vi ∈ Obs do
9 if GET_DAY_OF_WEEK (vi)= GET_DAY_OF_WEEK (oi) then

10 Val←GET_OBSERVATION (vi);
11 else
12 Val← GET_SIMILAR_OBSERVATION (vi);

13 if Val 6= ∅ then
14 NewVal ← Val;
15 else
16 Exit← True;

17 until (NewVal 6= ∅) && (Exit = True);

18 if Exit = False then
19 NewVal ← GET_FROM_SIMILAR_METERS (Mi, M);

In this study, the consumption dataset was given in 30-min intervals; 24 h apart
corresponds to 48 time-steps and 12 h to 24 time-steps, and so forth. We tried to identify
cyclical patterns in the time series based on statistical analysis. Informally, autocorrelation
is the similarity between observations due to the time lag between them. Looking closely
at Figure 3, we distinguish a sinusoidal shape. The following observations are worth
underscoring: The energy consumption for a particular hour, each day, is most strongly
correlated to the same hour of the day before or after. This relationship weakens as
the number of days increases but peaks again 1 week apart (336 time-steps). According
to the provided autocorrelation values, this value has a stronger correlation than 1 day
apart. The SEASONAL_FILLING procedure starts by getting all observations related to
a given meter across the year. For each missing value, the GET_CONTEXT depicts its
context, which refers to the season (season 1, season 2 and season 3), the day of the week
(Monday, Tuesday, etc.), and the daily time range (AM and PM) (line 4). Afterward, the
GET_OBS_SEASON returns the list of observations Obs in the same season as the considered
missing value oi (line 5). For each element of the list Obs, the imputation of the missing
value is assessed through the GET_OBSERVATION function in case we have the same
day of the week and time range (line 10). Otherwise, the missing value is filled in via
the GET_SIMILAR_OBSERVATION function, which provides a similar observation in the
same week and time range (line 12). In the case where we still have missing values, the
GET_FROM_SIMILAR_METERS function imputes the value based on the most akin smart
meters (line 24). The CUSTOMIZED_FILLING procedure, whose pseudo-code is shown by
Algorithm 3, proceeds vertically (unlike the SEASONAL_FILLING procedure) and is applied
to the smart meters having a filling rate less than α. In this procedure, we deal with an
enormous amount of missing data. Some observations only cover about 7% of the total
data, to name but a few. The basic idea of the CUSTOMIZED_FILLING procedure is to assign
values according to the similarity between smart meters. After identifying the missing
range of data, for a given smart meter Mi, through the GET_MISSING_RANGES function
(line 2) akin to smart meters with filled-in values, are gathered for each range through
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the GET_SIM_METERS function (line 4). To wrap up the process, the UPDATE_METERS

procedure fills in the missing ranges according to the most similar smart meters (line 5).
The CUSTOMIZED_FILLING procedure distinguishes the type of day (weekend/weekday).
Replaced with data from the nearest type of day, they allude more accurately to how a
data pattern changes over time. In a second step, we propose two methods to fill the
missing values of the additional data. Because of the large number of missing values in
this dataset, which exceeds 96% for most features, we decided to keep only the following
features: dwelling_type and num_bedrooms with, respectively, 20.58% and 13.25% of
missing values. One proposed method is depicted by Algorithm 4. Here, we get the N
similar meters according to the consumption data through the GET_METERS function
(line 3). After that, we call the GET_SIMILARITY function iteratively to assess the similarity
between the N meters to find the most similar one (line 6–11). The second method is
described by Algorithm 5. Finally, we perform clustering on the meters by calling the
METER_CLUSTERING function based on both consumption and available features from
additional information dataset (line 1). Then, for each meter with a missing value, we get
its cluster using the GET_CLUSTER function (line 4), and we look for the most similar meter
in the same cluster (line 5).

Figure 3. Auto-correlation plot of Energy Consumption.

Algorithm 3: CUSTOMIZED_FILLING (Mi, A, M).
Input: Mi: the consumption of current meter, A: additional data, M: the

consumption of smart meters with missing values.
Output: M: the consumption of smart meters with filled in values.

1 Ranges← GET_MISSING_RANGES (Mi);
2 foreach Ri ∈ Ranges do
3 foreach i ∈ Ri do
4 SimMeters←GET_SIM_METERS (Mi, A);

5 UPDATE_METERS (Mi, SimMeters, Ri);
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Algorithm 4: Distance for additional information.
Input: M: the consumption of smart meters with filled-in data, A: additional data

with missing data.
Output: A: additional data with filled in data.

1 foreach Mi ∈ A do
2 if HAS_MISSING_VALUE(Mi) = True then
3 SimMeters← GET_METERS(Mi,M, N);
4 Maxsim ← 0;
5 BestMeter ← −1;
6 foreach Mx ∈ SimMeters do
7 if GET_SIMILARITY(Mi,Mx) > Maxsim then
8 Maxsim ← GET_SIMILARITY(Mi, Mx);
9 BestMeter ← Mx;

10 Mi ← BestMeter;

Algorithm 5: Clustering for additional information.
Input: M: the consumption of smart meters with filled data, A: additional data

with missing data.
Output: A: additional data with filled in data.

1 Clusters← METER_CLUSTERING (M, A, k);
2 foreach Mi ∈ A do
3 if HAS_MISSING_VALUE(Mi) = True then
4 C ←GET_CLUSTER (Mi,Clusters);
5 Mj ←GET_SIM_METER (Mi,C);
6 Mi ← Mj;

3.2. Feature Engineering

This essential step allows the selection of the independent features to build a robust
model. We choose a smart meter with the lowest number of missing values to conduct this
study. For example, the smart meter #3003 has only 192 missing values (which represents
1.09 % of the 17, 521). We can identify the importance of some temporal features through the
extensive visualization study of the consumption dataset that we carried out. According to
Figure 4, we observe that energy consumption is variable during the different hours of the
day. Thus, we identify the feature hour.

Another feature is also depicted, which is based on Figure 2, previously presented.
The average monthly energy consumption is not the same for all months of the year, which
leads us to create a month feature. We then visualized energy consumption across different
days of the week. As shown in Figure 5, the energy consumption also depends on the
different days of the week. So, we decided to introduce the day_of _week feature.

When going through analyzing the behavior of energy consumption during the differ-
ent days of the year based on Figure 6, the feature day_of _year is also added to our model.

The week_of _year is also considered an important feature in our analysis, as shown in
Figure 7.
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Figure 4. Hourly energy consumption by day.

Figure 5. Average daily energy consumption by week.

Figure 6. Average daily energy consumption by year.
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Figure 7. Average weekly energy consumption by year.

Besides temporal features, we depict some other additional features. In the exploratory
data analysis step, we already defined the season feature. Then, we plotted the distribution
of energy consumption for a given month of each season, categorized into weekdays and
weekends. According to Figure 8, we observed that energy consumption was significantly
higher during the weekends by contrast to weekdays. To leverage this pattern, we created
a feature on whether the day being predicted for was a weekend called is_weekend.

Figure 8. Distribution of energy consumption based on type of day (1 month from each season).

Paying close attention to the weather dataset, we distinguish a few missing values
that may result from a sensor failure. The random sampling technique is then appropriate
to fill missing values. After that, we apply the k-means algorithm on temperature data to
identify the weather_cluster feature. As illustrated by Figure 9, the number of clusters is
equal to 4. We also add the is_cold feature, which reflects the high energy consumption,
especially in season 1.

According to Figure 10, on weekdays, energy consumption sharply drops off at 7 am
and picks up after 5 pm, most likely the standard working hours. As such, we took the
liberty to introduce work_time (between 7 am and 5 pm on weekdays). Based on the same
plot, we point out that energy consumption, both on weekdays and weekends, is higher
between 5 pm and 8 pm. This pattern will be captured by the is_peak feature. We also
add the dwelling type feature and the num_bedrooms from the additional information file as
features (the most filled features).
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Figure 9. Elbow curve.

Figure 10. Average daily energy consumption (weekends and weekdays).

3.3. Training the Model

Needless to say, LSTM-based RNNs are an attractive choice for modeling sequential
data like time series, as they incorporate contextual information from past inputs. Especially,
the LSTM technique for time series forecasting has gained popularity because of its end-
to-end modeling, learning complex non-linear patterns, and automatic feature extraction
abilities. In this trend, we relied on a similar structure, and we start in the remainder
presenting on the key embedding step.

Embedding

We adopt the Time2Vec proposed in [24] as our model’s embedding representation
of time and weather features. The latter captures the main three properties (periodicity,
invariance to time rescaling, and simplicity). For a given scalar notion of time t and weather
w, Time2Vec of t and Weather2Vec of w, denoted as x2v(x), are vectors of size k + 1 defined
as follows:

x2v(x)[i] =

{
wix + ϕi, if i = 0
z(wix + ϕi), if 1 ≤ i ≤ k,

(1)
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where z is a periodic activation function, and wiand ϕi are the learnable parameters. A
vector representation for x allows it to be simply consumed by many architectures. In our
implementation, we used z as the sine function.

3.4. Prediction & Explainability

In the following, we start by thoroughly presenting the building of the prediction
model.

3.4.1. Prediction

In this paper, we introduce an explainable energy consumption prediction framework
called EXPECT. Indeed, the latter tackles the problem as a daily, weekly, and monthly
consumption regression task. We trained the prediction model on a historical 30-min
intervals time-series from January to December 2017 besides weather information and
several additional features. As depicted by Figure 1, the EXPECT prediction model operates
as follows: after the pre-processing of the collected data (feature engineering step), both
consumption and weather information are fed into the embedding proposed layers in order
to extract the temporal and environmental hidden features. Therefore, these embedding
results concatenated with additional information are fed afterwards to the model training
step. Indeed, the success of LSTM-based neural networks with time-series data is owed
to their ability to capture the long-term temporal dependencies. Therefore, for the model
training step, we have to adopt the long short-term memory neural network model with
the sequence-to-one architecture. Long-short term memory networks (LSTMs) are a type of
RNN architecture that can learn long-term dependencies, utilizing the notion of memory.
They were initially proposed by [25] and have since been varied and promoted in a wide
range of publications to solve a wide range of issues. Commonly known as the forward
pass LSTM network, it comprises three gates. For the cell’s state update Ct, a forget gate f
and an input gate I are created. An output gate o determines how much information about
the current input xt should be stored in the current output cell ht. The gates’ functionalities
are computed as follows:

ft = σ(W f .[ht−1, xt] + b f ) (2)

it = σ(Wi.[ht−1, xt] + bi) (3)

Ĉt = tanh(Wc.[ht−1, xt] + bc) (4)

Ct = ft × Ct−1 + it × Ĉt (5)

ot = σ(Wo.[ht−1, xt] + bo) (6)

ht = ot × tanh(Ct). (7)

We carried out our experiments under a computer environment with Ubuntu 18.04.3
LTS (CPU: Intel Xeon Processor (Skylake) × 8, RAM: 16Gb), with a 3.7 Python version and
a 2.3.1 Keras version. We experiment with different architectures with varying numbers of
hidden LSTM units to fine-tune parameters for the prediction process for the three different
tasks (daily, weekly, and monthly). Finally, we designed the final parameter setups of the
prediction model as shown in Table 3.

Table 3. The proposed EXPECT prediction model architecture.

Type Daily Weekly Monthly

Embedding dimension 48 48 48
Sequences size 48 48 48
LSTM layers 1 1 2
LSTM units 100 200 200, 100
Epochs 50 100 200
Optimizer/Loss Adam/MSE Adam/MSE Adam/MSE
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3.4.2. Explainability

This phase presents an explainable module to understand why our predictive model
makes energy consumption forecasts. In the literature, they have proposed many methods
and frameworks because of the inherent explainability of a predictive model like LIME [26]
or SHAPE [27]. It is worthy of mention that the existing well-known frameworks are
designed for several “homogeneous” types of data tabular, text, and images. Nevertheless,
our built prediction model is based on “heterogeneous” embedded and tabular data. In
doing so, we have a flip of the coin for high achieved accuracy, since the existing frameworks
do not apply to our built predictive model. Thence, we rely on an agnostic method to
explain our black-box model in this remainder. We based the proposed method mainly on
the Partial Dependence Plots [23], which show the effect that a feature would have on the
predictions of the model. This partial dependence function shows the relationship between
a feature and the predicted outcome. Besides, this dependence function can be explained to
the user as the varying of a specific feature influencing the model’s forecasting. We change
a given “selected” feature and leave the other features unchanged. Thence, we ask the built
model what would happen to the energy consumption, that is, our target variable.

We opted for PDP to underscore the marginal effect one or two features can have
on the predicted outcome of a predictive model [23]. In doing so, we can unveil the type
of relationship between the target and a feature that is linear, monotonic, or even more
complex.

f̂xS(xS) = ExC

[
f̂ (xS, xC)

]
=

∫
f̂ (xS, xC)dP(xC), (8)

where xS stands for the set are the target features, that is, those for which the partial
dependence function is plotted since we know their effect on the prediction, whereas xC
stands for the set of the other features fed to the predictive model f̂ . The feature vectors
xS and xC combined make up the total feature space x. Partial dependence works by
marginalizing the predictive model output over the distribution of the features in the set C.
Thus, the plot function glances at the relationship between the sought-after set S features
and the predicted outcome.

Through the Algorithm 6, we describe how the PDP of a given feature is computed.

Algorithm 6: Computing the PDP values.
Input: f : the feature to explain, X: the training dataset, RegressorModel: the

predictive model.
Output: χ: the distinct possible values of f , χ̃: the estimated values of each value

of f .
1 χ← ∅;
2 χ̃← ∅;
3 if IS_CATEGORICAL( f ) then
4 χ← X[ f ].unique();
5 else
6 χ← GET_RANGE( f );
7 end if
8 foreach v ∈ χ do
9 X2 ← X;

10 X2[ f ]← v;
11 predictions← RegressorModel.predict(X2);
12 χ̃.add(predictions.avg());
13 end foreach

As clearly underscored by its pseudo-code, the latter uses the training dataset X and
the predictive model RegressorModel. Thence, it starts by checking whether the feature
f is categorical or continuous through the IS_CATEGORICAL function (line 3). Then, it
computes all its possible values χ (lines 4–6). If we are dealing with a categorical feature, χ
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is filled with the unique values of f (line 4). With a continuous feature, we get the min()
and max() values of the feature f through the GET_RANGE function (line 6). After that,
for each possible value (v) of χ, the algorithm creates a new dataset X2 by replacing the
feature value with v and makes predictions on the new training dataset (line 11). Finally, the
algorithm computes the average of the predictive values, which is added to the estimated
value χ̃ (line 12). Besides, the proposed explainable approach is rather global; to wit, it
explains the behavior of the predictive model based on Partial Dependence Plots (PDP) of the
extracted features (Section 3.2). Thus, whenever a user has a predictive value, it can project
the input values to the PDP to explain why he had this predictive value.

4. Experimental Results

In this section, we present our experimental results, using a real-world energy con-
sumption dataset for the performance assessment of the proposed Expect approach versus
the competing baseline methods. Besides, we pay close attention to the interpretability of
the obtained results using the PDP-based approach.

4.1. Evaluation Metrics

The prediction performance of our model and the baseline models are evaluated using
the mean squared error (MSE) and the mean absolute error (MAE), which are defined
respectively in the following equations:

MSE =
1
n

n

∑
i=1

(ci − ĉi)
2 (9)

MAE =
1
n

n

∑
i=1
|ci − ĉi|, (10)

where n stands for the size of the tested consumption observations, ci for the ground-
truth consumption, and ĉi for the predicted consumption yield by the model of the ith
observation. MSE (Equation (9)) and MAE (Equation (10)) are the most used metrics to
assess the average error between forecast and actual values.

4.2. Results and Discussion

To accurately test our proposed EXPECT approach, we led a comparison with the
existing consumption prediction baseline methods; the statistical linear regression model
proposed in [5] and the machine learning-based Random forest model implemented in [16].
In addition, for the sake of a fair comparison, we tested all the baseline methods using
the same datasets. We evaluate the different approaches using the random sampling-
based data completion (RDC) to assess the impact of using the seasonality-based data
completion (SDC) Algorithm 2. In addition, the additional data missing values are filled in
using distance-based data completion (DDC), and clustering-based data (CDC) completion
approach described respectively by Algorithms 4 and 5. Therefore, we have got four
different datasets for the final evaluation. Tables 4–7 glance at the obtained values for both
MAE and MSE metrics by the EXPECT approach versus its competitors. We analyze the
models’ performance under three different prediction tasks daily, weekly, and monthly,
representing a different degree of efficiency in the long term. In terms of MAE values,
EXPECT outperforms all baseline methods using the SDC with DDC and SDC with CDC
datasets for the three different prediction tasks. Although on both RDC with DDC and
RDC with CDC the performances of the proposed method are slightly worse than the
performances of the Random forest model for the monthly task, it still outperforms all other
baselines. Through the experimental process results, the different approaches give varied
MSE values. For both SDC with DDC and SDC with CDC datasets, our EXPECT approach,
both daily and weekly prediction tasks’ values are reduced to (33.67, 408.61) and (33.63,
408.61), respectively, with an improvement of (65.32%, 187.91%) and (65.73%, 189.29%)
according to the best performing baseline. For the two RDC datasets, our EXPECT flagged
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better results for only the weekly task. Nevertheless, it is slightly outperformed by the
baselines for the remaining two tasks. Further analyses can extract different information
in Table 8, the seasonality-based data completion method proves its efficiency to improve
the performance of prediction models. The comparative analysis of the resulting table
shows that our approach is effective with both daily and weekly tasks but is less accurate
in the long-term prediction task (monthly). The size of the used dataset can explain it (one
year), in which we do not exploit and extract complex patterns for each specific month.
Nevertheless, using Random sampling for data completion achieves a better performance
for the monthly task.

Table 4. Performance evaluation with RDC and DDC.

Method Resolution MSE MAE

Linear Regression
Daily 49.85 4.86
Weekly 1157.22 23.77
Monthly 14,174 79.99

Random Forest
Daily 48.68 4.78
Weekly 1130.06 23.31
Monthly 13,818.84 78.40

EXPECT
Daily 60.01 4.28
Weekly 566.91 13.82
Monthly 29,521.40 121.16

Table 5. Performance evaluation with RDC and CDC.

Method Resolution MSE MAE

Linear Regression
Daily 58.00 5.1738
Weekly 1992.93 30.46
Monthly 14,233.43 81.31

Random Forest
Daily 56.66 5.0797
Weekly 1945.24 29.89
Monthly 13,674.78 78.87

EXPECT
Daily 59.98 4.28
Weekly 565.86 13.80
Monthly 29,516.15 121.16

Table 6. Performance evaluation with SDC and DDC.

Method Resolution MSE MAE

Linear Regression
Daily 51.54 4.98
Weekly 2174.49 32.31
Monthly 35,861.35 131.02

Random Forest
Daily 57.52 5.09
Weekly 2257.00 31.95
Monthly 37,614.87 132.55

EXPECT
Daily 33.67 3.29
Weekly 408.61 11.37
Monthly 36,266.74 127.98

4.3. Explaining the Prediction

After building and testing our predictive model, users can use this model and thence
predict the energy consumption in the future according to current data number of bedrooms,
temperature, dwelling type, to name but a few. Besides, even highly accurate the built
model is not, sadly, interpretable that can affect in trust faced by the users. Because the
built model can make only predictions with no explanations to justify the predictive value.
Several machine learning algorithms are “inherently” interpretable, for example, decision
trees and random forests, which can provide the prediction with useful rules that are used
to make these predictions, and other algorithms (like the proposed by us) are black-box
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models that make only predictions. Therefore, we have proposed on top of our predictive
model an explainable layer that can explain to users why the predicted model gives such
energy consumption. The proposed explainable layer is based on graphic interpretation by
the user. In doing so, we relied on the PDP to unveil what happens to energy consumption
whenever a feature changes while keeping all other features constant. The obtained values,
that is, the predictions and possible values of each categorical and continuous feature,
are projected into plots. In the remainder, we try to present some plots generated by our
explainable layer and the built predictive model.

Table 7. Performance evaluation with SDC and CDC.

Method Resolution MSE MAE

Linear Regression
Daily 51.65 5.02
Weekly 2182.02 32.68
Monthly 36,124.15 134.02

Random Forest
Daily 51.16 4.94
Weekly 2158.74 32.14
Monthly 35,617.61 132.07

EXPECT
Daily 33.63 3.29
Weekly 408.61 11.36
Monthly 36,278.63 128.03

Table 8. Performance of the EXPECT framework using the different data completion methods.

Data Completion
MSE MAE

Daily Weekly Monthly Daily Weekly Monthly

RDC and DDC 60.01 566.91 29,521.40 4.28 13.82 121.16
RDC and CDC 59.98 565.86 29,516.15 4.28 13.80 121.16
SDC and DDC 33.67 408.61 36,266.74 3.29 11.37 127.98
SDC and CDC 33.63 408.61 36,278.63 3.29 11.36 128.03

Figure 11 shows a pretty clear interpretation. It sketches an important impact of
dwelling type features on energy consumption. Indeed, whenever we vary the dwelling
type, the energy consumption also varies. In the same trend, we can explain a high
consumption dwelling type is 1 or 2, which represents, respectively, a semi-detached house
and a terraced house. A closer look at Figure 12 puts forward the considerable impact of the
number of bedrooms’ feature on energy consumption. Indeed, we can notice a reciprocal
connection between energy consumption and the number of bedrooms.

Figure 11. Impact of the dwelling type on the energy consumption.



Mathematics 2022, 10, 248 19 of 21

Figure 12. Impact of the number of bedrooms on the energy consumption.

Figure 13 also shows the impact of the temperature on energy consumption. Thus, as
soon as the temperature curve shows that whenever the temperature increases, the energy
consumption decreases.

Figure 13. Impact of the temperature on the energy consumption.

The above-given figures glance at the behavior of some features for the outcome of the
predictive model. Thus, we can notice a positive correlation between these features and the
target variable. Using these figures, users can position themselves to justify the predictive
energy consumption. In other words, in the case of high consumption, a user can check
whether there is a high number of bedrooms and/or if the dwelling type is 4 or 5.

5. Conclusions and Future Work

In this paper, we introduced the EXPECT framework, which has shown very en-
couraging and self-explaining daily, weekly and monthly predictions for the electricity
consumption of customers. We relied on an LSTM-based neural network model that
ingested consumption data as well as external information, such as weather condition,
dwelling type, and so forth.

EXPECT has shown evidence of resilience to the missing values, and we especially
dealt with a vast number of missing values. In terms of accuracy, EXPECT has been shown
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to provide very encouraging results, versus its competitors, especially for the daily and
weekly consumption forecasting.

The obtained results in this paper open up many perspectives. In the following, we
present some promising future research paths from which we cite:

• Incremental learning of the predictive model: The steady ingestion of the low data
on energy consumption sent out by smart meters is heading us towards the proposal
of new incremental predictions that, in lieu of departing from scratch, will seed the
already existing model;

• New explainability model for heterogeneous model: The predictive model that we
developed has unveiled a compelling new framework, that, unlike the existing ones,
would be able to work alongside our efficient prediction model. The new explainability
framework would address global and local explainabilty views. In addition, we plan to
improve this part of the proposed framework; now the user can interpret the provided
graphic to explain why it would have such a prediction, that is, extract automatically
predictive rules that can explain the provided prediction;

• Development of a personalized “trustworthy” virtual coach for energy consumption:
The latter’s aim is to engage customers with personalized, actionable advice to im-
prove their consumption and increase their satisfaction. This virtual coach aims to
provide tailored advice, alerts and recommendations by learning every household
consumption behavior.
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