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Abstract: In this paper, we study a multi-server queueing system with retrials and an infinite orbit.
The arrival of primary customers is described by a batch Markovian arrival process (BMAP), and
the service times have a phase-type (PH) distribution. Previously, in the literature, such a system
was mainly considered under the strict assumption that the intervals between the repeated attempts
from the orbit have an exponential distribution. Only a few publications dealt with retrial queueing
systems with non-exponential inter-retrial times. These publications assumed either the rate of
retrials is constant regardless of the number of customers in the orbit or this rate is constant when
the number of orbital customers exceeds a certain threshold. Such assumptions essentially simplify
the mathematical analysis of the system, but do not reflect the nature of the majority of real-life
retrial processes. The main feature of the model under study is that we considered the classical
retrial strategy under which the retrial rate is proportional to the number of orbital customers.
However, in this case, the assumption of the non-exponential distribution of inter-retrial times leads
to insurmountable computational difficulties. To overcome these difficulties, we supposed that
inter-retrial times have a phase-type distribution if the number of customers in the orbit is less than or
equal to some non-negative integer (threshold) and have an exponential distribution in the contrary
case. By appropriately choosing the threshold, one can obtain a sufficiently accurate approximation
of the system with a PH distribution of the inter-retrial times. Thus, the model under study takes
into account the realistic nature of the retrial process and, at the same time, does not resort to
restrictions such as a constant retrial rate or to rough truncation methods often applied to the analysis
of retrial queueing systems with an infinite orbit. We describe the behavior of the system by a multi-
dimensional Markov chain, derive the stability condition, and calculate the steady-state distribution
and the main performance indicators of the system. We made sure numerically that there was a
reasonable value of the threshold under which our model can be served as a good approximation
of the BMAP/PH/N queueing system with the PH distribution of inter-retrial times. We also
numerically compared the system under consideration with the corresponding queueing system
having exponentially distributed inter-retrial times and saw that the latter is a poor approximation
of the system with the PH distribution of inter-retrial times. We present a number of illustrative
numerical examples to analyze the behavior of the system performance indicators depending on the
system parameters, the variance of inter-retrial times, and the correlation in the input flow.

Keywords: retrial queueing system; batch Markovian arrival process; phase-type inter-retrial
time distribution

1. Introduction

When modeling the operation of telecommunication networks, it is necessary to
take into account a large number of objective and subjective factors. These are: (a) the
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complex nature of information flows, which can have a large spread in the values of the
intervals between customers and be correlated; (b) the phenomenon of retrials; (c) the more
complex nature of the distribution of intervals between retrials (in comparison with the
well-studied exponential distribution). The presence of retrials significantly complicates the
mathematical analysis of the system in comparison with queueing systems with waiting
room or with losses. At the same time, retrial queueing systems find great interest among
researchers in the field of telecommunications and queueing theory since they adequately
describe the operation of versatile communication networks, including cellular mobile
networks for various purposes, as well as various contact centers, etc. In the literature,
one can find a large number of works on retrial queueing systems; for references, see, for
example, the reviews [1,2] and books [3,4]. Most of the early publications in this area were
devoted to the systems with a stationary Poisson input and exponentially distributed service
times. In recent decades, more adequate processes of arrivals and service in retrial queues
have appeared. In particular, retrial queues with the Markovian and batch Markovian
arrival processes (MAP and BMAP; see, e.g., [5]) were considered. This allows taking into
account the correlated nature of many real-world flows. All these systems were investigated
under the assumption that, under the fixed number of customers staying in the orbit, the
lengths of the intervals between repeated attempts have an exponential distribution. A few
papers where this assumption was avoided were mainly devoted to the systems with a
constant retrial strategy. Under such a strategy, the retrial rate from the orbit is constant and
does not depend on the number of customers in the orbit. We can refer to the papers [6–13]
dealing with the systems M/M/1 and M/G/1 with non-exponential inter-retrial times
and a constant retrial rate.

At the same time, in most real stochastic systems with retrials, the so-called classical re-
trial strategy of repeated attempts is used. Under such a strategy, each customer in the orbit
repeats the attempts to obtain service independently of other orbital customers. Queueing
systems with the classical retrial strategy are not only important for applications, but also
mathematically interesting. Therefore, the researchers in the fields of telecommunications
and queueing theory place high emphasis on such kinds of systems. However, only a few
papers have dealt with queues with the classical retrial strategy and a non-exponential
distribution of inter-retrial times. This is due to the fact that relaxing the exponential as-
sumption for the retrial times involves significant theoretical and computational difficulties.
The fundamental difficulty in the study of such systems follows from the fact that, to
describe the behavior of the system by the Markov process, it is necessary to permanently
track the elapsed or residual inter-retrial time for each of the orbital customers. As the
number of such customers grows, the dimension of the state space grows exponentially,
which entails insurmountable computational difficulties. As a consequence, all papers
dealing with the classical retrial strategy and a non-exponential distribution of inter-retrial
times proposed a variety of approximations.

In [14], the authors considered the retrial M/G/1 queueing system with non-exponential
retrials and proposed an approximate method for finding the stationary performance charac-
teristics of the system. The approximate method was based on the authors’ assumption that
in most real systems, the inter-retrial time is much shorter than the service time. Hence, the
dependence on the elapsed time between retrials for different orbital customers is very weak.
This assumption greatly simplifies the study, because otherwise, it is necessary to keep track
of the elapsed time for each of the maximum possible number of orbital customers. In [15],
the author considered the retrial M/G/1 system in which the inter-retrial times have a
distribution given by a mixture of Erlang distributions. An approximate method for calcu-
lating the stationary distribution of the system was proposed. In the paper [16], the idea of
approximation used in [14] was applied for the M/PH/1 system with a PH distributed
inter-retrial time. The authors of [16] used this idea to approximate the infinitesimal gener-
ator of the Markov chain describing the operation of the system and find the approximate
performance characteristics of the system.
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In most of the papers devoted to the retrial queueing systems with a non-exponential
distribution of inter-retrial times, it was assumed that these times have a PH distribution.
This is explained as follows. In practice, the retrial times may have a general distribution.
However, sometimes, it is not possible to analyze the corresponding mathematical models
analytically. Therefore, the assumption about the phase-type distribution of retrial times
is a single reasonable alternative if there is a need to adequately model some important
practical system. Moreover, it is well known that the class of PH distributions is everywhere
dense in the class of distributions on the non-negative semi-axis, and with the help of this
distribution, in principle, one can approximate any distribution in the indicated region
well enough. However, even assuming the phase-type distribution of retrial times, the
researcher can encounter essential difficulties caused by a strong increase in the dimension
of the state space of the process under study. Thus, the authors of the corresponding papers
had to resort to various approximations of the considered systems.

The papers [17,18] dealt with the retrial M/M/c queueing model with a PH distri-
bution of inter-retrial times. In the case of a two-state PH distribution, the author of [17]
used the level-dependent quasi-birth-and-death (LQBD) process approach to investigate
the system. For an arbitrary case, the authors of [18] proposed an approximation for the
distribution of the number of busy servers and the mean number of customers in the orbit.
In the papers [19,20], the M/M/c queue with a PH distribution of inter-retrial times and
a multi-threshold rate of repeated attempts was investigated. It was assumed that the
retrial rate is constant when the number of orbital customers is between two consecutive
thresholds and depends on the threshold parameters. The operation of the system was
described by the QBD process with a finite number of boundary states. The stationary
distribution was calculated using the matrix-analytic technique. The system performance
indicators were derived, and a number of illustrative numerical experiments were given.

In all the works cited above, it was assumed that the input flow is described by the
stationary Poisson arrival process. At the same time, as mentioned above, flows in modern
telecommunication networks and systems, as a rule, have a correlated bursty nature.
Attempts to approximate them with the stationary Poisson flow, which has the memoryless
property, can lead to large errors in estimating the network performance; see, e.g., [21].
Currently, the most suitable mathematical models for such flows are the MAP and BMAP.
Retrial queueing systems with the MAP and BMAP and exponential time between retrials
have been previously investigated in a number of works; see, for example, [2,4,22–27]. At the
same time, we can refer only to the works [28,29] in which systems with there MAP and
non-exponential intervals between retrials were considered. In [28], the retrial queueing
system with acyclic PH retrials and several types of customers was considered. The authors
resorted to using the Lyapunov function to truncate the infinite state space of the model
and then calculated the steady-state probabilities of the truncated model iteratively. In
the paper [29], the retrial MAP/PH/1 queue with PH retrials was considered. A different
approach via simulation of the system was proposed. According to simulation results, the
authors came to the conclusion about the poor quality of the approximation of the system
with a PH inter-retrial time distribution by the system with exponential one.

In this paper, we considered a more general system BMAP/PH/N with PH retrials
and propose a method for its approximation, which leads to reducing the dimension of the
state space of the system without using a truncation of the state space. We assumed that
inter-retrial time intervals have a PH distribution if the number of orbital customers is no
larger than a predetermined non-negative integer K and have an exponential distribution
with the same rate otherwise. Numerical experiments showed that even with a large system
load, there is a threshold K for which the calculation of the stationary distribution on a
computer is still possible, and the performance indicators of the system do not change with
an increase in the value of the threshold. Having found such a threshold value, we can
further calculate all performance indicators and consider them to be performance indicators
of the original system with PH distribution.
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Note that a decrease in the state space of the underlying Markov chain for a set of
independent PH retrial processes was achieved not only by introducing a finite threshold K,
but also by applying a relatively rarely used approach to describing this process proposed
by Ramaswami V.and Lucantoni D.M.; see papers [30,31]. Instead of keeping track of the
phase of each customer in the orbit, which is used in the classical approach, we monitored
the number of customers in each phase. This allows significantly reducing the state space. If
one tries to permanently monitor the state of the underlying Markov chain of the PH inter-
retrial distribution of order M for each orbital customer and R customers stay in the orbit at
some point in time, then the dimension of the state space of all underlying Markov chains
is d1 = MR+1−1

R−1 . It is clear that with a large number of customers in the orbit, the dimension
becomes so large that it is not possible to calculate the stationary distribution of the system
using modern computing facilities. In the paper [32], we applied the classical approach to
define the PH retrial process in the retrial system MAP/PH/1 and, for interesting values of
the threshold K, faced unconquerable computational difficulties due to the huge dimensions
of the matrices involved in the algorithm for calculating stationary probabilities. Under
the use of the approach initiated by Ramaswami V. and Lucantoni D.M., the dimension of
the state space of the underlying Markov chain for the total retrial process from the orbit

is equal to d2 =

(
R + M− 1

M− 1

)
. Let, for example, R = 10, M = 2. Then, d1 = 2047 and

d2 = 11.
The further organization of the paper is as follows. In Section 2, we describe the

mathematical model under study. In Section 3, the asymptotically quasi-Toeplitz Markov
chain describing the operation of the system and its limiting chain are defined. Section 4 is
devoted to the steady-state analysis of the system. A number of performance indicators are
derived in Section 5. In Section 6, numerical examples and a discussion about the appli-
cability of the system under study for the approximation of the corresponding queueing
systems with a PH distribution of inter-retrial times are presented. Section 7 concludes the
paper.

2. Model Description

The system with retrials under study is of the BMAP/PH/N type. In the BMAP,
batches of customers can arrive only at the epochs of the jumps of the underlying process,
which is an irreducible Markov chain ωt, t ≥ 0, with a state space of size W + 1. The
transition rates of the process ωt, t ≥ 0, are defined by the matrices Dk, k ≥ 0, where the
matrix Dk (k ≥ 1) includes the rates of transitions with k customers arriving and non-
diagonal entries of the matrix D0 define the rates of transitions without arrival. The matrices

Dk, k ≥ 0, can be also defined by their matrix-generating function D(z) =
∞
∑

k=0
Dkzk, |z| ≤ 1.

Note, that the matrix D(1) is an infinitesimal generator of the underlying process ωt, t ≥ 0.
The vector θ of the steady-state probabilities of this process is calculated as the unique
solution of the system θD(1) = 0, θe = 1. Hereinafter, 0 represents a row vector of zeroes
and e represents a column vector of ones. The fundamental rate of arrivals and the rate of
arrival of the batch in the BMAP are calculated by the formulas λ = θD′(z)|z=1e, λb =
−θD0e. The coefficient of variation of the length of the interval between the arrivals of
successive batches is calculated by the formula c2

var = 2λbθ(−D0)
−1e− 1. The coefficient of

correlation of two adjacent inter-arrival times is calculated as ccor = (λbθ(−D0)
−1(D(1)−

D0)(−D0)
−1e − 1)/c2

var. A more detailed description of the BMAP can be found, e.g.,
in [5].

We assumed that the service time of a customer has the PH distribution with irre-
ducible representation (β, S) of order M. This means that the service time is the time
until absorption in the underlying Markov chain with the state space (1, . . . , M, M + 1)
where the state M + 1 is an absorbing one and other states (phases) are transient. An
initial state (phase) of the underlying Markov chain is selected according to the probabil-
ities given by the stochastic vector β. The transition rates within the set of the transient
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states are described by the matrix S, and the transition rates into the absorbing state are
defined by the column vector S0 = −Se. The service rate is calculated by the formula
µ = (β(−S)−1e)−1. The squared coefficient of variation of the service time is calculated

as (cserv
var )

2 = 2 β(−S)−2e
(β(−S)−1e)2 − 1. More information on the PH distribution can be found, for

example, in [33].
If the batch consisting of k customers arrives to the system when n servers are idle,

then min{k, n} customers are accepted for service and the rest join the orbit and retry
reaching a server after a random amount of time. If there are idle servers at the retrial
epoch, the retrying customer departs from the orbit and occupies an arbitrary idle server.
If all servers are busy, the retrying customer returns to the orbit. We assumed that the
distribution of inter-retrial times depends on the number of customers in the orbit. If the
number of orbital customers does not exceed a certain fixed threshold K, then each of
these customers generates repeated attempts, independently of other customers, after a
random time having the PH distribution with the irreducible representation (τ, T) of order
R. Transition rates of the underlying Markov chain to the absorbing state are defined by
the vector T0 = −Te. We denote the individual retrial rate as τ = (τ(−T)−1e)−1 and the
coefficient of variation of the inter-retrial time as cretrial

var .
If, at some period of time, the number i of customers in the orbit exceeds the threshold

K, the total flow of retrials is such that the probability of making a repeated attempt during
the small interval (t; t + ∆) is equal to αi∆ + o(∆), where αi tends to infinity when i tends
to infinity.

3. Process of the System States

Let at time t:

• jt be the number of customers in the orbit, jt ≥ 0;
• nt be the number of busy servers, nt = 0, N;
• ωt be the state of the underlying process of the BMAP, ωt = 0, W;

• n(m)
t be the number of servers at the mth phase of the service time, m = 1, M, n(m)

t = 0, nt;

• j(r)t be the number of orbital customers at the rth phase of the inter-retrial time,

r = 1, R, j(r)t = 0, jt.

The process of the system states is described by the regular irreducible Markov chain:

ξt = {jt, nt, ωt, n(1)
t , . . . , n(M)

t , j(1)t , . . . , j(R)
t }, t ≥ 0.

The components n(1)
t , . . . , n(M)

t are absent if nt = 0, and the components j(1)t , . . . , j(R)
t

are absent if jt = 0.
The state space of the Markov chain ξt is given by:

Ω = {(j, n, ω), j = 0, n = 0, ω = 0, W}
⋃

{(j, n, ω, n(1), . . . , n(M)), j = 0, n = 1, N, ω = 0, W, n(1), n(2), . . . , n(M) = 0, n,
M

∑
m=1

n(m) = n}
⋃

{(j, n, ω, j(1), j(2), . . . , j(R)), j = 1, K, n = 0, j(1), . . . , j(R) = 0, j, ω = 0, W,
R

∑
r=1

j(r) = j}
⋃

{(j, n, ω, n(1), n(2), . . . , n(M), j(1), j(2), . . . , j(R)), j = 1, K, ω = 0, W, n = 1, N,

n(1), n(2), . . . , n(M) = 0, n,
M

∑
m=1

n(m) = n, j(1), j(2), . . . , j(R) = 0, j,
R

∑
r=1

j(r) = j}
⋃

{(j, n, ω), j > K, n = 0, ω = 0, W, }
⋃
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{(j, n, ω, n(1), n(2), . . . , n(M)), j > K, n = 1, N, ω = 0, W, n(1), n(2), . . . , n(M) = 0, n,

M

∑
m=1

n(m) = n}.

The structure of the state space is different for various numbers of busy servers (this
number is equal to zero or is greater than zero) and numbers of customers in the orbit (this
number is equal to zero, or is between one and K, or is greater than K). Namely, the first
line of the formula corresponds to the situation when all servers are idle and the orbit is
empty. In this case, the chain has only the components {jt, nt, ωt} where ωt = 0, W. The
second line of the formula corresponds to the situation when the orbit is empty and the
number of busy servers is positive, and therefore, it is necessary to monitor the components
{n(1), n(2), . . . , n(M)} defining the number of customers receiving service at various phases.
The third line of the formula corresponds to the situation when all servers are idle and
the number of customers in the orbit belongs to the interval {1, . . . , K}, and therefore, it is
necessary to monitor the components {j(1), j(2), . . . , j(R)} defining the number of customers
in orbit at various phases of the retrial process. The fourth and fifth lines of the formula
correspond to the situation when not all servers are idle and the number of customers
in the orbit belongs to the interval {1, . . . , K}. In this situation, it is necessary to monitor
both processes {n(1), n(2), . . . , n(M)} and {j(1), j(2), . . . , j(R)}. The sixth line of the formula
corresponds to the situation when all servers are idle and the number of customers in the
orbit is greater than K. In this situation, similar to the one described in the first line, it is
necessary to monitor only the state of the underlying Markov chain of the arrival process.
Finally, the seventh line of the formula corresponds to the situation when not all servers
are idle and the number of customers in the orbit is greater than K. In this situation, there is
a need to monitor the components {n(1), n(2), . . . , n(M)}.

Let us enumerate the states of the chain ξt, t ≥ 0, as follows. The first three components
{jt, nt, ωt} are enumerated in the direct lexicographic order, and for fixed values of these
components, we enumerate the components n(1), n(2), . . . , n(M) and (or) j(1), j(2), . . . , j(R)

in the reverse lexicographic order. Further, we say that all states having the value j
of the denumerable component jt of the chain ξt belong to the level j. Denote by Cm

n

the binomial coefficient
(

n
m

)
. It can be calculated that the number of states at the level

j, j ≤ K, is Xj = W̄CR−1
j+R−1

N
∑

n=0
CM−1

n+M−1 and the number of states at the level j, j > K, is

X = W̄
N
∑

n=0
CM−1

n+M−1. Let us give a numerical example showing how the number of states

in level j decreases when using the Ramaswami–Lucantoni method for constructing the
Markov chain compared to the classical method. Let N = 5, K = 10, W = 1, M = R = 2.
Then, in the case of applying the Ramaswami–Lucantoni method, max

j=0,K
Xj = XK = 462 and

X = 42 for any j > K. In the case of applying the classical method, max
j=0,K

Xj = XK = 129024

and X = 126 for any j > K.
Now, we pass on to construction of the infinitesimal generator of the Markov chain

ξt, t ≥ 0.
Let us introduce the following notation:

• W̄ = W + 1;

• Ŝ =

(
0T O
S0 S

)
, T̂ =

(
0T O
T0 T

)
;

• I (O) is an identity (zero) matrix of appropriate dimension; when required, we identify
the dimension of this matrix with a subscript; e.g., IW̄ denotes the identity matrix of
size W̄;

• ⊗ and ⊕ are the symbols of the Kronecker product and sum of matrices; for more
information, see [34].
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We also introduce the matrices Pj(·), Aj(·, ·), and Lj(·, ·), that describe the transition

rates of the processes nt = {n(1)
t , n(2)

t , . . . , n(M)
t } and jt = {j(1)t , j(2)t , . . . , j(R)

t }. These types
of matrices were first introduced in the papers [30,31].

The short explanation of the meanings of these matrices is as follows.
The matrix LN−n(N, Ŝ) contains the transition rates of the process nt, leading to the

release of one of n busy servers. The matrix LK−j(K, T̂) contains the transition rates of
the process jt, leading to the retrial attempt. The matrix An(N, S) contains the transition
rates of the process nt in its state space without changing the number of busy severs. The
matrix Aj(K, T) contains the transition rates of the process jt in its state space without
making a retrial. The matrix Pn,n′(β) = Pn(β)Pn+1(β) . . . Pn′−1(β) contains the transition
probabilities of the process nt during an increase in the number of busy servers from n to
n′. The matrix Pj,j′(τ) = Pj(τ)Pj+1(τ) . . . Pj′−1(τ) contains the transition probabilities of
the process jt during an increase in the number of orbital customers from j to j′. Hereafter,
it is assumed that L0(0, ·) = A0(0, ·) = P−1(·) = 0.

Detailed algorithms for calculating these matrices can be found in [35,36].
Let Qj,j′ denote the matrix of the transition rates of the Markov chain ξt, t ≥ 0, from

the level j to the level j′. Then, the infinitesimal generator Q of the chain is formed as a
block matrix Q = (Qj,j′)j,j′≥0. The following statement is true.

Lemma 1. The infinitesimal generator Q of the Markov chain ξt, t ≥ 0, has the block structure:

Q =


Q0,0 Q0,1 Q0,2 Q0,3 Q0,4 . . .
Q1,0 Q1,1 Q1,2 Q1,3 Q1,4 . . .
O Q2,1 Q2,2 Q2,3 Q2,4 . . .
O O Q3,2 Q3,3 Q3,4 . . .
...

...
...

...
...

. . .

,

where nonzero blocks are defined as follows:

Q0,0 = ∆(0) + ((Q0,0)n,n′)n,n′=0,N ,

(Q0,0)n,n′ =


IW̄ ⊗ LN−n(N, S̃), n′ = n− 1, n = 1, N,
D0 ⊕ An(N, S), n′ = n = 0, N,
Dk ⊗ Pn,n′(β), n′ = n + k, k = 1, N − n, n = 0, N − 1,
O, otherwise;

Qj,j−1 =

OW̄CM−1
M−1×W̄ IW̄ ⊗ P0,1(β) O . . . O

O O IW̄ ⊗ P1,2(β) . . . O
...

...
...

...
...

...
O O O . . . IW̄ ⊗ PN−1,N(β)

OW̄CM−1
N+M−1×W̄ O O . . . O

⊗ LK−j(K, T̂),

j = 1, K;

QK+1,K = αK+1×
OW̄×W̄ IW̄ ⊗ P0,1(β) O . . . O

O O IW̄ ⊗ P1,2(β) . . . O
...

...
...

...
...

O O O . . . IW̄ ⊗ PN−1,N(β)
OW̄CM−1

N+M−1×W̄ O O . . . O

⊗ P0,K(τ);
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Qj,j−1 = αj ×


OW̄×W̄ IW̄ ⊗ P0,1(β) O . . . O

O O IW̄ ⊗ P1,2(β) . . . O
...

...
...

...
...

O O O . . . IW̄ ⊗ PN−1,N(β)
OW̄CM−1

N+M−1×W̄ O O . . . O

,

j > K + 1;

Qj,j = ∆(j) + ((Qj,j)n,n′)n,n′=0,N ,

(Qj,j)n,n′ =



IW̄ ⊗ LN−n(N, S̃)⊗ ICR−1
j+R−1

, n′ = n− 1, n = 1, N,

D0 ⊕ An(N, S)⊕ Aj(K, T), n′ = n = 0, N − 1,
D0 ⊕ AN(N, S)⊕ [Aj(K, T) + LK−j(K, T̃)Pj−1,j(τ)], n′ = n = N,
Dk ⊗ Pn,n′(β)⊗ ICR−1

j+R−1
, n′ = n + k, k = 1, N − n, n = 0, N − 1,

O, otherwise;

j = 1, K;

Qj,j = ∆− αj{I
W̄

N−1
∑

n=0
CM−1

M+n−1

, OCM−1
M+N−1

}+


D0 D1 ⊗ P0,1(β) . . . DN−1 ⊗ P0,N−1(β) DN ⊗ P0,N(β)

IW̄ ⊗ LN−1(N, Ŝ) D0 ⊕ A1(N, S) . . . DN−2 ⊗ P1,N−1(β)⊗ DN−1 ⊗ P1,N(β)
...

...
. . .

...
...

O O . . . D0 ⊕ AN−1(N, S) D1 ⊗ PN−1,N(β)
O O . . . IW̄ ⊗ L0(N, Ŝ) D0 ⊕ AN(N, S)

;

j > K;

Qj,j+k =



| DN+k ⊗ P0,N(β)
| DN+k−1 ⊗ P1,N(β)

O
W̄

N
∑

n=0
CM−1

n+M−1×W̄
N−1
∑

n=0
CM−1

n+M−1

|
...

| Dk+1 ⊗ PN−1,N(β)
| Dk ⊗ ICM−1

N+M−1


⊗ Pj,j+k(τ),

j = 0, K, k ≥ 1, j + k ≤ K;

Qj,j+k =



| DN+k ⊗ P0,N(β)
| DN+k−1 ⊗ P1,N(β)

O
W̄

N
∑

n=0
CM−1

n+M−1×W̄
N−1
∑

n=0
CM−1

n+M−1

|
...

| Dk+1 ⊗ PN−1,N(β)
| Dk ⊗ ICM−1

N+M−1


⊗ eCR−1

j+R−1
,

j = 0, K, k ≥ 1, j + k > K;

Qj,j+k =



| DN+k ⊗ P0,N(β)
| DN+k−1 ⊗ P1,N(β)

O
W̄

N
∑

n=0
CM−1

n+M−1×W̄
N−1
∑

n=0
CM−1

n+M−1

|
...

| Dk+1 ⊗ PN−1,N(β)
| Dk ⊗ ICM−1

N+M−1


, j > K, k ≥ 1.
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In the above formulas for the blocks Qj,j, the matrices ∆(j), j = 0, K, and ∆ are diagonal
matrices that ensure the equality Qe = 0.

The proof of Lemma 1 consists of the careful analysis of possible transitions of the
Markov chain ξt, t ≥ 0, during a time interval of an infinitesimal length. For more
information about the examples of the derivation of the form of the blocks of the generator
of the Markov chain describing the behavior of multi-server queues with the BMAP arrival
process and the PH distribution of service time, see, e.g., [37], pages 192, 193, 215–217, 235.
In the derivation, the probabilistic meaning of the matrices Pj(·), Aj(·, ·), and Lj(·, ·), which
is explained in brief above, is essentially exploited. Furthermore, it is worth mentioning
that the use of the operations of the Kronecker product and the sum of the matrices (see [34])
is very helpful for the description of the transition probabilities or rates of simultaneous
transitions of several independent Markov processes.

Corollary 1. The process ξt, t ≥ 0, belongs to the class of asymptotically quasi-Toeplitz Markov
chains (AQTMCs); for the definition, see [38].

Proof. Let Zj denote a diagonal matrix, the diagonal entries of which are equal to the
modules of the corresponding diagonal entries of the matrix Qj,j. According the definition
given in [38], the Markov chain under consideration is an AQTMC if there exist the
following limits:

Y0 = lim
j→∞

Z−1
j Qj,j−1, Y1 = lim

j→∞
Z−1

j Qj,j + I, Yk = lim
i→∞

Z−1
i Qi,i+k−1, k ≥ 2, (1)

and the matrix
∞
∑

k=0
Yk is the stochastic one.

After calculations, we arrive at the following expression for the matrices Yk:

Y0 =


OW̄×W̄ IW̄ ⊗ P0,1(β) O . . . O O

O O IW̄ ⊗ P1,2(β) . . . O O
...

...
...

...
...

...
O O O . . . O IW̄ ⊗ PN−1,N(β)

OW̄CM−1
N+M−1×W̄ O O . . . O O

,

Y1 =


O O . . . O O
O O . . . O O O
...

...
...

...
...

...
O O . . . O O O
O O . . . O T−1(IW̄ ⊗ L0(N, Ŝ)) Z−1(D0 ⊕ AN(N, S) + ∆N) + I

,

Yk =


O O . . . O O
O O . . . O O
...

...
...

...
...

O O . . . O O
O O . . . O Z−1(Dk−1 ⊗ ICM−1

N+M−1
)

, k ≥ 2,

where the matrix Z is formed by the last W̄CM−1
N+M−1 diagonal entries of the matrix Zj,

which do not depend on j and ∆N is formed by the last W̄CM−1
N+M−1 diagonal entries of the

matrix ∆.

We showed that limits (1) exist. It is also easy to see that
∞
∑

k=0
Yk is a stochastic matrix.

It follows from this that the Markov chain ξt belongs to the class of asymptotically quasi-
Toeplitz Markov chains.



Mathematics 2022, 10, 269 10 of 21

Note that the limit matrices Yk play an important role in the study of the stationary
behavior of an AQTMC. They are the carriers of the asymptotic properties of the chain.
They contain the transition probabilities of the Markov chain embedded in the process ξt
for all jumps of this process provided that the denumerable component jt tends to infinity.
These matrices allow us to work formally with the asymptotic properties of an AQTMC
when deriving the stability condition and calculating the stationary distribution.

Corollary 2. The generating function Y(z) =
∞
∑

l=0
Ykzk has the following form:

Y(z) = (A(z)|B(z)),

where:

A(z) =


OW̄×W̄ IW̄ ⊗ P0,1(β) O . . . O

O O IW̄ ⊗ P1,2(β) . . . O
...

...
...

...
...

O O O . . . O
O O O . . . zZ−1(IW̄ ⊗ L0(N, Ŝ)

,

B(z) =



O
O
...

O
IW̄ ⊗ PN−1,N(β)

zZ−1(D(z)⊕ AN(N, S) + ∆N) + zI


.

4. Steady-State Analysis

Theorem 1. (i) A sufficient condition for the existence of the stationary distribution of the Markov
chain ξt is the fulfillment of the inequality:

ρ = λ/µ̄ < 1, (2)

where:
µ̄ = yL0(N, Ŝ) eCM−1

N+M−2
, (3)

y is the unique solution to the system of linear algebraic equations:

y[AN(N, S) + ∆̃ + L0(N, Ŝ)PN−1,N(β)] = 0, y e = 1. (4)

Here, ∆̃ is a diagonal matrix whose diagonal entries are defined as the corresponding entries of
the vector [−L0(N, Ŝ)e− AN(N, S)e];

(ii) The Markov chain ξt does not have an ergodic distribution, if ρ > 1.

This condition and its formal proof completely coincide with the stability condition
for the BMAP/PH/N system with exponential inter-retrial times proven in [35].

Further, we assumed that the stability condition as given in (2) holds. Let pj be a row
vector of the stationary probabilities of the chain states belonging to the level j, j ≥ 0. To
compute the vectors pj, j ≥ 0, we use the numerically stable algorithm (see [38]), which
was developed to calculate the stationary distribution of asymptotically quasi-Toeplitz
Markov chains.

5. System Performance Indicators

Having known the steady-state probabilities vectors pj, j ≥ 0, a number of system
performance indicators can be calculated. Here, we present some of them:
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1. Vector qn,j, the ωth component of which is a probability that n servers are busy, j
customers are in the orbit, and the underlying process of the BMAP is in the state ω:

qn,j = pj


O

W̄CR−1
j+R−1

n−1
∑

l=0
CM−1

l+M−1×W̄

IW̄ ⊗ eCR−1
j+R−1CM−1

n+M−1

O
W̄CR−1

j+R−1

N
∑

l=n+1
CM−1

l+M−1×W̄

, j = 0, K, qn,j = pj


O

W̄
n−1
∑

l=0
CM−1

l+M−1×W̄

IW̄ ⊗ eCM−1
n+M−1

O
W̄

N
∑

l=n+1
CM−1

l+M−1×W̄

, j > K;

2. Probability that n servers are busy and j customers stay in the orbit qn,j = qn,je, j ≥ 0;

3. Probability that j customers stay in the orbit qj =
N
∑

n=0
qn,j, j ≥ 0;

4. Probability that n servers are busy q(n) =
∞
∑

j=0
qn,j, n = 0, N;

5. Probability that n servers are busy given that there are j customers in the orbit:

q(n/j) =
qn,j

qj
, n = 0, N, j ≥ 0;

6. Probability that there are j customers in the orbit given that n servers are busy:

q(j/n) =
qn,j

q(n)
, n = 0, N, j ≥ 0;

7. Average number of customers in the orbit L =
∞
∑

j=1
jqj;

8. Average number of busy servers n̄ =
N
∑

n=1
nq(n);

9. Probability that n servers are busy at the k-sized batch arrival moment:

P(k)
n =

∞
∑

j=0
qn,jDke

θDke
, n = 0, N, k ≥ 1; (5)

10. Probability that an arbitrary customer goes for the service immediately upon arrival:

Pimm =
1
λ

N

∑
n=1

∞

∑
j=0

qN−n,j

n

∑
k=0

(k− n)Dke. (6)

When deriving Formula (6), the formula of total probability is used. According to this
formula:

Pimm =
N−1

∑
n=0

∞

∑
k=1

P(k)
n PkQ(n,k), (7)

where Pk is the probability that an arbitrary customer arrives in the k-size batch, Q(n,k) is
the probability that an arbitrary customer goes to the service immediately if he/she appears
in the k-sized batch and, at the arrival moment, n servers are busy. The probabilities Pk and
Q(n,k) are calculated as follows:

Pk =
θkDke

θD′(1)e
= k

θDke
λ

, (8)

Q(n,k) =

{
1, k ≤ N − n,
(N − n)/k, k > N − n.

(9)

Using (5), (8) and (9) in (7), we obtain Formula (6);
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11. Probability that all customers of an arriving batch go for service immediately upon
arrival:

Pb
imm =

1
λb

N

∑
n=1

∞

∑
j=0

qN−n,j

n

∑
k=1

Dke. (10)

When deriving (10), we use the formula of total probability. According to this formula:

Pb =
N−1

∑
n=0

N−n

∑
k=1

P(k)
n Qk, (11)

where Qk is the probability that an arbitrary arriving batch is of size k,

Qk =
θDke

θ
∞
∑

l=1
Dle

= −θDke
θD0e

, k ≥ 1. (12)

Substituting (5) and (12) into (11), we obtain Formula (10).

6. Numerical Experiments

In this section, we present the results of three numerical experiments. The main goal
of the first experiment was to show numerically that even with a large system load, there
is a threshold K for which the calculation of the stationary distribution on a computer is
still possible, and the performance indicators of the system do not change with an increase
in the value of the threshold. This means that, under such a threshold, our system can be
used as a good approximation of the analogous system with the PH distribution of the
inter-retrial times. Within the framework of this experiment, we investigated the behavior
of the average number of customers in the orbit, L, as an authorized representative of the set
of performance indicators of the system. Recall that choosing the threshold K, we did not
assume that the capacity of the orbit is truncated to K. We assumed that the orbit capacity is
infinite, but if the number of orbital customers exceeds K, the inter-retrial times do not have
the PH distribution, but the exponential one. In the second experiment, we studied how
the system performance indicators depend on the inter-retrial time variation. The third
experiment investigated the behavior of the system performance indicators depending on
the input rate for the BMAPs with different coefficients of correlation.

Experiment 1. In this experiment, we found such a threshold value K = Kmax that,
with a further increase in this value, the average number of customers in the orbit, L, does
not change. We also investigated how the coefficient of variation of the inter-retrial time
affects the value of Kmax. Thus, we would be able to evaluate how important it is to take
into account the non-exponential nature of inter-retrial times.

To this end, we considered the following input data:

• N = 5;
• The maximal batch size in the BMAP was three, and the number of customers in

the batch had the truncated geometric distribution. To define such a BMAP, we first
considered the matrices D0 and D of the form:

D0 =

(
−1.3526 0

0 −0.04391

)
, D =

(
1.3436 0.009

0.02446 0.01945

)
.

Then, we calculated the matrices D1, D2, and D3 by the formula Dk = Dqk−1(1−
q)/(1− q3), k = 1, 3, where q = 0.8.
For this BMAP, λ = 1.85, c2

var = 12.34, ccor = 0.2;

• The service time is defined by the vector β = (1, 0) and the matrix S =

(
−10 10

0 −10

)
.

This means that the service time has the Erlang distribution with the rate µ = 5 and
(cserv

var )
2 = 0.5.
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In the frame of Experiment 1, we considered two variants of the PH distribution of inter-
retrial times. The corresponding experiments are called Experiment 1.a and Experiment 1.b.

Experiment 1.a:

• If the number of orbital customers does not exceed K, the inter-retrial time is defined

by the vector τ = (0.4, 0.6) and the matrix T =

(
−10 0

0 −20

)
. This means that the

inter-arrival time has the hyper-exponential distribution with the rate τ = 14.28 and
(cretrial

var )2 = 1.24;
• αj = jα where α = τ = 14.28.

In what follows, we found the value of Kmax for different system loads. The load
changes by changing the value of input rate λ, which, in turn, changes by multiplying the
matrices D0 and D by the corresponding coefficients.

In Table 1 and in Figures 1–3, the values of the average number of customers in the
orbit, L, for different values of the system load ρ and the threshold K are displayed.

Table 1. The values of L for different values of ρ and K.

K ρ = 0.1 ρ = 0.5 K ρ = 0.7 K ρ = 0.8

0 0.0103 1.1591 0 8.3214 0 31.4586
1 0.0099 1.3043 1 8.4919 1 31.4654
2 0.0097 1.3893 50 10.9824 50 36.1152
3 0.0096 1.4459 51 10.9856 51 36.1374
4 0.0096 1.4862 62 11.0105 75 36.4994
5 0.0095 1.516 63 11.0118 76 36.5092
6 0.0095 1.5385 64 11.0129 80 36.5480
7 0.0095 1.5555 65 11.014 81 36.5565
8 0.0095 1.5684 66 11.015 82 36.5647
9 0.0095 1.5782 68 11.0167 83 36.5726
10 0.0095 1.5856 69 11.0175 87 36.6021
11 0.0095 1.5913 75 11.0209 88 36.6090
12 0.0095 1.5956 76 11.0213 89 36.6157
13 0.0095 1.5989
14 0.0095 1.6013
15 0.0095 1.6032
16 0.0095 1.6047
17 0.0095 1.6057
18 0.0095 1.6066
19 0.0095 1.6072

The following conclusions can be drawn from Table 1 and Figures 1–3:

1. For the system loads ρ = 0.1, 0.5, 0.7, 0.8, there are finite values of K = Kmax =
19, 19, 76, 89, respectively, such that with a further increase in this value, the average
number of customers in the orbit, L, practically does not change. Here and below, the
words “practically does not change” mean that L(Kmax−1)−L(Kmax)

L(Kmax)
∗ 100% < 0.04%. The

value of Kmax increases with the system load ρ increasing. However, for all values of
ρ, the value of Kmax is not so large that problems with the dimension of the involved
matrices appear when calculating the stationary distribution. Thus, it follows from
the results of this experiment that the system with such a threshold Kmax can serve as
a good approximation of the retrial BMAP/PH/N queue with the PH distribution
of inter-retrial times;

2. Recall that the value of L for K = 0 corresponds to the system with exponential
inter-retrial times, while the value of L for K = Kmax corresponds to the system
with PH inter-retrial times. As seen from Table 1 and Figures 1–3, these values are
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quite different. If we consider the value of L for K = 0 as an estimate of the value
of L for K = Kmax, then we can see that this estimate is too optimistic, at least for
medium and large system loads. Furthermore, the relative errors in calculating L are
27.9%, 24.5%, 14.1% for the values of ρ = 0.5, 0, 7, 0.8, respectively. Thus, the retrial
BMAP/PH/N queue with exponential inter-retrial times cannot be regarded as a
good approximation of the corresponding system with PH inter-retrial times.

Figure 1. L vs. K for system loads ρ = 0.1 and ρ = 0.5.

Figure 2. L vs. K for system load ρ = 0.7.
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Figure 3. L vs. K for system load ρ = 0.8.

Experiment 1.b.
To see how the coefficient of variation of the inter-retrial times affects the value of

Kmax, we carried out Experiment 1.b, which was similar to Experiment 1.a, but in which the
distribution of inter-retrial times was defined by the vector τ = (0.05, 0.95) and the matrix

T =

(
−0.88607 0

0 −70.00013

)
.

This means that the inter-retrial time has a hyper-exponential distribution with the
rate τ = 14.28 and (cretrial

var )2 = 25.
The results of the experiment are displayed in Table 2.

Table 2. The values of L for different values of ρ and K.

K ρ = 0.1 ρ = 0.5 K ρ = 0.7 K ρ = 0.8

0 0.0085 0.806 0 8.3214 0 31.4536
1 0.0129 1.0521 1 8.4919 1 31.4654
2 0.0167 1.3060 50 14.5908 50 39.8999
3 0.019 1.5016 51 14.5987 51 39.9359
4 0.0201 1.7028 62 14.6518 75 40.4629
5 0.0205 1.8441 63 14.6545 76 40.4759
6 0.0207 2.0066 68 14.6653 87 40.5938
7 0.0207 2.155 69 14.6669 88 40.6026
8 0.0208 2.2867 71 14.6699 93 40.6426
9 0.0208 2.4009 72 14.6712 94 40.65
10 0.0208 2.4978 73 14.6724 96 40.6639
11 0.0208 2.5787 74 14.6735 97 40.6715
12 0.0208 2.6451 75 14.6745 98 40.678
13 0.0208 2.6988
14 0.0208 2.7418
15 0.0208 2.7758
16 0.0208 2.8024
17 0.0208 2.823
18 0.0208 2.8389
19 0.0208 2.8401
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First, from Table 2, we can draw the conclusions that were already indicated for the
similar Experiment 1.a. Second, comparing the results of the last two experiments, which
differed in the value of coefficient of variation ((cretrial

var )2 = 1.24 and (cretrial
var )2 = 25) of

inter-retrial times, we can see that coefficient of variation affects the value of L (increases
with cretrial

var increasing), but does not practically affect the threshold Kmax.
Experiment 2. The purpose of this experiment was to investigate how the performance

indicators of the system, L and Pimm, depend on the rate of retrials for inter-retrial times
with different coefficients of variation.

In the experiment, the input data were the same as in Experiment 1, except the
distribution of inter-retrial times. Besides, we modified the matrices D0 and D to obtain the
arrival rate that provides the system load ρ = 0.5.

We considered four variants of the PH distribution of inter-retrial times with the same
rate τ = 14.28, but with different coefficients of variation. To change the rate of retrials, τ,
we multiplied the matrix T by the corresponding constants. We calculated the performance
indicators of the system fixing K = 30, since, as we found earlier, such a value of K is
suitable in the case ρ = 0.5.

The first variant is the Erlang distribution of order two with (cretrial
var )2 = 0.5 defined

by the following vector and matrices:

τ = (1, 0), T =

(
−28.57 28.57

0 −28.57

)
.

The second variant is the exponential distribution with cretrial
var = 1 defined by the rate

τ = 14.28.
The third variant is the hyper-exponential distribution with (cretrial

var )2 = 25 defined by
the following vector and matrices:

τ = (0.98, 0.02), T =

(
−142870 0

0 −0.2857

)
.

The fourth variant is the hyper-exponential distribution with (cretrial
var )2 = 98.98 defined

by the following vector and matrices:

τ = (0.05, 0.95), T =

(
−0.88607 0

0 −70.00013

)
.

In all cases, we considered the threshold Kmax = 30. We are sure that such a choice
of the threshold is sufficient for all systems considered in this experiment to be a good
approximation of the corresponding systems with the PH distribution of inter-retrial times.
This assumption was based on the conclusion to Experiment 1.b. According to these points,
the value of Kmax increases with the system load increasing, but the coefficient of variation
does not practically affect the threshold Kmax. It follows from Tables 1 and 2 that for the
load ρ = 0.5, it is sufficient to set Kmax = 19 in order to obtain a good approximation of the
systems with the PH distribution of inter-retrial times. We took Kmax = 30, which, in our
opinion, is quite enough to obtain a good approximation.

Figures 4 and 5 depict the behavior of the average number of customers in the orbit, L,
and the probability of immediate access to the service, Pimm, depending on the retrial rate
for the PH distributions of inter-retrial times with different coefficients of variation.
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Figure 4. L vs. τ for the inter-retrial times with different coefficients of variation.

Figure 5. Pimm vs. τ for the inter-retrial times with different coefficients of variation.

Both characteristics under study, as expected, decrease with increasing the parameter
τ (in the pictures τ ≥ 14.28) and at large values of τ their values tend to the values of the
corresponding characteristics for the system with an infinite buffer. A more interesting
observation is that for fixed τ, both characteristics increase with increasing the inter-retrial
time variation. This may be due to the fact that with significant fluctuations in the value
of this time, a customer from the orbit may meet a free server less often. This implies that
the number of orbital customers increases. At the same time, the increase of the variation
can generate the non-uniformity of the process of occupying servers by orbital customers,
which implies a greater chance for a primary customer to meet a free server.

Experiment 3. The purpose of this experiment was to find out how the average
number of customers in the orbit, L, and the probability of immediate access to the service,
Pimm, depend on the input rate λ for the BMAPs with different coefficients of correlation.
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We considered the following input data: N = 5; the service time has the Erlang
distribution with parameters (2, 10); inter-retrial times have hyper-exponential distribution
with (cserv

var ) = 98.98 and are defined by the following vector and matrix:

τ = (0.05, 0.95), T =

(
−0.88607 0

0 −70.00013

)
.

We considered three BMAPs with the same arrival rate λ = 1.85, but with different
coefficients of correlation. To construct these BMAPs, we first define three MAPs.

The first MAP is the stationary Poisson process with input rate λ = 1.85. For this
MAP, ccor = 0.

The second MAP is defined by the matrices:

D0 =

(
−1.3526 0

0 −0.04391

)
, D =

(
1.3436 0.009

0.02446 0.01945

)
.

For this MAP, ccor = 0.2;
The third MAP is defined by the matrices:

D0 =

(
−3.4 0

0.00101 −0.1103

)
, D =

(
3.3645 0.0354
0.0121 0.0971

)
.

For this MAP, ccor = 0.4.
Based on these MAPs, we constructed three BMAPs. For each of these BMAPs, the

maximal size of the batch was assumed to be three. This means that the BMAP is defined
by the matrices Dk, k = 0, 3. To build these matrices, we followed such a way. The matrix
D0 is the same as in the corresponding MAP, and the matrices Dk, k = 1, 3, are calculated
by the formula Dk = Dqk−1(1− q)/(1− q3), k = 1, 3, where q = 0.8.

In all cases, we assumed that the threshold K = 30.
Figures 6 and 7 depict the average number of customers in the orbit, L, and the

probability of immediate access to the service, Pimm, as functions of the input rate λ for
BMAPs with different coefficients of correlation.

Figure 6. L vs. λ for BMAPs with different coefficients of correlation.
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Figure 7. Pimm vs. λ for BMAPs with different coefficients of correlation.

As seen from Figures 6 and 7, under the same value of input rate λ, the performance
indicators under study significantly depend on the correlation in the input flow. With
increasing the coefficient of correlation, these indicators become worse: the value of L
increases and the value of Pimm decreases. From this observation, it can be concluded that
when evaluating the performance indicators of the system, it is extremely important to take
into account the correlation in the input flow.

7. Conclusions

In this paper, we studied the retrial BMAP/PH/N system with a threshold policy
for the inter-retrial time distribution. The novelty of this study was that we took into
account the non-exponentiality of the time between retrials in the case when the number
of customers in orbit does not exceed the threshold. We assumed that inter-retrial time
intervals have the PH distribution if the number of orbital customers is no more than
the predetermined threshold and they have an exponential distribution with the same
rate otherwise. We described the operation of the system by the asymptotically quasi-
Toeplitz Markov chain, derived the constructive stability condition, and calculated the
stationary distribution and the main performance indicators of the system. We showed
numerically that there exists such a threshold value for which our model is still amenable
to numerical computation and at the same time can serve as a good approximation of
the BMAP/PH/N system with the PH distribution of inter-retrial times. Having found
such a threshold value, we further calculated the performance indicators and considered
them to be the performance indicators of the BMAP/PH/N queueing system with the
PH distribution of inter-retrial times. We compared numerically our threshold queueing
model with the corresponding queueing model having exponentially distributed inter-
retrial times. We also presented a number of illustrative numerical examples to analyze
the behavior of the system performance indicators depending on the system parameters,
the variance of the inter-retrial times, and the correlation in the input flow. Mathematically,
the considered system is more general than analogs known in the literature and is of
independent interest as a fairly adequate model of information exchange processes in
modern telecommunication networks.
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