
����������
�������

Citation: Embarcadero-Ruiz, D.;

Gómez-Adorno, H.; Embarcadero-Ruiz,

A.; Sierra, G. Graph-Based Siamese

Network for Authorship Verification.

Mathematics 2022, 10, 277. https://

doi.org/10.3390/math10020277

Academic Editors: Ismael González

Yero and Dorota Kuziak

Received: 1 December 2021

Accepted: 11 January 2022

Published: 17 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Graph-Based Siamese Network for Authorship Verification
Daniel Embarcadero-Ruiz 1 , Helena Gómez-Adorno 2,* , Alberto Embarcadero-Ruiz 1 and Gerardo Sierra 3

1 Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de México,
Mexico City 04510, Mexico; danielembru@ciencias.unam.com (D.E.-R.); albertoemru@gmail.com (A.E.-R.)

2 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de
México, Mexico City 04510, Mexico

3 Instituto de Ingeniería, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
gsierram@iingen.unam.mx

* Correspondence: helena.gomez@iimas.unam.mx

Abstract: In this work, we propose a novel approach to solve the authorship identification task on a
cross-topic and open-set scenario. Authorship verification is the task of determining whether or not
two texts were written by the same author. We model the documents in a graph representation and
then a graph neural network extracts relevant features from these graph representations. We present
three strategies to represent the texts as graphs based on the co-occurrence of the POS labels of words.
We propose a Siamese Network architecture composed of graph convolutional networks along with
pooling and classification layers. We present different variants of the architecture and discuss the
performance of each one. To evaluate our approach we used a collection of fanfiction texts provided
by the PAN@CLEF 2021 shared task in two settings: a “small” corpus and a “large” corpus. Our
graph-based approach achieved average scores (AUC ROC, F1, Brier score, F0.5u, and C@1) between
90% and 92.83% when training on the “small” and “large” corpus, respectively. Our model obtain
results comparable to those of the state of the art in this task and greater than traditional baselines.

Keywords: authorship verification; graph neural networks; text graphs; Siamese network; POS tags

1. Introduction

Authorship analysis aims to identify characteristics of an author’s writing style given
a text sample, and ultimately to identify the author himself. The idea behind this research
area is that some features of the documents allow distinguishing texts written by different
authors [1].

There are different tasks in authorship analysis; for example, authorship attribution,
author profiling, author clustering, and plagiarism detection [2]. The authorship verification
task aims to determine if two given texts were written by the same author. We focus our
research on an open-set scenario, i.e., the model will be evaluated on a dataset that has
texts which authors never seen in the training dataset.

The main contribution of this work is a novel Siamese network architecture composed
of two graph convolutional neural networks, pooling, and classification layers to approach
the authorship verification task. We present three strategies (short, med, and full) for
representing texts as graphs based on the relation of the POS labels and co-occurrence of the
words. Each strategy varies in the complexity of the graph and the computational cost for
processing it. Our motivation is that graph representation provides structural information
that is not available when texts are processed in the traditional sequential manner.

In the first part of this paper, we present experiments varying the graph convolutional
layers and the number of layers in pooling and classification, for each graph representations
used. Later, we propose combining more than one graph-based representation for the
feature extraction in an ensemble architecture. We add a stylistic-based feature extraction
component to the Siamese Network architecture to improve the performance of the models.

Mathematics 2022, 10, 277. https://doi.org/10.3390/math10020277 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10020277
https://doi.org/10.3390/math10020277
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7010-007X
https://orcid.org/0000-0002-6966-9912
https://orcid.org/0000-0002-6724-1090
https://doi.org/10.3390/math10020277
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10020277?type=check_update&version=2

Mathematics 2022, 10, 277 2 of 24

For this ensemble architecture, we present the evaluation of different training strategies.
Finally, we present a technique for a threshold adjustment that improves the performance
of our architectures on the authorship verification task.

The rest of this paper is organized as follows. Section 2 presents an overview of the
literature on authorship verification. Section 3.1 includes the description of the dataset
used to evaluate our approach. The details of the process to model texts on graphs are
presented in Section 3.2 and our Graph-based Siamese network is explained in Section 3.3.
The ensemble architecture is presented in Section 3.4. Section 4 reports and analyzes the
results obtained by the different experiments with the proposed architectures and baseline
methods. In particular, in Section 4.5 we present the comparison of our method with
some state of the art methods in the context of the Authorship Verification shared task at
PAN 21 (https://pan.webis.de/, accessed on 21 July 2020). Finally, Section 5 presents our
conclusions and points out future research lines.

2. Related Work

The formal study of authorship analysis started in the 19th century, it was first tackled
with linguistic approaches and eventually by statistical and computational methods [3].
These tasks continue to grow attention for their practical applications; for example, in a
variety of computer crime investigations ranging from homicide to identity theft and many
types of financial crimes [4] or in the context of identifying the author of source code [5].

In general, the most popular approach for authorship analysis is to extract features
from the texts and use them to train a classification algorithm, which can be based ei-
ther trained on supervised learning or similarimeasures. We can distinguish the ex-
tracted features according to the computational requirements for extracting them in lexical-
level—i.e., word length, sentence length, bag of words, vocabulary richness, misspelled
words; character-level—i.e., character n-grams, character types, count of special characters;
syntactic-level—i.e., POS tags, chunks, sentence and phrase structure; and semantic-level—
i.e., semantic dependencies, synonyms [2].

Some supervised classification algorithms used in authorship verification tasks are
support vector machines, decision trees, discriminant analysis, neural networks, and genetic
algorithms [6]. Another option is to calculate the similarity between texts and use it to predict
whether both texts are written by the same author or not; this is a more natural approach if
we take authorship verification as an open set classification problem over a lot of possible
authors [7].

A specifically designed solution for the authorship verification task is the unmasking
method, proposed by [8]. This method tries to measure how deep the difference is between
two texts by comparing them several times (iterations), each time one using fewer relevant
features. This method achieved an accuracy of 95.7% when tested on datasets of long
texts of about 500 K words. When trying to apply it to datasets of shorter texts or texts
of a different genre and topics the performance decreased considerably. For example,
Kestemont et al. [9] evaluates the performance of the unmasking method over a dataset of
theatrical and prose texts of about 10,000 words obtaining an accuracy of just 77%.

Bevendorff et al. [10] proposed an alternative unmasking method that obtains an
accuracy between 75% and 80% on short texts of about 4000 words. The performance of
the original unmasking method hinges on the availability of sufficiently many paragraphs
per text, each one of enough length. If the paragraphs are too short, the training data
becomes too sparse and no descriptive curves can be generated. The authors exploit the
bag-of-words nature of the unmasking features and create the paragraphs by oversampling
words in a bootstrap aggregating manner.

Another relevant strategy to tackle the authorship verification task is the impostors’
method [7,11]. This method proposes using a set of impostor documents collected from an
outsource (usually the web) in a way that these impostor documents have a similar topic
with the known and unknown document. A set of features are also defined, some of the
features included in this set are function words, word n-grams, and character n-grams.

https://pan.webis.de/

Mathematics 2022, 10, 277 3 of 24

Before 2015, the authorship verification task was mainly evaluated using datasets on
training and testing documents that shared the same topic and same genre. It was observed
that in a cross-topic scenario the performance of the traditional approaches decreases [12].

Stamatatos [13] showed that the character n-grams are more reliable than other lexical
features for the authorship analysis task when the genre and topic of the documents vary.
Sapkota et al. [14] claimed that some kind of n-grams work better than others as features
for classification. In particular, some trigrams that include punctuation marks work better
in a cross-topic scenario.

The use of a heterogeneous classifier that combines independent classifiers each one
with a different approach has achieved good results, usually better than the ones obtained
using a single classifier [6,12]. PAN is a series of scientific events and shared tasks on digital
text forensics and stylometry (https://pan.webis.de/, accessed on 21 July 2020). Since 2011,
it focused on authorship analysis tasks and the methods presented in their workshops are
the state of the art in this research area [15].

In recent years, neural network architectures have been proposed to solve the task.
For example, Bagnall [16] proposed a recurrent neural network architecture over char-
acters to solve the authorship verification task in the PAN 2015 dataset. This approach
achieved considerably better results than other approaches over the same dataset but it is
computationally more expensive.

Jafariakinabad et al. [17] introduced a syntactic recurrent neural network to encode
the syntactic patterns of a document in a hierarchical structure. The model first learns the
syntactic representation of sentences from the sequence of POS tags. Their experimental
results on the PAN 2012 dataset for the authorship attribution task show that the syntactic
recurrent neural network (working over POS tag embeddings) outperforms the lexical
model (working over word embeddings) with an identical architecture by approximately
14% in terms of accuracy.

Weerasinghe and Greenstadt [18] proposed a model with notable performance using a
stylometric approach. They extracted stylometric features from each text pair and used the
absolute differences between the feature vectors as input to a classifier. They evaluated one
model using a logistic regression classifier and another using a neural network approach.

2.1. Graph-Based Representation of Texts

A common and standard approach to model text documents is bag-of-words. This model
is suitable for capturing word frequency; however, structural and semantic information is
ignored. Graph representation is a mathematical construct and can model relationships and
structural information effectively. A text can be appropriately represented as a graph using
feature term as vertices and significant relations between the feature terms as edges [19].

There are several graph-based representations used to model documents. The general
approach consists of identifying relevant elements in the text—i.e., words, sentences,
paragraphs, etc.—and considering them as nodes in the graph. Then meaningful relations
between these elements are considered to be edges. Traditionally, the elements used as
nodes in the graph are words, sentences, paragraphs, documents, and concepts. To define
the edges, usually syntactic, semantic relations, and statistical counts are used [19].

Some relevant graph-based representations proposed for a variety of authorship anal-
ysis tasks are: co-occurrence graph, co-occurrence based on POS, semantic graph and
hierarchical keyword graph [19]. Pinto et al. [20] present another graph-based approach
for document understanding. In this work, the authors proposed representing texts as
Integrated Syntactic Graphs (ISG). This approach considers different levels of linguistic
analysis, such as lexical, morphological, syntactical, and semantic, to build a graph repre-
sentation of a given document. The authors also introduce a technique for extracting useful
text patterns based on shortest paths.

Castillo et al. [21] present an overview of different graph-based representations pro-
posed to solve authorship analysis tasks. The aim of this manuscript is to highlight the
importance of enriched vs. non-enriched co-occurrence graphs as an alternative to tradi-

https://pan.webis.de/

Mathematics 2022, 10, 277 4 of 24

tional feature representation models such as vector representation. In particular, in [22],
the authors applied the proposed graph-based approach on the English language partitions
of the CLEF PAN 2014 and 2015 Authorship Verification datasets, reporting competitive
results that outperform the baseline used in the PAN 2014 Authorship Verification shared
task. They proposed using four centrality measures: closeness, betweenness, degree,
and eigenvector to detect relevant patterns of an author’s writing style. In particular, they
found that words with a high closeness which is part of some chunk phrases and words
with high betweenness that are included in bigrams and trigrams, contribute in a more
effective way to verify document authorship.

Gómez-Adorno et al. [23] generalize the graph-based method described in [20], ini-
tially proposed for the extraction of text patterns obtained by shortest path traversal over
Integrated Syntactic Graphs (ISG). They build the ISG representation using linguistic fea-
tures of various levels of language description, which provides relevant information about
the texts. In particular, they show that their method discovers patterns that can be used in
authorship attribution and authorship verification.

2.2. Graph Neural Networks

There is an increasing number of applications where data can be naturally represented
in the form of graphs. While deep learning effectively captures hidden patterns of Euclidean
data, graph neural networks can help us to generalize the deep learning approach to data
represented as graphs [24].

There exist just a couple of works that applied Graph Neural Networks techniques
to an Authorship analysis task. For instance, Cruz [25] evaluate the robustness of three
different approaches for the Authorship Attribution task when the length of the text is
varied from 2500 to 20,000 tokens. The first two tested approaches are a global strategy and
a local strategy based on complex network measurements. The third approach tested is
a graph embedding technique based on a skip-gram model called Graph2Vec [26]. They
found that the local strategy with linear discriminant analysis achieves 97% of accuracy
and conclude that it is better to describe short texts than Graph2Vec with low dimension.
However, the performance on local and global strategies decreases while the length of each
text is increasing, in contrast to the graph embedding technique, which has better results
with the large length of texts. A relevant note about these results is that they remove all
punctuation marks, remove language stop-words and use lemmatization.

In [27], the authors consider a task from traditional literary criticism: annotating a
structured, composite document with information about its sources, and approach it as
an Authorship Attribution task. They take the Documentary Hypothesis, a prominent
theory regarding the composition of the first five books of the Hebrew bible, extract stylistic
features designed to avoid bias or overfitting and train several classification models over
the source labels assigned in each part of the texts. Their main result is that the graph
convolutional network architecture outperforms structurally uninformed models.

2.3. Siamese Neural Networks

Siamese Neural Networks (SNN) was first presented by Bromley et al. [28] to solve the
problem of signature verification. Their formulation defines two separate sub-networks,
each one acting on an input pattern to extract features. The key idea of their formulation
is that the two sub-networks share their weight; that means that both sub-networks must
extract the features exactly in the same way. They use the cosine of the angle between
the two feature vectors obtained by the sub-networks to assign a distance between the
compared instances. The idea is that the siamese network learn how to extract feature
vectors from the instances in a way these vectors are close if the instances are similar and
these vectors are far if not. SNNs are in general computationally expensive but perform
better as compared to other techniques when learning similarity [29].

Koch et al. [30] proposed a Siamese convolutional network to solve face verification,
they emphasize the application of their architecture to manage the one-shot recognition

Mathematics 2022, 10, 277 5 of 24

problem. Furthermore, instead of using a contrastive loss as the objective loss, they use
a fully connected layer followed by a sigmoid function on top of the Siamese network to
obtain a prediction and optimize a cross-entropy loss with l2 normalization.

Recently, SNNs were proposed to solve the authorship verification task. For instance,
two approaches used SNNs to solve the PAN Authorship 2020 Verification Task.

Boenninghoff et al. [31] used a Siamese architecture of LSTMs with attention coeffi-
cients to extract first sentence embeddings and after that a document embedding. This
Siamese network aims to learn a pseudo-metric that maps a document of variable length
onto a fixed-sized feature vector. At the top, they also incorporate a probabilistic layer to
perform Bayes factor scoring in the learned metric space. In their model, they incorporate
some text preprocessing strategies such as topic masking, using a sliding window to gen-
erate the sentences, and data augmentation. Their proposed method achieved excellent
overall performance scores, outperforming all other systems that participated in the PAN
2020 Authorship Verification Task, in both the small and “large” datasets.

Araujo-Pino et al. [32] used a Siamese neural network approach that receives as input
the character n-gram representation (with n varying from 1 to 3) of the document pairs to
be compared.

We can conclude that modeling texts as graphs is a natural way to take advantage
of the structural information contained in the text. Furthermore, several graph-based
representations of texts showed good results in the Authorship Analysis task, but we notice
that the known graph-based approaches usually introduce particular techniques to extract
relevant vector features, that are dependent on the application. The Graph Neural Network
approach is a way to allow a model to learn relevant patterns from the data instead of
proposing hand-crafted methods to extract features.

The Siamese Neural Network was successfully applied to track several verification-
related tasks. We found two relevant approaches used for the Authorship Verification task,
but both approaches model the texts in a sequential manner. We consider that using Graph
Neural Networks to extract relevant patterns automatically as part of a Siamese Neural
Network architecture is a natural and powerful way to take advantage of a graph-based
representation of texts.

3. Materials and Methods

In this section, we describe the datasets used to evaluate our methodology and a
detailed description of our proposed methods. As a core part of our method, we describe
the graph modeling from texts in detail in Section 3.2.

3.1. Datasets

We used the training datasets provided by PAN@CLEF for the Authorship Verification
task 2021 [33]. We will refer to these datasets as “small” and “large” according to their size.
Table 1 shows basic statistics of both datasets; the first column shows many pairs of texts
(problems) each dataset has, the other columns show how many different texts, authors,
and topics are included in each dataset.

Table 1. Number of problems, texts, authors and topics in the “small” and “large” datasets.

Problems Texts Authors Topics

“Small” 52,601 93,662 52,654 1600

“Large” 275,565 494,226 278,162 1600

Each problem is composed of two fanfiction texts; fanfiction is a story originally
written by a fan that extends the universe of a fandom topic. All texts are written in English,
which have an average of 21,400 characters, 4950 tokens and 345 sentences.

We cleaned each dataset by removing texts with less than 200 tokens (which are
meaningless texts) and also by removing duplicated pairs of texts that appear in the

Mathematics 2022, 10, 277 6 of 24

original datasets with different problem ids. In total, we just remove 6 problems from the
“small” dataset and 19 problems from the “large” dataset.

We split the dataset into three parts: train, validation, and test. We trained our models
on the train split, using the validation split to calibrate the hyperparameters, and used the
test split to obtain a reference score of the model. We did not use any of the samples in the
test split to calibrate our model, so the score in this set tells us about the generalization
ability of the model. Our splits were done using the same fixed pairs given by the dataset.
We made these splits author disjoint, i.e., no text in one split has the same author as another
text in a different split. In particular, all the texts in the test split have authors never seen by
the model during the training step. There are shared topics between these splits, we did
not make our splits topic disjoint.

All the splits were defined with a balanced proportion of true and false problems.
Table 2 shows the total number of problems and the number of problems in the positive
class (those problems belonging to the same author) on our splits.

Table 2. Total and positive problems for each split.

“Small” Dataset ‘‘Large” Dataset

Total Positive Total Positive

Train split 42,077 22,560 220,438 120,201

Val split 5259 2636 27,554 13,783

Test split 5259 2633 27,554 13,777

3.2. Modeling Texts as Graphs

A core component of our method corresponds to the modeling of the texts as graphs.
Our graph representation attempts to capture the relationships between words and POS
labels in the text. To make clear our process we use the next text as an example:

Momo, also known as The Grey Gentlemen or The Men in Grey, First, each text
is preprocessed as follows:

1. Substitute non-ASCII characters to ASCII equivalent. We employed the unidecode
package (https://github.com/avian2/unidecode, accessed on 21 July 2021).

2. Tokenize and obtain the POS label.
3. Lowercasing.

We do not remove punctuation of any type, the non-ASCII character substitution was
made to reduce the variability of the used punctuation.

To obtain the POS labels, we considered the PENN-Treebank POS labels [34] obtained
by the NLTK package (https://www.nltk.org, accessed on 5 January 2022) and after that,
we add two additional labels: $PUNCT to mark all punctuation and $OTHER to mark any
other word that the NLTK model failed to identify. In total, we consider 38 labels. After
this process we obtain a parsed text like this:

[(‘momo’, ‘NNP’), (‘,’, ‘$PUNCT’), (‘also’, ‘RB’), (‘known’, ‘VBN’),
(‘as’, ‘IN’), (‘the’, ‘DT’), (‘grey’, ‘NNP’), (‘gentlemen’, ‘NNP’),
(‘or’, ‘CC’), (‘the’, ‘DT’), (‘men’, ‘NNPS’), (‘in’, ‘IN’),
(‘grey’, ‘NNP’), (‘,’, ‘$PUNCT’)]

We construct a directed graph based on a co-occurrence graph, as explained in [19] but
with a different edge weighting. We consider that two words co-occur if them appear right
next to each other in the text. We used the Networkx (https://networkx.org/, accessed
on 21 July 2021) package to construct the graphs. We define the graph as an ordered pair
G = (V, E), where V is a set of vertices composed by (word, pos) tuples and E is a set of
weighted edges. The edge set E ⊆ {(n1, n2, w) | n1, n2 ∈ V , n1 6= n2 , and w ∈ R}, where
w is the edge weight.

https://github.com/avian2/unidecode
https://www.nltk.org
https://networkx.org/

Mathematics 2022, 10, 277 7 of 24

We define a set of POS labels and denote it as REDUCE_LABELS. In the construction, we
identify all tuples from parsed text with a label in the REDUCE_LABELS set as a single node.
With this, the graph structure changes and also the information abstracted from the text. To
construct the graph, let P be the parsed text as a list of tuples, `(P) the number of elements
in the list, and P[i] the i-th element in the list. For each P[i] = (word, pos) in P, we can
define:

M[i] =

{
(word, pos) if pos 6∈ REDUCE_LABELS

(pos, pos) if pos ∈ REDUCE_LABELS

where M is the list defined by the tuples masked as explained. For each pair of tuples
T1, T2 ∈ M let be f (T1, T2) the number of times T1 is followed by T2 in M and let be
T = l(P)− 1 = l(M)− 1; note that T is the total number of times a pair of tuples co-occur
in M.

Now we can define the nodes and edges of our graph:

V = {T | T ∈ M}

Please note that M is a list with order and V is just the set of all tuples in M. We want
to define an edge between any two nodes (tuples) that appear together in the list M:

E = {(T1, T2,
f (T1, T2)

T
) | T1, T2 ∈ M ∧ f (T1, T2) > 0}

As we said before, with this construction we identify all tuples with a specific label in
the REDUCE_LABELS set as a single node. In our experiments, we evaluated graphs generated
with different REDUCE_LABELS sets. From now we will denominate short graph to the graph
generated using the set of all possible POS labels as REDUCE_LABELS, full graph to the graph
generated using REDUCE_LABELS = ∅ and we will denominate med graph to the graph
generated using the following set of REDUCE_LABELS:

REDUCE_LABELS = [‘JJ’, ‘JJR’, ‘JJS’, # Adjectives
‘NN’, ‘NNS’, ‘NNP’, ‘NNPS’, # Nouns
‘RB’, ‘RBR’, ‘RBS’, # Adverbs
‘VB’, ‘VBD’, ‘VBG’, # Verbs
‘VBN’,‘VBP’, ‘VBZ’, # Verbs
‘CD’, # Cardinal numbers
‘FW’, # Foreign words
‘LS’, # List item marker
‘SYM’, # Symbols
‘$OTHER’ # Others]

The size of the graph depends on the REDUCE_LABELS set used in the construction.
In Table 3, we include the average number of nodes and edges of each graph construction
over all the texts used in the “large” dataset for the PAN 2021 Authorship Verification task;
as a reference, each text has an average of 4950 tokens.

Table 3. Average nodes and edge number for each graph construction in “large” dataset for the PAN
2021 Authorship Verification task.

Short Med Full

Nodes 33 138 1207

Edges 407 1168 3424

Continuing with our example, the short graph, the med graph and the full graph are
showed in Figure 1a–c, respectively; for simplicity we do not draw the edge weights.

Mathematics 2022, 10, 277 8 of 24

(a)

(b)

(c)

Figure 1. (a) Short graph, (b) Med graph, and (c) Full graph.

To input our graph to a neural network, we need to encode each node into a vector.
To that end, we use a one-hot encoding representation with respect to the 38 possible POS
labels used. We chose to consider only the POS tag information because of two reasons:
There exist references where a deep learning model training over POS embeddings instead
of word embeddings obtain better results for an authorship analysis task [17]. Furthermore,
using low dimension POS embeddings to represent nodes instead of word embeddings
of larger dimension, allows us to reduce the computational cost of the model. The results
obtained with these decision are comparable with models based on word embeddings,
as we can see in [33].

In the final graph, each node is represented by a vector of dimension 38 that encodes
their POS label.

3.3. Graph-Based Siamese Network (GBSN)

To approach the authorship verification task, we use a Siamese network architec-
ture [28] including a component to transform texts as co-occurrence graphs. Our Graph-
based Siamese network (Figure 2) is composed of two identical feature extraction compo-
nents with shared weights, a reduction step, and a classification network.

Mathematics 2022, 10, 277 9 of 24

Figure 2. GBSN base architecture.

Each feature extraction component receives a text, transforms it into a graph, and re-
turns a vector representation of this graph; the objective is to extract relevant features
that can identify the author’s style from the graph representation of the texts. We can
distinguish three parts in the feature extraction component: graph representation, node
embedding layers, and global pooling.

In our architecture, a node embedding layer is composed of a graph convolutional
layer, followed by a batch normalization layer, and a ReLU (Rectified linear activation
function). We will call conv_type to the parameter identifying the graph convolutional
layer type and L to the parameter identifying the amount of node embedding layers used
by the architecture.

The first node embedding layer takes as input a graph with an initial feature vector in
each node; as we described in Section 3.2 each initial node vector has dimension 38 because
this vector is a one-hot representation of the POS label of the node. The output of each node
embedding layer is the same graph structure with new feature vectors in each node; the
dimension of the vectors obtained can be defined in the same way we define the channels
used in a traditional convolutional layer. Our architecture obtains vectors of dimension 64
in each convolutional layer.

For the conv_type parameter we use the convolutional layers proposed to learn fea-
tures from nodes, that also take into account the edge weights in their formulation. All
the selected layers were used as implemented in PyTorch-geometric (https://pytorch-
geometric.readthedocs.io/en/latest/, accessed on 21 July 2021) with the default parameters
when no other choice is explicitly described here:

1. GraphConv: A basic implementation of the graph neural network model described
by Morris et al. [35].

2. LEConv: Originally proposed by Ranjan et al. [36] to select relevant clusters in a
graph, the authors prove that it is more expressive than other layers such as the Graph
Convolutional Network layer as defined by Kipf and Welling [37] and affirm it can
consider both local and global importance of nodes.

3. GCN2Conv: The Graph Convolutional Network via initial residual and identity
mapping proposed in [38]. This layer was proposed to solve the over-smoothing
problem by including a skip connection to the input layer. We implemented this layer
with parameter α = 0.1.

4. TAGConv: The Topology Adaptive Graph Convolutional network proposed by
Du et al. [39]. This layer is defined in a way that in just one layer it can see the
information of not just consecutive nodes but nodes at distance K. We performed our
experiments with the default K = 3.

https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch-geometric.readthedocs.io/en/latest/

Mathematics 2022, 10, 277 10 of 24

We need a pooling layer to obtain a single vector representation for the whole graph.
This layer needs to be capable of receiving a graph with any number of nodes and structure.
Pooling layers based on the sum, average or maximum value of the vectors in each node
had been use in several graph classification tasks because of its simpleness [24]. To be a
step forward, we chose to use a pooling layer that not just sum the values, but perform
attention over them. The soft attention allows the model to consider the nodes accordingly
to its feature vector. With these, we expect that this layer will be able to compute a more
accurate and useful graph representation.

In our model, we use a global attention layer for the pooling, originally proposed by
Li et al. [40]. As it is shown in Figure 3, this layer takes the final output of the node feature
extraction component as its input, i.e., a graph with the vector embedding in each node.
To obtain the final vector, it makes a weighted sum of each node vector with a coefficient
obtained by doing attention over these same vectors, the formulation is:

r = Σn∈V so f tmax(h(xn)) · xn

where V is the set of all nodes in the graphs and h is a fully connected neural network
with a single scalar as output. This fully connected neural network has ReLU (Rectified
linear activation function) activation, 32 neurons in each hidden layer, and Lpool total layers.
The final output of each feature extraction component is a vector with dimension 64.

Figure 3. Global Attention Pooling layer.

For the reduction step, we simply compute the absolute value of the difference be-
tween the output of each feature extraction component for each document to be verified.
The resulting vector is passed to a final classification network. The classification network
is a fully connected network with ReLU (Rectified linear activation function) activation,
64 neurons in each hidden layer, Lclass total layers, and a final sigmoid function.

Our model returns a single value in the interval [0, 1] that can be interpreted as a
measure of how much the two submitted texts are alike. An output close to 1 tells us that
the model finds both texts to be from the same author. To evaluate our models, we use as
default a threshold of 0.5, i.e., if the output is higher than 0.5 the model says both texts are
from the same author, if it is lower than 0.5 both texts are from different authors and if it is
exactly 0.5 the model does not answer this problem.

3.4. GBSN Ensemble Architecture

We upgrade our base architecture putting side by side different feature extraction
components in a new Graph-based Siamese Network Ensemble architecture. Each subnet-
work in the Siamese architecture is now formed by several independent feature extraction
components, each obtaining a vector from the text, as shown in Figure 4.

Mathematics 2022, 10, 277 11 of 24

We proposed two types of feature extraction components: the first one is a graph-based
component as defined in the base architecture; the second one is a stylistic component,
based on stylistic features extracted from the texts traditionally. The stylistic component
has two parts: stylistic feature representation and embedding network.

Figure 4. Graph-based Siamese Network Ensemble architecture.

To obtain the stylistic features from the texts, we use a subset of the features used by
Weerasinghe and Greenstadt [18]. For simplicity we only use:

• Frequency of function words (179 function words in the NLTK list)
• Average number of characters per word
• Vocabulary richness
• Frequency of words of n characters (from 1 to 10 characters)

The embedding network in the stylistic component is a fully connected network of
just two layers with ReLU (Rectified linear activation function) activation, 64 neurons in the
hidden layer, and 191 neurons in both the input and output layers. The main function of
this network is to transform the raw stylistic feature vector into a more meaningful vector
before reducing it.

We concatenate the vectors obtained by each component and this one is used in the
reduction step. In the reduction step, we compute the absolute value of the difference of
the resulting vectors of each document to be verified as in the base architecture.

Finally, the GBSN Ensemble uses a fully connected layer as a classification network
defined in the same way that in the base architecture. Please note that the GBSN Ensemble
has its own Lclass parameter, independent of any of the feature extraction components used.

4. Results

For all our experiments, we trained the network using an ADAM optimizer and binary
cross-entropy as loss function. In each epoch, all the pairs in the train split were introduced
to the model in shuffled order. The performance of all models is scored using five metrics:
Area Under the ROC Curve, F1 score, Brier score [41], F0.5u score [10], and C@1 score [42].
ROC refers to the Receiver Operating Characteristic curve, we will use AUC ROC as an
abbreviation for the Area Under the ROC Curve metric. Some of these metrics allow the
model to explicitly left difficult problems unanswered to improve the performance. Here,
we presented the average of these five scores for simplicity.

For each architecture, we trained with a fixed number of epochs (150 or less) and saved
the model that achieved the lowest loss in the validation split as our best model. We report
the score of the best model in the test split. The same architecture can arrive in different
weights because of the randomness in the training, so the scores reported are the average
of three distinct executions over the same architecture.

When varying the batch size used for training we note a significant change in the
performance, so we made all our experiments with a batch size of 256.

Mathematics 2022, 10, 277 12 of 24

The following sections show the results of the baseline methods, the graph-based
Siamese architecture and the graph-based Siamese ensemble architecture independently.

4.1. Results of the Baselines

We compare our approach with two baseline methods. The first baseline consist on a
text compression method that calculates cross-entropy, based on Teahan and Harper [43]
and implemented by Potthast et al. [44]. This is a character-based method that consists
of two steps. First, it calculates the average and absolute difference of documents pairs
cross-entropy; then, using a logistic regression model, it calculates the probability that the
two texts were written by the same author.

The second baseline is based on the cosine similarity of the documents represented
by character 4-grams and TF-IDF weights proposed by Dehak et al. [45]. This method
first obtains a vectorization of each pair of documents using the character 4-grams to
represent the dimensions of the vector and the TF-IDF weights to represent the value of
each dimension. TF-IDF is a statistical measure that evaluates the relevance of a term in a
document. For this, two metrics are multiplied: term frequency, which is the number of
times a term appears in a document, and inverse document frequency, which measures
how common or rare a term is in a set of documents. For each pair of documents, the cosine
similarity of the vectors is obtained. Then, the resulting similarities are optimized and
projected through a simple re-scaling operation. Via a grid search, the optimal verification
threshold is determined.

Each baseline was trained using both train and validation split together and tested
on the test split. The performance of all models was scored using five metrics: AUC ROC
(Area under the ROC Curve), F1 score, Brier score, F0.5u, and C@1. These two baselines and
metrics were used in the PAN@CLEF Authorship Verification task 2021 [33]. The detailed
results obtained by the baselines are summarized in Table 4.

Table 4. Results obtained by the baseline methods on our train and test splits of the “small” and
“large” datasets.

Baseline Test Split AUC F1 c@1 F_0.5u Brier Overall

Compression “Small” 77.40 70.60 68.70 68.20 80.30 73.00
“Large” 77.50 72.10 69.40 68.50 80.10 73.50

Cosine “Small” 76.00 75.60 69.60 67.20 78.10 73.30
“Large” 77.60 78.80 69.50 67.20 78.30 74.30

4.2. Results of the GBSN Architecture

In this section, we report results of several experiments with the graph-based Siamese
architecture varying the graph convolutional layers, the pooling, and the classification layer.

4.2.1. Varying the Graph Convolutional Layers

In Table 5, we show the average score obtained when using 3, 6, 9, and 12 layers
(L columns) of each graph convolutional type (Type column), all these experiments were
made with Lpool = 4, Lclass = 4, and a batch size of 256. The experiments were performed
with the three graph representations independently (Graph column). We highlight with
boldface and underline the best results obtained for each graph representation.

We did not perform the experiments marked as “NR” in the last column. These experi-
ments correspond to the full graph representation which is significantly larger than the other
graph representations (short and med). This issue makes the experiments computationally
more expensive than the others.

GraphConv and LEConv have similar performances. Both have good score using
6 or 9 layers and almost always the LEConv is better than GraphConv when looking at
experiments with equal parameters. Using more than 9 layers did not improve the score in
a significant way. The best scores using 12 layers of GCN2Conv are greater than the ones

Mathematics 2022, 10, 277 13 of 24

obtained using 9 layers for short and med graphs representations. In fact, the best scores
over the short graphs are obtained with 12 layers. However, using the med graph and the full
graph representation obtain the best performance with just 6 layers. None of these scores
are better than the ones with the LEConv layer. TAGConv convolutional layer achieved the
best performance when using just three layers, for the three graphs representations tested.
This is probably becTAGConv convolutional layer achieved the best performance when
using just three layers, for the three graphs representations tested. This is probably because
one single layer can take into account information of nodes at distance 3. For the full graph
representation the best performance is obtained with this architecture but for the other
graph representations, the score is not greater than the architecture using LEConv layers.

When comparing architectures using the same number of layers of LEConv or Graph-
Conv the performance using med graph is better than the ones using the full graph or the
short graph. This remains true when using 3 or 6 layers of GCN2Conv but for more layers,
the performance over the short graph overcome the one over the med graph.

When comparing architectures using TAGConv the performance over the full graph is
better than the one over short graph and this last is also better than the one over med graph.

From all these results, we can note that the best performance of a given architec-
ture depends on the graph representation chosen. We will focus further experiments in
architectures using 6 layers of LEConv, 9 layers of LEConv, and 3 layers of TAGConv
because these perform the best for short, med, and full graphs representations, respectively.
The architecture with 12 layers of LEConv also obtained good performance with med graph
representation, but not better than the one obtained with just 9 layers, so we will not
consider it due to the high computational cost.

Table 5. Varying L and type. NR = Not reported due to computational cost, ** = Score of only
one execution.

Type Graph L = 3 L = 6 L = 9 L = 12
Short 85.67 86.64 85.93 86.25

LEConv Med 86.39 86.69 87.18 87.19
Full 85.75 86.01 85.94 NR

Short 85.72 85.95 86.29 86.05
GraphConv Med 85.97 86.50 86.94 86.45

Full 84.95 86.03 86.53 NR
Short 85.33 86.19 85.81 86.37

GCN2Conv Med 85.46 86.50 85.72 85.85
Full 83.79 84.98 84.68 NR

Short 86.34 83.65 82.19 80.76
TAGConv Med 86.02 83.22 80.22 80.45

Full 86.82 84.92 83.00 ** NR

Figure 5 shows how the loss and the five scoring metrics varied along the epochs in
training for two executions. The two upper images represent a model with nine layers of
LEConv with med graph. The two lower images correspond to a model with three layers
of TAGConv with full graph. Figure 5a,c show the loss in training and validation split and
Figure 5b,d show the five scores and its average in validation.

Looking carefully at Figure 5a,b we note an inverse correlation between the loss and
the scores: when the loss increases the scores decrease and the other way around. We
observed these in all the experiments which tells us that our loss objective is a good fit for
optimizing our scores. We note that the loss in the validation split is more stable for the
model with LEConv layer than for the model with TAGConv layer. The loss and scores
for both the GraphConv and GCN2Conv layers have a similar behavior to the model with
LEConv. In general, the experiments performed with TAGConv are the most unstable.

Mathematics 2022, 10, 277 14 of 24

(a) (b)

(c) (d)

Figure 5. Loss (a) and scores (b) for GBSN with L = 9, conv_type = LEConv, Lpool = 8 and Lclass = 4
for med graph. Loss (c) and scores (d) for GBSN with L = 3, conv_type = TAGConv, Lpool = 4 and
Lclass = 4 for full graph.

4.2.2. Varying the Pooling and Classification Layers

We varied the number of layers used for the global pooling (Lpool) and the number of
layers used in classification (Lclass). Table 6 shows the scores for the models using 6 and 9
layers of the LEConv graph convolutional layer and for the models using three layers of
the TAGConv graph convolutional layer. Each row shows the number of pooling layers
(Lpool), the graph representation used and the columns that correspond to the number of
classification layers, (Lclass). For each architecture tested and graph representation used we
highlight with boldface and underline the best results.

Table 6. Experiments when varying Lpool , Lclass and L. NR = Not reported due to computational cost.

TAGConv, L = 3 LEConv, L = 6 LEConv, L = 9

Lclass Lclass Lclass
Lpool Graph 2 4 2 4 2 4

Short 86.06 86.34 86.08 86.64 85.72 85.93
4 Med 85.52 86.02 86.60 86.69 86.85 87.18

Full 86.50 86.82 86.84 86.01 86.62 85.94
Short 85.95 86.38 85.62 86.22 86.22 86.08

6 Med 85.18 85.85 86.91 86.72 86.51 86.82
Full 85.92 86.80 86.81 86.37 86.43 86.11

Short 85.85 86.59 86.03 86.08 85.57 86.60
8 Med 85.16 85.82 85.96 86.66 86.90 87.45

Full 86.65 85.88 86.06 85.81 NR NR

• In the experiments over the short graphs, we can notice:

– Using either LEConv or TAGConv layers, the performance is almost always better
using four classification layers than using two classification layers. The only
exception is in the experiments performed with 9 LEConv layers and Lpool = 6.

– The experiments with 6 and 9 LEConv layers compared to those with four classi-
fication layers present different behaviors. The performance of the architectures
with six LEConv layers decreases when adding more pooling layers and for

Mathematics 2022, 10, 277 15 of 24

the architecture with nine layers the performance increases when adding more
pooling layers. This may be because the models with nine LEConv layers can
learn more complex patterns from the short graph and are improved allowing the
attention in the pooling layer to be more expressive. Instead, the models with just
6 LEConv layers overfit when the attention in the pooling layers is too complex.

– When the TAGConv layers are used with two classification layers the performance
slightly decreases when we increase the pooling layers. In contrast, when using
four classification layers the performance starts growing when we increase the
pooling layers.

• With respect to the experiments over the med graphs, we can observe:

– Using TAGConv layers, the performance is better when the architecture uses
4 classification layers than using two classification layers. Furthermore, in these
experiments, when the pooling layers increase the performance decreases.

• In the experiments over the full graphs, we can notice:

– When the architecture uses LEConv layers, the models improve their performance
with two classification layers instead of 4.

– In particular, when using LEConv layers with two classification layers, the models
decrease their performance when adding more than four pooling layers.

– When using TAGConv layers the behavior is different, the best performance
is obtained when using four classification layers and four pooling layers; the
performance decreases if we vary just one of the parameters, i.e., when we increase
the pooling layers to 8 or when we decrease to two classification layers. However,
the performance increases again when using both eight pooling layers and two
classification layers.

We aim to tune the GBSN and to select the best architecture for the short graph and med
graph representations because we will use them as a base of the GBSN Ensemble model
in Section 4.3. We did not consider architectures over full graph because the experiments
with these graph representations are computationally more expensive and the performance
(86.84 in the best architecture) is not much higher than the performance of the architectures
over the short graph (86.63 in the best architecture). Table 7 shows the score obtained
in individual executions of the best architectures chosen for short graph and med graph.
In the first column we show the architecture selected, the second column shows the graph
representation, the third column is a number to identify the particular instance, and the
last column is the average score of the five evaluation metrics.

Table 7. Best instances of the architectures selected for short graph and med graph.

Architecture
Graph Instance Score

conv_type L Lpool Lclass

LEConv 6 4 4 Short 1 86.73
2 86.65

LEConv 9 8 4 Med 1 87.50
2 87.43

4.3. Results of the GBSN Ensemble Architecture

In this section, we show experiments using the GBSN Ensemble architecture. For all
our experiments, we fixed the number of classification layers used in the GBSN Ensemble
to 5. Given that in the ensemble architecture we concatenate the result of more than one
feature extraction component, the input vector of the classification network is larger. We
choose to use 5 classification layers to allow the classification network to be more expressive.

From now to the rest of this work, we will refer as Short 1 to the model that corresponds
to the first instance of the architecture using the short graph representation from Table 7.

Mathematics 2022, 10, 277 16 of 24

Similarly, we will refer with the same nomenclature to the other instances listed in this
Table. We made our ensemble experiments using only the best architectures for short
and med graphs representations because these are computational less expensive than the
architectures using full graph representation.

4.3.1. Results of Different Training Strategies

We evaluated three training strategies:

1. To train the GBSN Ensemble architecture all together with random weight initialization.
2. First to train the GBSN architecture for each component, second to initialize the

weights of the GBSN Ensemble architecture with the weights obtained from the
base GBSN architectures, and finally to train the ensemble together without freezing
any weights.

3. To train the GBSN architecture for each component and to initialize the weights of the
GBSN Ensemble as in the previous point and also freeze the weights in the feature
extraction components to train only the classification step weights.

Table 8 shows the scores when training GBSN Ensembles. Each row in the table corre-
sponds to an ensemble with the feature extraction components described in the first column.
The second column corresponds to the score when training without initialization, the third
column corresponds to the score when initializing the weights from the single models but
without freezing them, and the last column correspond to the score when initializing the
weights and freezing the ones in the feature extraction components. The best performances
across different training strategies are highlighted with boldface and underline in each row.

Table 8. GBSN Ensemble with different training strategies. N/A = It is not possible to train the model
with this strategy.

No Transfer
Transfer Weights

No Freezing Freezing

Med 1 (reference) 87.50 N/A N/A

Med 1 + Med 2 86.80 88.51 88.30

Short 1 + Med 1 86.59 88.53 88.64

Short 1 + Short 2 86.66 88.34 88.85+ Med 1 + Med 2

The first row shows the best score obtained by the single GBSN over med graph in
a single experiment, as reported before in Table 7. The second row corresponds to an
experiment combining two instances of the same feature extraction components over the
med graph representation; note that the best individual score was 87.50 and the best ensemble
score was 88.51, so using two independent instances let us to increase the performance in
more than 1%. The other two rows show models that combine different feature extraction
layers. In general, training without transferring the weights showed the worst scores,
even lower than the scores achieved when using only single instances (see Table 7). When
combining different feature extraction components the best score was obtained when
transferring and freezing the weights in the feature extraction components.

Using the last training strategy has another advantage: because of the frozen weights,
we just need to train the classification step, so the training is faster. With this strategy,
the models achieve the best performance usually in no more than 20 epochs. We will
focus the next experiments using this training strategy because the best performance was
achieved using this strategy and it also provides less computational cost than the others.

4.3.2. Adding Stylistic Features Component

Until now we evaluated the performance of feature extraction components over graph
representations. These graph representations capture mainly the grammatical structure of

Mathematics 2022, 10, 277 17 of 24

the texts, so the model may be improved if we include stylistic features. Furthermore, un-
til now, the results reported were obtained training and testing on the “small” dataset splits.
In this section, we will show the results of the experiments with the ensemble architectures
considering stylistic feature components over the “small” and “large” dataset splits.

Table 9 shows the comparative performance of the evaluated models. Each row shows
the average of the five evaluation metrics achieved by a given model when trained and
tested on our splits for the “small” and “large” datasets, respectively. We include in this
table the performance for the baselines, GBSN with single feature extraction components,
and GBSN Ensembles.

The first two rows show the performance of the two selected baselines. The third and
fourth rows correspond to the model using only the feature extraction component on the
short graph representation and the model using only the feature extraction component on
the med graph representation, respectively. The fifth row shows the scores of the model using
feature extraction components on both short graph and med graph representation without
stylistic features. The sixth row shows the scores of a model with feature components on
the short, med graph representations, along with the stylistic features. The seventh row
shows the scores of a model combining feature extraction components on two instances of
short graph representations and two instances of med graph representations. Finally, the last
row shows the scores of a model combining feature extraction components on two short
graph representations, two med graph representations, and stylistic features. We highlight
with boldface and underline the best results obtained on “small” and “large” dataset splits.

Table 9. Average performance of Graph-based Siamese Network (GBSN) with single and ensemble
feature extraction components. Ensemble was training transferring and freezing feature extraction
components weights. ** = Score of only one execution.

Model ‘‘Small” Dataset “Large” Dataset
Splits Splits

Baseline compression 73.00 ** 73.50 **

Baseline cosine 72.90 ** 74.30 **

Short 86.64 89.47

Med 87.45 90.35

Short + Med 88.64 91.35

Short + Med + Stylistic features 89.13 91.36

Short(x2) + Med(x2) 88.85 91.66

Short(x2) + Med(x2) 89.31 91.68+ Stylistic features

Training on “large” dataset splits improve the performance of all models. Furthermore,
all our proposed models considerably outperform the score of the baselines. The inclusion
of the stylistic features component allows the architecture to improve the performance
when comparing with the equivalent architecture without them. This improvement is more
substantial when the models are trained on the “small” dataset splits. When comparing
models trained on the “large” dataset splits, adding stylistic features component to the
model using one short and med components (Short + Med) just improve 0.01% and adding
stylistic features component to the model using two short and two med components
(Short(x2) + Med(x2)) just improve 0.02% These results indicate that the graph-based models
learn better features when more data are available. The GBSN performance when trained
on the “large” dataset performed almost as well as when adding the stylistic features.

Mathematics 2022, 10, 277 18 of 24

4.4. Results of the Threshold Adjustment

Our model was initially trained to return an output between 0 and 1. Given a threshold
th and a margin m we can transform the original output outo to a new one by following
the formula:

l(outo) =

outo

2·(th−m)
i f outo < th−m

0.5 i f th−m ≤ outo ≤ th + m
outo−1

2·(1−(th+m))
+ 1 i f th + m < outo

This formula linearly transforms the interval [0, th − m) into [0, 0.5), the interval
[th−m, th + m] into 0.5 and the interval (th + m, 1] into (0.5, 1].

This transformation allows the model to: adjust the best threshold for the binary
classification, and predict some difficult problems as ’not answered’, i.e., the model avoids
the prediction of verification problems when it is not sure if the text corresponds to the
same author or not. The C@1 metric benefits from this behavior because it rewards methods
that leave problems unanswered rather than providing wrong answers [42]. As a final
tuning, we performed a grid search over different thresholds and margins to optimize
the average of the scores in the validation split. Then, we selected the best threshold and
margin obtained and evaluate the model in the test split.

Figure 6 shows a heatmap of the scores when varying the threshold and margin. We
searched thresholds values between 0.05 and 0.95 and margin values between 0 and 0.25,
both with increments of 0.05. From these results, we can notice that the score increase
from 89.04 in the default threshold-margin of 0.50–0.00 to 90.24 in the best configuration
of 0.50–0.20.

Figure 6. Threshold grid search in val split for GBSN with parameters conv_type = LEConv, L = 9,
Lpool = 8, Lclass = 4 over med graph. As reference the average score without adjust is 89.04.

Figure 7a,b shows the distribution for positive and negative instances before and after
the threshold adjustment, respectively. The X-axis corresponds to the score obtained by our
model and the Y-axis shows the number of problems obtained with these scores. The blue
bars are the proportion of problems with a different-author label (0) and the orange bars
are the proportion of problems with a same-author label (1).

The different-author labeled problems (blue) are mainly classified with low values
and the same-author labeled ones (orange) are mainly classified with high values. With
the threshold adjustment, the scores increase mainly because some of the difficult to solve
problems were sent to 0.5, i.e., the problems were left unanswered. These unanswered
problems are represented in the bar at 0.5 in Figure 7b.

Mathematics 2022, 10, 277 19 of 24

(a) (b)

Figure 7. Histogram of distribution for positive and negative instances: (a) Before threshold adjust
(b) With threshold adjust of th = 0.5 and m = 0.2.

The threshold adjustment significantly improves the performance of the model in the
test split. Table 10 shows the scores and improvements in the “small” and “large” dataset
splits for some of our single and ensemble architectures. Each row corresponds to a model
presented in Table 9 with the exception of the baselines. The first column shows the name
of the model, the second and third are the performance after the threshold adjustment
and the improvement when compared with no adjustment in the “small” dataset splits
and the fourth and fifth columns are the performance after the threshold adjustment and
the improvement when compared with no adjustment in the “large” dataset splits. We
highlight with boldface and underline the best results obtained in each dataset split.

Table 10. Average performance after threshold and margin adjust of Graph-based Siamese Network
(GBSN) with single and ensemble feature extraction components. Ensemble was trained transferring
and freezing feature extraction component weights.

“Small” Dataset “Large” Dataset

After Increment After IncrementAdjustment Adjustment

Short 87.87 1.23 90.63 1.16

Med 88.59 1.14 91.53 1.18

Short + Med 89.70 1.06 92.45 1.10

Short + Med 90.30 1.17 92.45 1.09+ Stylistic features

Short(x2) + Med(x2) 89.86 1.01 92.80 1.14

Short(x2) + Med(x2) 90.56 1.25 92.83 1.15+ Stylistic features

4.5. GBSN Performance in the 2021 PAN@CLEF Authorship Verification Shared Task

CLEF 2021 (http://clef2021.clef-initiative.eu/, accessed on 12 January 2022) was the
twenty-second edition of the CLEF campaign and workshop series that has run since 2000,
it was organized by the University “Politehnica” of Bucharest, Romania, from 21 to 24
September 2021. Their 12 selected labs represented scientific challenges based on new data
sets and real-world problems.

One of these labs is PAN: Digital Text Forensics and Stylometry, a networking initia-
tive for digital text forensics (http://pan.webis.de/, accessed on 12 January 2022). PAN
provides evaluation resources consisting of large-scale corpora, performance measures,
and web services that allow for meaningful evaluations. The PAN 2021 Authorship Verifica-
tion shared task at adopt the five evaluation metrics used also to evaluate our models: AUC

http://clef2021.clef-initiative.eu/
http://pan.webis.de/

Mathematics 2022, 10, 277 20 of 24

ROC (Area under the ROC Curve), F1 score, Brier score, F0.5u, and C@1. They provided
three baseline systems (calibrated on the “small” training set) for comparison:

1. A compression-based approach [43,44].
2. A naive distance-based, first-order bag-of-words model [46].
3. A short-text variant of Koppel et al. [8] unmasking by Bevendorff et al. [10] which

had yielded good empirical results in the recent past.

The first two baselines are the same as those presented by us, with the difference that
we presented the scores of this baselines trained and tested with exactly the same splits
used in all our experiments.

We submit two models to the 2021 PAN@CLEF Authorship Verification task, one
trained on the “small” dataset and the other trained on the “large” dataset. Both mod-
els have the same architecture: GBSN Ensemble architecture with two short, two med,
and stylistic components. Each graph-based component has an architecture of 6 LEConv
layers and 4 layers for the fully connected network in the pooling step. The final classifi-
cation network has 5 layers. The ensemble architecture was trained by transferring and
freezing weights from the feature extraction components. Both models are improved with
the threshold adjust method proposed in this work.

We obtained the second-best score for the model trained on the “large” dataset and
the third-best score for the model trained on the “small” dataset. Table 11 shows the official
scores reported in the task overview [33]. The table shows system rankings for PAN 2021
submissions across five evaluation metrics: AUC ROC, c@1, F1, F0.5u , Brier, and an overall
mean score (as the final ranking criterion). The dataset column indicates which calibration
dataset was used. Our submitted models are marked in bold. The horizontal line indicate
the range of scores yielded by the baselines (in italics). We just include the submissions
with performance above baselines.

Table 11. System rankings for all PAN 2021 submissions. Taken from [33].

Team Dataset AUC c@1 F1 F0.5u Brier Overall

boenninghoff21 “large” 0.9869 0.9502 0.9524 0.9378 0.9452 0.9545
embarcaderoruiz21 “large” 0.9697 0.9306 0.9342 0.9147 0.9305 0.9359
weerasinghe21 “large” 0.9719 0.9172 0.9159 0.9245 0.9340 0.9327
weerasinghe21 “small” 0.9666 0.9103 0.9071 0.9270 0.9290 0.9280
menta21 “large” 0.9635 0.9024 0.8990 0.9186 0.9155 0.9198
peng21 “small” 0.9172 0.9172 0.9167 0.9200 0.9172 0.9177
embarcaderoruiz21 “small” 0.9470 0.8982 0.9040 0.8785 0.9072 0.9170
menta21 “small” 0.9385 0.8662 0.8620 0.8787 0.8762 0.8843
rabinovits21 “small” 0.8129 0.9129 0.8094 0.8186 0.8129 0.8133
ikae21 “small” 0.9041 0.7586 0.8145 0.7233 0.8247 0.8050

unmasking21 “small” 0.8298 0.7707 0.7803 0.7466 0.7904 0.7836
tyo21 “large” 0.8275 0.7594 0.7911 0.7257 0.8123 0.7832
naive21 “small” 0.7956 0.7320 0.7856 0.6998 0.7867 0.7600
compressor21 “small” 0.7896 0.7282 0.7609 0.7027 0.8094 0.7581

We want to note several relevant points:

• The scores for the GBSN models described in Table 10 are not directly comparable
with the scores reported by the PAN task committee. This is because the scores of the
first table are obtained testing the models in our test split and the scores of the last
table are the ones obtained by PAN in the test dataset, to which we do not have access.

• For our submitted models and the baselines, the scores reported by PAN, measured in
the test dataset, were higher than the ones obtained in our test split.

• We do not use any up-sampling technique over the given dataset and, because of our
train framework, for each dataset, we train our submitted model using only 90% of the
available data; that is, the “small” model was trained using just 47,336 problems and

Mathematics 2022, 10, 277 21 of 24

the “large” model using just 247,992 problems; this is relevant because our architecture
showed to work better with more training pairs.

The results obtained show us that our proposed approach has performance comparable
with the state of the art in this research area. Furthermore, our experiments show us that
the approach can improve their performance or be modified to achieve good results with
considerably less computational cost.

5. Discussion

In this paper, we presented a novel Siamese network architecture composed of two
graph convolutional neural networks with graph level pooling, and classification layers to
approach the authorship verification task. For the text representation, we propose three
graph models and evaluate their appropriateness for the above-mentioned task. The graph
representations from texts are based on the relation of the POS labels and co-occurrence of
the words. These representations, allow us to choose which POS labels are masked as a
single node in the graph, let us reduce the graph complexity, and focus the representation
in POS labels relevant to a specific task.

Specifically, we evaluated the following graph representations: Short, where all words
with same POS label are identified to the same node; Med, where POS labels correspond-
ing to adjectives, nouns, adverbs, verbs, cardinal numbers, foreign words, list markers,
and symbols are identified as the same node and Full where each tuple of (word, POS) is
represented as a node; this corresponds to the traditional co-occurrence graph.

As part of our proposed architecture, we evaluated several graph convolutional layers
(LEConv, GraphConv, GCN2Conv, and TAGConv) over the graph representations. We
presented detailed scores of our experiments and from them, we can conclude the following:

• Concerning the graph representation used:

– The performance of the architecture (graph convolutional layers, pooling layers,
classification layers) are strongly dependent of the graph representation chosen.

– The performance of the models with the med graph is in general better than
the performance of the models with short graph and full graph representation.
The GBSN model with individual components achieved the best score with the
med graph representation.

– The performance of the models with short graph representations show good
performance, achieving average scores of 86.64% and 89.47% in the “small” and
“large” dataset splits, respectively. Even being a relatively small graph with
usually just 33 nodes and 407 edges, this graph is a good alternative to trade off
performance for computational cost.

• Concerning the graph convolutional layers used:

– Models with LEConv layer have in general (but not always) better performance
than models with GraphConv and GCN2Conv layers over all the graph represen-
tations tested. With this kind of layer good performance is obtained when using
6 or 9 layers.

– Models with TAGConv layer have their best performance when using just 3 layers.
The scores obtained with these models are the best over full graph representations.
Furthermore, the score obtained over the short graph representation (86.59%) is
comparable with the best score obtained by the model using LEConv layer over
the short graph representation (86.64%).

– When varying the layers used in pooling and the classification layers we cannot
conclude a general rule to improve the performance, but our experiments show
that both are relevant hyperparameters to consider when tuning a model.

We also proposed combining more than one component for feature extraction, we
evaluated graph-based and stylistic-based components with different training strategies.
We found that transferring the weights from a single component architecture and freezing

Mathematics 2022, 10, 277 22 of 24

these in the ensemble architecture is the best training strategy because it has the best
performance and the lowest computational cost.

In general, the combined use of more than one graph-based component improves
the performance, even if we use several components based on the same graph representa-
tion. Finally, we showed that our architectures can be improved with a simple threshold
adjustment, giving us final scores comparable with the state of the art in this task.

The new Graph-based Siamese network showed good performance in the authorship
verification task. For future work, we want to evaluate this new approach on other author-
ship analysis tasks. Furthermore, the proposed graph representation is based on the relation
of words, capturing mainly the structural information of the POS labels. Character level
information has shown to have good performance in authorship attribution task [13,14], so
it will be interesting to generalize the graph representation strategy to include information
at the character level.

Author Contributions: Conceptualization, D.E.-R., H.G.-A. and A.E.-R.; Data curation, D.E.-R. and
A.E.-R.; Formal analysis, D.E.-R. and H.G.-A.; Funding acquisition, H.G.-A. and G.S.; Investigation,
D.E.-R.; Methodology, D.E.-R. and H.G.-A.; Resources, D.E.-R. and H.G.-A.; Software, D.E.-R.;
Supervision, H.G.-A. and G.S.; Validation, D.E.-R. and H.G.-A.; Visualization, D.E.-R. and A.E.-R.;
Writing—original draft, D.E.-R.; Writing—review & editing, D.E.-R. and H.G.-A. All authors will be
informed about each step of manuscript processing including submission, revision, revision reminder,
etc. via emails from our system or assigned Assistant Editor. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was partially funded by CONACYT PNPC scholarship with No. CVU
1004062, DGAPA-UNAM PAPIIT grant number TA100520, and DGAPA-UNAM PAPIIT grant num-
ber IG400119, IT100822.

Data Availability Statement: Restrictions apply to the availability of these data. Data was obtained
from PAN (https://pan.webis.de/) and are available at https://doi.org/10.5281/zenodo.371640
3andhttps://doi.org/10.5281/zenodo.3724096 with the permission of PAN (https://pan.webis.de/).

Acknowledgments: The authors thank CONACYT for the computer resources provided through the
INAOE Supercomputing Laboratory’s Deep Learning Platform for Language Technologies.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Juola, P. Authorship Attribution. Found. Trends® Inf. Retr. 2007, 1, 233–334. [CrossRef]
2. Stamatatos, E. A Survey of Modern Authorship Attribution Methods. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 538–556. [CrossRef]
3. Mekala, S.; Bulusu, V.V. A Survey On Authorship Attribution Approaches. Int. J. Comput. Eng. Res. (IJCER) 2018, 8, 8.
4. Chaski, C.E. Who’s At The Keyboard? Authorship Attribution in Digital Evidence Investigations. Int. J. Digit. Evid. 2005, 4, 14.
5. Frantzeskou, G.; Stamatatos, E.; Gritzalis, S.; Katsikas, S. Effective Identification of Source Code Authors Using Byte-Level

Information. In Proceedings of the ICSE ’06: Proceedings of the 28th International Conference on Software Engineering, Shanghai,
China, 20–28 May 2006; pp. 893–896. [CrossRef]

6. Stamatatos, E.; Daelemans, W.; Verhoeven, B.; Potthast, M.; Stein, B.; Juola, P.; Sanchez-Perez, M.A.; Barrón-Cedeño, A. Overview
of the Author Identification Task at PAN 2014. CLEF 2014, 1180, 877–897.

7. Koppel, M.; Winter, Y. Determining If Two Documents Are Written by the Same Author. J. Assoc. Inf. Sci. Technol. 2014,
65, 178–187. [CrossRef]

8. Koppel, M.; Schler, J.; Bonchek-Dokow, E.; Dokow, B. Measuring Differentiability: Unmasking Pseudonymous Authors. J. Mach.
Learn. Res. 2007, 8, 1261–1276.

9. Kestemont, M.; Luyckx, K.; Daelemans, W.; Crombez, T. Cross-Genre Authorship Verification Using Unmasking. Engl. Stud.
2012, 93, 340–356. [CrossRef]

10. Bevendorff, J.; Stein, B.; Hagen, M.; Potthast, M. Generalizing Unmasking for Short Texts. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), Minneapolis, MN, USA, 2 June 2019; Association for Computational Linguistics: Minneapolis, MN,
USA, 2019; pp. 654–659. [CrossRef]

11. Koppel, M.; Schler, J.; Argamon, S. Authorship Attribution in the Wild. Lang. Resour. Eval. 2011, 45, 83–94. [CrossRef]

https://pan.webis.de/
https://doi.org/10.5281/zenodo.3716403 and https://doi.org/10.5281/zenodo.3724096
https://doi.org/10.5281/zenodo.3716403 and https://doi.org/10.5281/zenodo.3724096
https://pan.webis.de/
http://doi.org/10.1561/1500000005
http://dx.doi.org/10.1002/asi.21001
http://dx.doi.org/10.1145/1134285.1134445
http://dx.doi.org/10.1002/asi.22954
http://dx.doi.org/10.1080/0013838X.2012.668793
http://dx.doi.org/10.18653/v1/N19-1068
http://dx.doi.org/10.1007/s10579-009-9111-2

Mathematics 2022, 10, 277 23 of 24

12. Stamatatos, E.; Daelemans, W.; Verhoeven, B.; Juola, P.; López-López, A.; Potthast, M.; Stein, B. Overview of the Author
Identification Task at PAN 2015. In Proceedings of the CLEF PAN Conference, Toulouse, France, 8–11 September 2015; p. 17.

13. Stamatatos, E. On the Robustness of Authorship Attribution Based on Character N-Gram Features. J. Law Policy 2013, 21, 20.
14. Sapkota, U.; Bethard, S.; Montes, M.; Solorio, T. Not All Character N-Grams Are Created Equal: A Study in Authorship

Attribution. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Denver, CO, USA, 31 May–5 June 2015; Association for Computational Linguistics:
Denver, CO, USA, 2015; pp. 93–102. [CrossRef]

15. Petras, V.; Forner, P.; Clough, P.D. (Eds.) Notebook Papers of CLEF 2011 Labs and Workshops, 19–22 September; CEUR-WS: Amsterdam,
The Netherlands, 2011.

16. Bagnall, D. Author Identification Using Multi-Headed Recurrent Neural Networks. arXiv 2015, arXiv:1506.04891.
17. Jafariakinabad, F.; Tarnpradab, S.; Hua, K.A. Syntactic Recurrent Neural Network for Authorship Attribution. arXiv 2019,

arXiv:1902.09723.
18. Weerasinghe, J.; Greenstadt, R. Feature Vector Difference Based Neural Network and Logistic Regression Models for Authorship

Verification. In Notebook for PAN at CLEF 2020; CEUR-WS: Thessaloniki, Greece, 2020; p. 6.
19. Sonawane, S.S.; Kulkarni, P.A. Graph Based Representation and Analysis of Text Document: A Survey of Techniques. Int. J.

Comput. Appl. 2014, 96, 1–8. [CrossRef]
20. Pinto, D.; Gomez Adorno, H.; Vilariño, D.; Singh, V. A Graph-Based Multi-Level Linguistic Representation for Document

Understanding. Pattern Recognit. Lett. 2014, 41, 93–102. [CrossRef]
21. Castillo, E.; Cervantes, O.; Vilariño, D. Text Analysis Using Different Graph-Based Representations. Comput. Sist. 2017,

21, 581–599. [CrossRef]
22. Castillo, E.; Cervantes, O.; Vilariño, D. Authorship Verification Using a Graph Knowledge Discovery Approach. J. Intell. Fuzzy

Syst. 2019, 36, 6075–6087. [CrossRef]
23. Gómez-Adorno, H.; Sidorov, G.; Pinto, D.; Vilariño, D.; Gelbukh, A. Automatic Authorship Detection Using Textual Patterns

Extracted from Integrated Syntactic Graphs. Sensors 2016, 16, 1374. [CrossRef]
24. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural

Netw. Learn. Syst. 2020, 32, 4–24. [CrossRef] [PubMed]
25. Cruz, L. Authorship Recognition with Short-Text Using Graph-Based Techniques. In Proceedings of the 2019 Workshop on Widening

NLP, Florence, Italy, 28 July 2019; Association for Computational Linguistics: Florence, Italy, 2019; pp. 153–156.
26. Narayanan, A.; Chandramohan, M.; Venkatesan, R.; Chen, L.; Liu, Y.; Jaiswal, S. Graph2vec: Learning Distributed Representations

of Graphs. arXiv 2017, arXiv:1707.05005.
27. Lippincott, T. Graph Convolutional Networks for Exploring Authorship Hypotheses. In Proceedings of the 3rd Joint SIGHUM

Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature, Minneapolis, MN,
USA, 7 June 2019; Association for Computational Linguistics: Minneapolis, MN, USA, 2019; pp. 76–81. [CrossRef]

28. Bromley, J.; Guyon, I.; LeCun, Y.; Säckinger, E.; Shah, R. Signature Verification Using a “Siamese” Time Delay Neural Network.
Int. J. Pattern Recognit. Artif. Intell. 1993, 7, 669–688. [CrossRef]

29. Nandy, A.; Haldar, S.; Banerjee, S.; Mitra, S. A Survey on Applications of Siamese Neural Networks in Computer Vision. In
Proceedings of the 2020 International Conference for Emerging Technology (INCET), Belgaum, India, 5–7 June 2020; pp. 1–5.
[CrossRef]

30. Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese Neural Networks for One-Shot Image Recognition. In Proceedings of the ICML
Deep Learning Workshop, Lille, France, 6–11 July 2015, Volume 2, p. 8.

31. Boenninghoff, B.; Rupp, J.; Nickel, R.M.; Kolossa, D. Deep Bayes Factor Scoring for Authorship Verification. arXiv 2020,
arXiv:2008.10105.

32. Araujo-Pino, E.; Gómez-Adorno, H.; Fuentes-Pineda, G. Siamese Network Applied to Authorship Verification. In Notebook for
PAN at CLEF 2020; CEUR: Thessaloniki, Greece, 2020; p. 8.

33. Kestemont, M.; Manjavacas, E.; Markov, I.; Bevendorff, J.; Wiegmann, M.; Stamatatos, E.; Stein, B.; Potthast, M. Overview of the
Cross-Domain Authorship Verification Task at PAN 2021. In Proceedings of the Working Notes of CLEF 2021—Conference and
Labs of the Evaluation Forum, Bucharest, Romania, 21–24 September 2021; p. 17.

34. Marcus, M. Building a Large Annotated Corpus of English: The Penn Treebank; Technical Report; Defense Technical Information
Center: Fort Belvoir, VA, USA, 1993. [CrossRef]

35. Morris, C.; Ritzert, M.; Fey, M.; Hamilton, W.L.; Lenssen, J.E.; Rattan, G.; Grohe, M. Weisfeiler and Leman Go Neural: Higher-
Order Graph Neural Networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27
January–1 February 2019; Volume 33, pp. 4602–4609. [CrossRef]

36. Ranjan, E.; Sanyal, S.; Talukdar, P.P. ASAP: Adaptive Structure Aware Pooling for Learning Hierarchical Graph Representations.
In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020.

37. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907.
38. Chen, M.; Wei, Z.; Huang, Z.; Ding, B.; Li, Y. Simple and Deep Graph Convolutional Networks. In Proceedings of the International

Conference on Machine Learning, Vienna, Austria, 12–18 July 2020; PMLR: Vienna, Austria, 2020.
39. Du, J.; Zhang, S.; Wu, G.; Moura, J.M.F.; Kar, S. Topology Adaptive Graph Convolutional Networks. arXiv 2018, arXiv:1710.10370.
40. Li, Y.; Tarlow, D.; Brockschmidt, M.; Zemel, R. Gated Graph Sequence Neural Networks. arXiv 2015, arXiv:1511.05493.

http://dx.doi.org/10.3115/v1/N15-1010
http://dx.doi.org/10.5120/16899-6972
http://dx.doi.org/10.1016/j.patrec.2013.12.004
http://dx.doi.org/10.13053/cys-21-4-2551
http://dx.doi.org/10.3233/JIFS-181934
http://dx.doi.org/10.3390/s16091374
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://www.ncbi.nlm.nih.gov/pubmed/32217482
http://dx.doi.org/10.18653/v1/W19-2510
http://dx.doi.org/10.1142/S0218001493000339
http://dx.doi.org/10.1109/INCET49848.2020.9153977
http://dx.doi.org/10.21236/ADA273556
http://dx.doi.org/10.1609/aaai.v33i01.33014602

Mathematics 2022, 10, 277 24 of 24

41. Brier, G.W. Verification of Forecasts Expressed in Terms of Probability. Mon. Weather Rev. 1950, 78, 1–3. [CrossRef]
42. Penas, A.; Rodrigo, A. A Simple Measure to Assess Non-Response. In Proceedings of the 49th Annual Meeting of the Association

for Computational Linguistics, Portland, OR, USA, 19–24 June 2011; pp. 1415–1424.
43. Teahan, W.J.; Harper, D.J. Using Compression-Based Language Models for Text Categorization. In Language Modeling for

Information Retrieval; Croft, W.B., Lafferty, J., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 141–165. [CrossRef]
44. Potthast, M.; Braun, S.; Buz, T.; Duffhauss, F.; Friedrich, F.; Gülzow, J.M.; Köhler, J.; Lötzsch, W.; Müller, F.; Müller, M.E.; et al.

Who Wrote the Web? Revisiting Influential Author Identification Research Applicable to Information Retrieval. In Lecture Notes in
Computer Science; ECIR, Ferro, N., Crestani, F., Moens, M.F., Mothe, J., Silvestri, F., Nunzio, G.M.D., Hauff, C., Silvello, G., Eds.;
Springer: Padua, Italy, 2016; Volume 9626, pp. 393–407.

45. Dehak, N.; Kenny, P.J.; Dehak, R.; Dumouchel, P.; Ouellet, P. Front-End Factor Analysis for Speaker Verification. IEEE Trans.
Audio Speech, Lang. Process. 2011, 19, 788–798. [CrossRef]

46. Kestemont, M.; Stover, J.; Koppel, M.; Karsdorp, F.; Daelemans, W. Authenticating the Writings of Julius Caesar. Expert Syst.
Appl. 2016, 63, 86–96. [CrossRef]

http://dx.doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
http://dx.doi.org/10.1007/978-94-017-0171-6_7
http://dx.doi.org/10.1109/TASL.2010.2064307
http://dx.doi.org/10.1016/j.eswa.2016.06.029

	Introduction
	Related Work
	Graph-Based Representation of Texts
	Graph Neural Networks
	Siamese Neural Networks

	Materials and Methods
	Datasets
	Modeling Texts as Graphs
	Graph-Based Siamese Network (GBSN)
	GBSN Ensemble Architecture

	Results
	Results of the Baselines
	Results of the GBSN Architecture
	Varying the Graph Convolutional Layers
	Varying the Pooling and Classification Layers

	Results of the GBSN Ensemble Architecture
	Results of Different Training Strategies
	Adding Stylistic Features Component

	Results of the Threshold Adjustment
	GBSN Performance in the 2021 PAN@CLEF Authorship Verification Shared Task

	Discussion
	References

