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Abstract: The fruit fly Drosophila melanogaster is a classic research object in genetics and systems
biology. In the genetic analysis of flies, a routine task is to determine the offspring size and gender ratio
in their populations. Currently, these estimates are made manually, which is a very time-consuming
process. The counting and gender determination of flies can be automated by using image analysis
with deep learning neural networks on mobile devices. We proposed an algorithm based on the
YOLOv4-tiny network to identify Drosophila flies and determine their gender based on the protocol of
taking pictures of insects on a white sheet of paper with a cell phone camera. Three strategies with
different types of augmentation were used to train the network. The best performance (F1 = 0.838)
was achieved using synthetic images with mosaic generation. Females gender determination is
worse than that one of males. Among the factors that most strongly influencing the accuracy of fly
gender recognition, the fly’s position on the paper was the most important. Increased light intensity
and higher quality of the device cameras have a positive effect on the recognition accuracy. We
implement our method in the FlyCounter Android app for mobile devices, which performs all the
image processing steps using the device processors only. The time that the YOLOv4-tiny algorithm
takes to process one image is less than 4 s.

Keywords: Drosophila melanogaster; gender; image analysis; deep learning; object detection; mobile
device; Android app

1. Introduction
1.1. Biological Motivation

Drosophila melanogaster is a classic object for a variety of studies in genetics and systems
biology [1]. The evolutionary conservation of the main signaling pathways in the regulation
of an animal’s metabolism allows the use of Drosophila for primary drug testing, which is
much faster and cheaper than similar experiments with mammals [2]. One of the traditional
ecological indicators in such D. melanogaster tests is the offspring size and gender ratio:
the genetic effects of drugs are evaluated by the frequency of recessive lethal mutations
linked with gender, leading to the selective death of males having only one X-chromosome.
This work usually involves counting a large number of offspring in the fly population to
assess their fertility and simultaneously determine their gender to estimate their ratio. This
task is performed manually and is extremely time-consuming because genetic experiments
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require estimating the size of dozens of fly populations, comprising up to several hundred
insects [3].

To automate the estimation of the Drosophila population size, we previously proposed
a smartphone application to obtain and automatically analyze images of flies on a sheet
of white paper of standard size [4]. The app is based on computer vision algorithms [5]
and allows the user to estimate the number of flies on the sheet with 98% accuracy. These
results demonstrate the efficiency of the protocol that is used to acquire images on a cell
phone camera: the counting does not require additional equipment or special imaging
conditions except for sufficient and uniform illumination. This method, however, does
not allow the estimation of the gender of the insects. Thus, the method, which uses the
mobile device and image analysis and allows the user to count the number of Drosophila
and estimate the gender of each fly, is of importance. It should be noted that D. melanogaster
flies demonstrate sexual dimorphism: not only are females larger than males for most body
dimensions, but also the genders differ in pigmentation, the number of visible abdominal
segments, the structure of the genitalia, the presence of sex combs, and the shape of various
body parts. However, fly gender determination by using a mobile device is complicated
because of the small size of the flies (up to 2.5 mm in length).

1.2. Related Works

The automatic identification of insects in digital images, their counting, and species
classification are important problems in entomology [6,7] and agriculture [8]. In addition
to engineering solutions, computer vision and machine learning are actively used to solve
these problems [9]. The most promising results in this area were obtained recently due
to the implementation of deep machine learning methods. A number of methods focus
on the identification of insects in the field [10–12], which involves distinguishing them
from green plants. Some works are aimed at the identification of insects in images from
automatic pheromone traps. These images have a homogeneous background, in which
color is different from the insects. These types of images are similar to those that are used
in our work. The most popular neural network architectures for insect recognition and
classification are deep convolutional neural networks (CNNs) [9].

Ding and Taylor [13] distinguished moths among other insects in the trap images
with a white background. The CNN was used to solve this problem, and its accuracy was
superior to the logistic regression method. The significant improvement in the training of
the network was achieved due to the use of data augmentation. Wang et al. [14] analyzed
the methods of insect detection in the field images without subsequent classification.
Several CNN topologies (VggA, VGG16, Inception V3, ResNet50, CPAFNet, and the model
proposed by the authors) were evaluated, and the influence of training parameters on their
accuracy and data processing time was investigated. It was shown that the accuracy of
the CNN reached 0.91–0.93, depending on the topology and optimization parameters. Liu
and Chahl [15] analyzed the CNN algorithms of seven topologies for insect recognition
against a natural background. In order to increase the training sample, the authors used
the generation of virtual images based on real insect images. For this purpose, real images
of insects were segmented; insect contours were rotated randomly and placed on the
background image. The use of such synthetic images made it possible to significantly
increase the size of the training sample and improve the accuracy of recognition of insects
as a result. Note that a similar technique was used to identify barley grains in images using
neural networks [16].

A small number of works considered the problem of gender identification for insects.
Tuda et al. [17] evaluated a number of machine learning approaches, including logistic
regression, random forest, multi-layer perceptron, and support vector machine (SVM), to
classify insects of three species (beetle and two parasitic wasps) by gender. Insects were
mixed in the images. A total of 2694 features were generated and used for prediction
(including shape/size, and color/texture) for each pest image. Authors achieved an
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accuracy of 88.5–98.5% for within-species classification of beetles or wasps, 97.3% for
two-species classification, and 93.3% for three-species classification.

In Roosjen et al. [18], Drozophila suzuki fruit flies were trapped in the field using red,
sticky plastic traps. Trap images were acquired in the following two ways: statically, using
a digital camera, and dynamically, using a camera mounted on a drone. The authors
counted the flies in the images and classified them by gender. The ResNet-18 topology
network was applied to image patches on the grid. It was shown that the recall values
for female and male identification were 0.73 and 0.68, respectively. However, the area
under the curve (AUC) values were 0.506 for females and 0.603 for males, indicating the
better performance of the method for the male flies. When gender was not taken into
consideration, the recall increased to 0.82 and the AUC to 0.669. The drone images reduced
the performance significantly due to lower resolution and non-stationarity.

Recently, the networks based on the YOLO architecture [19] and its modifications have
demonstrated rapid identification and classification of objects in digital images. YOLO
splits an image into S × S grids. If the center of an object falls into a grid cell, that grid cell
is responsible for detecting the object. YOLO outputs the location of the objects’ bounding
boxes and their classes on the image along with their confidence. Subsequent works have
increased the accuracy of this network architecture and its computational performance,
including YOLOv2 [20] and YOLOv3 [21]. The YOLOv4 network has been developed
recently [22]. This network proved to be 10% more accurate than YOLOv3 and 12% more
computationally efficient. Due to these features, the YOLO network architecture is actively
used where efficient data processing is required in the following: in the analysis of images
obtained from robot cameras to identify fruits [23], tomatoes [24], and to detect apple
flowers in natural environments [25]. One modification of this network, YOLOv4-tiny, was
designed to maximize speed and to achieve the lowest computational cost possible [26]. In
particular, it has been applied to fruit recognition on drone video [27], plant diseases [28],
object tracking [29], and garbage identification based on autonomous trash-collecting
robots [30].

In a number of papers, YOLO topology networks have been used to recognize insects
in an image. Ramalingam et al. [31] detected and classified insects in indoor and field
images. The authors used the Resnet-18 architecture network for recognition, but compared
their method to the prediction results of the YOLOv2 network. The recognition accuracy of
the YOLOv2 (F1 = 0.87) was lower than that of the Resnet-18 (F1 = 95.79), while the image
processing time was one and a half times lower. Zhong et al. [32] used a Raspberry PI for
insect trap image processing using a combination of recognition methods: YOLO network
and SVM. The YOLO network was used to detect and coarsely count flying insects, and
the SVM was used to classify them. The results demonstrated that the average counting
accuracy is 92.50%, the average classifying accuracy is 90.18%, and a cycle of detection and
recognition takes about 5 min on a Raspberry PI system. The YOLOv5 network was used
for the identification of insects in images of sticky traps located in a eucalyptus forest by
Gerovichev et al. [7]. The precision ranged from 0.77 to 0.97 for different types of insects.

Chen et al. [33] proposed a mobile application for insect identification and species
classification in the field. It is based on the YOLOv4 network, which showed the highest
classification accuracy (100% in mealybugs, 89% in Coccidae, and 97% in Diaspididae)
compared to other architectures (region-based CNNs, Faster R-CNNs, and Single Shot
Multibox Detectors SSDs). Note that the recognition was performed on the server while
the mobile device accessed it via the Internet.

1.3. Contribution of the Work

We implemented the YOLOv4-tiny network for the gender recognition of Drosophila
flies on the images obtained by mobile device. We have shown that using a learning
strategy with synthetic image generation can significantly improve the accuracy of gender
recognition in flies. The results of neural network prediction on high-quality images
obtained by a digital camera and good illumination were compared with the recognition
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performed by expert geneticists. An analysis of the possible sources of recognition errors
(lighting conditions, different mobile devices, the gender of the flies, and their position
on the paper) was performed. The proposed method was implemented as a FlyCounter
mobile application, which has a high speed of image processing.

2. Materials and Methods
2.1. D. melanogaster Lines

To obtain fly images, we used females and males of two laboratory lines of D. melanogaster
(Harwich and Canton-S) from the collection of the Department of Insect Genetics of the
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
(Novosibirsk). Canton-S is one of the most-used wild-type strains in D. melanogaster genetics
studies [34]. Harwich is a highly inbred wild-type strain of P cytotype [35]. Note that flies
of the Harwich line are white-eyed, which distinguishes them in phenotype from Canton-S.
Both lines are known as reference lines for the so-called intraspecific paternal-maternal
hybrid dysgenesis, which manifests itself in sterility of hybrid offspring in one direction of
the cross as a result of nuclear-cytoplasmic interaction [36,37]. Flies were kept on standard
food at room temperature and natural light.

2.2. Imaging Protocols
2.2.1. Images for Neural Network Training

When developing our algorithm, it was assumed that the protocol described earlier [4]
would be used for counting and classifying flies. In this protocol, flies immobilized with
diethyl ether and placed on a white sheet of standard format (A4, A6 or any other from the
list provided by the app), with the sheet itself placed against a dark background. Images
are taken with a mobile device positioned over the area of the sheet so that the sheet is
completely in the frame. The dark background is necessary to recognize white paper and
estimate the pixel size/scale of the image.

However, when this protocol is used, there is the problem of labelling the gender of
a large number of flies in several hundred images. Accurate identification of the gender
requires flipping the fly on the sheet to inspect it from different sides. This requires storing
the gender labels of each fly in a separate file, matching them to the location in the image.
This procedure proved to be very time-consuming.

Therefore, we applied a modified protocol to organize the learning process of the
neural network. Immobilized flies were placed on an A6 sheet as described above. The
examiner identified males and females by flipping them on the sheet, then placed the
females on the left side of the sheet and the males on the right side, as shown in Figure S1
(Supplementary File). The groups of flies of the same gender on the sheet are well separated
in this case. In order to label the gender of groups of insects unambiguously in case of
image rotation, a marker (a fragment of white paper) was additionally placed on the male
side, which was subsequently used for classifying the groups. Such a protocol makes it
possible to avoid additional markers on the sheet to identify the gender of flies; at the same
time, the arrangement of flies in each group is as similar as possible to that resulting from
the required imaging protocol [4].

The images were taken both with mobile devices and with a Canon EOS 5D Mark
IV digital camera. A complete list of devices and the characteristics of their main cam-
eras is given in Table 1. The lighting conditions varied and included bright daylight
next to the window, daylight next to the window in cloudy weather, a combination of
daylight next to the window and lighting in the room, and daylight lamps. In this way
a total number of 365 + 41 = 406 (training + validation) was obtained comprising a to-
tal amount of 31,797 + 2073 = 33,870 flies (NET-TRAIN dataset). On average, there were
83 flies per image.
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Table 1. List of devices used for fly imaging and characteristics of their main cameras.

Device
(Number of Cores/Memory Size) Main Camera Configuration, Aperture

Xiaomi Mi Max 3 (4/64GB) 12 MP, f/1.90; 5 MP
Xiaomi Mi Note 10 Lite (6/64 GB) 64 MP, f/1.89; 9 MP, f/2.20; 5 MP, f/2.40; 2 MP, f/2.40

Xiaomi Redmi 5 (3/32GB) 12 MP, f/2.20
Samsung Galaxy A3 (SM-A320F) 13 MP, f/1.90
Samsung Galaxy J2 (SM-J250F) 8 MP, f/2.2

Sony Xperia XA 13 MP, f/2.0
Xiaomi Redmi Note 8T (3/32 GB) 48 MP, f/1.75; 8 MP, f/2.20; 2 MP, f/2.40; 2 MP, f/2.40
Xiaomi Redmi Note 9S (4/64 GB) 48 MP, f/1.79; 8 MP, f/2.20; 5 MP, f/2.40; 2 MP, f/2.40

Canon EOS 5D Mark IV Canon EF 100 mm f/2.8 L lens, aperture 5.0, shutter
speed 1/100 sec, ISO 250, manual focus mode

The images vary in size from 5 to 16 Mp (median is 8 Mp), and were downsized during
the analysis.

The NET-TRAIN sample obtained in this way was further used to train the parameters
of the neural network and evaluate its accuracy (see below).

2.2.2. Protocol for Taking Pictures of Flies on a Grid

In order to evaluate the accuracy of gender determination in flies independently, we
used an additional imaging protocol. The immobilized flies were placed on a sheet of
white paper in the format of A6. The flies located on a rectangular grid in several rows
horizontally and vertically (Figure S2, Supplementary File). The expert classified the flies
by gender and described the result for each individual in a legend, which also indicated
the imaging device and resolution. The images were taken with mobile devices from the
list presented in Table 1. In this way, 42 images were obtained in which a total of 1155 flies
were located (NET-TEST dataset). On average, 27 flies were located on one image.

For 23 out of 42 images from the NET-TEST sample the intensity of illumination was
estimated with a luxmeter. It was 400 lm for 6 images, 600 lm for 8 images, and 800 lm for
9 images. We used these data to evaluate the effect of illumination on the accuracy of fly
classification (see below).

2.3. Labelling Flies in Images

The flies in the images are objects with a complex shape, and can touch each other
tightly when placed on the sheet. Therefore, the flies in the image were chosen to be outlined
as polygons. The image labelling was performed using the LabelMe program [38] (https:
//github.com/wkentaro/labelme; accessed at 2 April 2021), see Figure S3 (Supplementary
File). This program allows outlining objects of different shapes on the image (rectangles,
polygons, circles, lines, dots, line strips) and assigning labels to them. Depending on the
position of the fly on the sheet of paper, the outline included the head, body, abdomen,
wings, and legs of the fly. The number of vertices of the polygons varied from 10 to 18.
Image markup included the file name, image size (width and height in pixels), the list
of marked objects (flies), including labels (gender of flies), and coordinates of vertices of
polygons. The image labelling information was saved in JSON format.

2.4. Preprocessing Step

At the first stage of the analysis, the identification of the sheet of paper on which
the flies were located was performed. This procedure is necessary, on the one hand, to
distinguish the white background on which the flies were located, and on the other hand,
to determine the scale of the image. The algorithm of paper sheet extraction was described
earlier [5] as the following: a paper is recognized as a light area of tetragonal shape on
a dark background. For the paper recognition, the original color image is converted to
greyscale. To determine the area of the paper, an adaptive binarization of the entire image

https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme
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is performed. The set of contours is generated and the contour with the largest area is
selected. The resulting contour is approximated by a polygon with 4 vertices. If the shape
of the paper in the image deviates from rectangular, affine transformation is applied to the
image to remove distortion.

2.5. Network Architecture

The YOLOv4-tiny architecture [26] was used to train the fly detection model in the
image. Its structure is shown in Figure 1 and was developed based on the YOLOv4
method [22] to provide a higher object detection rate while maintaining object recognition
accuracy. In our work the network receives a 1024 × 1024 pixel image as input after
selecting a region of a sheet of paper and resizing it.

Figure 1. Diagram of the YOLOv4-tiny network architecture used in the work. The main blocks
of the network are shown by dashed line rectangles. Block Backbone extracts its features from the
input image. The Neck block implements bounding box prediction and object classification based
on the extracted features. The three recurring blocks include the following: convolution layers
(Convolution, orange), CBL blocks (green), and CSP blocks (pink). The structure of CBL and CSP is
shown separately in the diagram.

For feature extraction, YOLOv4-tiny uses CSPDarknet53-tiny as a backbone instead
of CSPDarknet53, which is used in the YOLOv4 method. CSPDarknet53-tiny has several
differences from CSPDarknet53. CSPDarknet53-tiny uses CBL and CSP blocks for feature
extraction (Figure 1) instead of the ResBlock blocks used in CSPDarknet53. The CBL block
contains a convolution operation and batch normalization. In addition, CSPDarknet53-tiny
uses the Leaky ReLU activation function in the CBL block instead of the Mish function
used in CSPDarknet53.

The Leaky ReLU activation feature allows to reduce computational overhead and is
defined as follows:

yi =

{
xi, xi ≥ 0

xi/ai, xi < 0
,
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where ai is constant parameter which is greater 1.
The CSP block structure uses a feature pyramid network. It ensures that the input

feature map, after transformation by CBL, is divided into two parts. The first part remains
unchanged, and the second part is convolved, normalized by CBL and divided into two
more parts. One of parts remains unchanged, and the second is transformed by CBL.
The result is concatenated, transformed by CBL, and then concatenated with the first part
of the original data (Figure 1). Such a structure of CSP block allows to reduce compu-
tational complexity considerably (by 10–20%), while providing comparable accuracy in
object detection.

After processing the data by two consecutive CBS blocks, YOLOv4-tiny divides the in-
put images into grids (grid) of size S × S (S = 26 and 13, see block Neck in Figure 2). For each
grid, the network uses three anchors to recognize objects. As a result, S × S × 3 bounding
boxes will be created for each input image. The anchors in the grids that contain the centers
of the objects will be used to regress the detection boxes.

Figure 2. The distribution of the images (a) and flies (b) within the training, validation, and testing
datasets with respect to fly genotype (a) and gender (b). Bars below the pie diagrams show the color
for each dataset class.

To reduce the number of redundant bounding boxes, the confidence of each detection
area is calculated. Detections with a confidence level lower than the specified threshold are
removed. The detection confidence score of the bounding box j in the i-th grid is defined
as follows:

Con f i
j = Pi,j(obj)× IoUtruth

pred ,

where Pi,j(obj) = 1 when object is located in the j-th box of the i-th grid; otherwise Pi,j(obj) = 0.
IoU is intersection over union value [39] estimated for predicted and true bounding boxes.

The YOLOv4-tiny loss function is identical to loss function for YOLOv4 and is a sum
of the following three values:

Loss = loss1 + loss2 + loss3,

where loss1 is a bounding box location loss, loss2 is a confidence loss and loss3 is a classifi-
cation loss.
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The YOLOv4-tiny model includes 5,882,634 parameters. The processing performance
of a network with such a topology is high: using an NVIDIA 1080Ti GPU, it can reach
371 frames per second. At the same time, the accuracy meets the requirements of a real-
world application [26]. As a result, YOLOv4-tiny has significant advantages when solving
object detection and classification tasks using mobile devices.

The initial weights obtained from the pre-training of the network on the MS COCO
dataset images (https://github.com/AlexeyAB/darknet/releases/download/darknet_
yolo_v4_pre/yolov4-tiny.conv.29; accessed on 2 November 2021). The batch size was 64.
The model was trained for 6000 iterations. The initial learning rate was learning_rate = 0.001.
The learning rate decreased by a factor of 10 when reaching 4800 and 5400 iterations.

2.6. Estimation of the Fly Gender Recognition Performance

To assess the quality of the prediction, after choosing the optimal network parameters,
all of the predicted bounding boxes were discarded if the prediction reliability was less
than 0.5. The error was estimated from the remaining bounding boxes.

Fly gender recognition was considered true positive (TP) if the IoU between the
ground-truth and predicted bounding boxes is over 50% and the predicted gender for this
fly match its label. Fly gender recognition was considered false positive (FP) if the IoU
between the ground-truth and predicted bounding boxes is over 50% but the gender is
predicted incorrectly. Fly gender recognition was considered false negative (FN) if there
are no ground-truth bounding boxes with IoU over 50% for the predicted bounding box.

Using these parameters, we estimated precision, recall, and F1 measure as follows [40]:

precision =
TP

TP + FP
,

recall =
TP

TP + FN
,

F1 = 2 × precision × recall
precision + recall

.

During learning process for each iteration, we additionally evaluated average precision
(AP) and mean average precision (mAP) for bounding boxes with IoU over 50%, mAP, as
described in [41] as follows:

AP =
∫ 1

0
P(R)dR,

mAP =
∑N

i=1 APi

N
,

where P is precision, R is recall, N is the total number of objects in all categories.

2.7. Synthetic Image Generation

Because a large number of images were required to train the network, we, in addition
to the smartphone camera images, used synthetic ones obtained by a method similar to the
approach suggested in the work on barley grain image analysis [16]. Synthetic images were
generated by combining fly contours and 49 background images of a sheet of paper taken
separately with different mobile devices (Galaxy J2, Xiaomi Redmi Max, Xiaomi Redmi 5)
under different lighting conditions (daylight, bright daylight, artificial light, daylight lamp).
Contours of the flies were obtained by extraction from the original images using the bound-
aries of the polygons (Figure S3, Supplementary File). For each of these flies, the gender
was known. The generation algorithm was as follows: from the available 49 background
images, one was randomly selected in an equally probable manner. The number of flies
was then determined based on a uniform random distribution between 10 and 90. Image
fragments with flies were chosen randomly with equal probability from a total pool of
33,867 fragments (17,024 females and 16,843 males). The arrangement/orientation of the
flies on the background was random, without overlapping with previously placed frag-

https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.conv.29
https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.conv.29
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ments. All synthetic images were generated at a resolution of 1690 × 1200 px. Because
the fly contours could have different scales, we reduced the polygons of the flies to the
same scale when generating the synthetic image, which was determined based on the pixel
resolution of the original image. An example of the synthetic image is shown in Figure S4
(Supplementary File).

2.8. Data Stratification

The total number of images in our dataset is 448. To train and test the Drosophila
gender recognition algorithm, we divided original images into training, validation, and
test samples. Figure 2a shows the distribution of images in the training, validation, and
testing datasets with respect to fly genotype. The total number of images of flies used for
training/validation/testing is 35025. Figure 2b shows the distribution of the images of flies
in the training, validation and testing datasets with respect to fly gender.

Figure 2 demonstrates that our dataset is quite well balanced with respect to fly
genotype or gender.

The distribution of the number of images of flies in the training, validation, and test
samples and their distribution across different devices is shown in Table 2. Note that for
some series of test images, we used devices that were not used in the training sample
images (Xiaomi Redmi Note 8T and Xiaomi Redmi Note 9S).

Table 2. Number of images acquired by different devices used for training, validation, and testing
the neural network.

Device Number of Images for
Training/Validation/Testing

Xiaomi Mi Max 3 (4/64 GB) 111/9/3
Xiaomi Mi Note 10 Lite (6/64 GB) 8/7/3

Xiaomi Redmi 5 (3/32 GB) 97/9/3
Samsung Galaxy A3 (SM-A320F) 17/0/0
Samsung Galaxy J2 (SM-J250F) 99/7/3

Sony Xperia XA 16/0/0
Xiaomi Redmi Note 8T (3/32 GB) 0/0/23
Xiaomi Redmi Note 9S (4/64 GB) 0/0/7

Canon EOS 5D Mark IV 17/9/0

During training/validation, the dataset was expanded by using synthetic images. The
training sample included 2383 images. Of these, 365 are real images with flies from the
NET-TRAIN set; 2000 images are synthetic ones. There were a total of 31,797 flies in the
real images, including 15,781 males, and 16,016 females. The number of flies per image
ranged from 24 to 222. The generated images included fragments with 16,014 females
and 15,781 males found in the real images of this subsample. The total number of flies
in the synthetic images for the test sample was 99,623 (average of 49.8 flies per image).
Additionally, we used 18 images from our previous work [5] with wheat grains as a negative
example in training.

The validation sample included a total of 379 images. Of these 41 real images with
flies (2073 flies total, 1062 males, and 1011 females), the number of flies per image ranged
from 24 to 95. 320 synthetic images were generated from fragments of fly images from this
subsample. Additionally, 18 images of wheat grains different from those used for training
were included in the validation sample.

The test sample included 42 real NET-TEST dataset images described above (581 males
and 574 females). The number of flies per image ranged from 23 to 29. The synthetic images
were not used for the test sample.
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2.9. Training Strategies

We used three different strategies to train the model. In all cases, the network structure
and parameter set were identical (see Section 2.5. Network architecture). The differences
consisted of applying different augmentation techniques, using different initial parameter
values, and expanding the training sample with synthetic images.

Basic training strategy (YOLOv4-tiny-base). Augmentation involved by random
changing image parameters in HSB color space (saturation, brightness (exposure), hue) [42].
For each image, a random change in the three components of this color space was chosen,
as described below.

The value of the Hue component (varies between 0–360◦) was varied by adding a
random value of Hn, chosen from a uniform distribution between −90◦ and 90◦. Saturation
(varies from 0–100) was changed by multiplying by either 1/Sn or Sn (chosen with equal
probability). Sn was chosen from a uniform distribution between 1 and 1.5. Exposure
(varies from 0–100) was varied using a random scaling factor, as it was implemented for
Saturation. These changes in HSB components were applied uniformly to all pixels of the
image. Additionally, a flip procedure was used, rotating the image by a randomly chosen
angle of 90, 270, or 360 degrees.

Strategy using synthetic images (YOLOv4-tiny-synt). The initial weights of this model
were equal to the weights of the best model from the YOLOv4-tiny-base strategy. The
basic set of augmentations described for the YOLOv4-tiny-base strategy were used. The
training and validation samples were supplemented with synthetic images: 2000 images
for training, 320 for validation as described above.

Strategy with mosaic generation (YOLOv4-tiny-synt + mosaic). The initial weights of
this model were initialized with the weights of the best model from the YOLOv4-tiny-synt
strategy. The training and validation samples were supplemented by synthetic images (see
description for YOLOv4-tiny-synt strategy). Additionally, images of wheat grains were
used as negative data. A basic set of augmentations described for the YOLOv4-tiny-base
strategy were implemented. An additional variant of mosaic augmentation was added,
where the image is generated based on 4 randomly selected images. The method is taken
from Darknet framework library (option mosaic = 1) (https://github.com/AlexeyAB/
darknet; accessed on 2 November 2021).

We selected optimal network parameters from the iteration with the maximal mAP
value (see Section 2.6) for the validation dataset.

2.10. Comparison of Expert Prediction Performance with Network Prediction

In order to compare the accuracy of fly gender recognition by our method with the
accuracy of gender identification by experts, we obtained a series of additional images
with a Canon EOS 5D Mark IV digital camera (Table 1). Images were taken on a table
under studio lighting conditions. We used two Godox 600 sources of direct light with
rectangular softboxes 60 × 60 and 60 × 80 cm. The power of sources was 80% of the
maximum. The distance from the table with flies to the softbox was 1 m. The camera was
mounted on a tripod vertically over an A6 white sheet of paper at a distance sufficient to
place it completely in the frame. The resolution of the frame was 5040 × 3360 px. Flies were
placed on the sheet according to the protocol used for testing (see previous section). Two
genotypes of flies (Canton-S, Harwich) were photographed with 5 images per genotype.
There were 29 flies in each image (HUMAN-TEST dataset). These images were not used in
training or testing the network.

For the HUMAN-TEST dataset, a preprocessing stage was performed (see Section 2.4.
Preprocessing step). The images were printed on a Xerox WorkCentre printer in color mode
with a resolution of 1200 dpi. They were provided to the geneticists (co-authors of the
paper) to identify the gender of the flies. Performance measures were calculated for each
expert’s results, as well as for the results of the neural network prediction.

Additionally, we printed in the same way ten images obtained by mobile device and
provided them to geneticists for fly gender recognition as described.

https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
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2.11. Mobile App FlyCounter for Fly Gender Recognition

To implement the fly gender recognition method on a mobile device, the weights of
the best recognition model obtained from the Darknet framework were converted to the
TensorFlow format and then converted to the TFLite format using the save_model.py and
convert_tflite.py scripts from the repository at https://github.com/hunglc007/tensorflow-
yolov4-tflite (accessed on 2 November 2021). The model structure was optimized for fast
computation by converting the data from the float32 representation in the original TFLite
format to the float16 type.

Based on the obtained model, a mobile application FlyCounter was developed on the
Android platform, which counts the number of flies in the image and identifies gender of
each fly. The application is implemented on the TensorFlow-lite platform to perform the
inference using the mobile device processor. The OpenCV Computer Vision library [43] is
used for paper sheet recognition and image preprocessing.

The application works according to the following scheme (Figure 3). The user takes a
picture of a sheet of paper with flies. The application performs a perspective correction and
crops the paper sheet in the image. The resulting image is fed to the input of the neural
network, which outputs the bounding-boxes of the flies in the image and their gender. The
application then performs post-processing: it excludes the predicted bounding-boxes with
a confidence level < 0.5 and resolves conflicts of overlapping bounding-boxes. As a result,
the application displays an image of a sheet of paper with illuminated bounding-boxes
corresponding to the predicted flies, as well as the following summary information about
the number of flies: total number, number of males, number of females, and the ratio of the
number of males to the number of females. The data obtained, the original image and the
processed image can be saved to the memory of the mobile device.

Figure 3. The diagram of the FlyCounter application implementation. The block of the optimal neural
network parameters preparation is shown on the left. A user uses the mobile device (right, from top
to bottom) to obtain image of the flies on the sheet. The app performs preprocessing, conversion data
to tensor-flow lite format, YOLOv4-tiny inference, and outputs the labelled image for the user. The
obtained results are stored in the memory of the mobile device.

The app is available at https://play.google.com/store/apps/details?id=ru.delkom.
flycounter&hl=en&gl=US (accessed on 16 December 2021).

https://github.com/hunglc007/tensorflow-yolov4-tflite
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://play.google.com/store/apps/details?id=ru.delkom.flycounter&hl=en&gl=US
https://play.google.com/store/apps/details?id=ru.delkom.flycounter&hl=en&gl=US
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3. Results
3.1. Fly Gender Recognition Performance by Neural Network

The dependencies of the Loss and mAP values on the iteration number for the YOLOv4-
tiny-synt + mosaic strategy and validation dataset are shown in Figure S5 (Supplementary
File). At the beginning of the training process, Loss drops quickly during 250 iterations
from ~5200 to 40; then it follows a steady decrease with fluctuations. At the end of the
training process (iterations 4900 and greater), it approaches two and decreases only slightly.
The mAP varies between 0.86 and 0.9 during the most part of training. At the end of the
training process, it increases to 0.91 and fluctuates around this value.

Table 3 presents the quality assessment metrics for the models implemented with
different training strategies on the validation and test (NET-TEST) samples.

Table 3. The results of the fly gender recognition performance evaluation of the different learning
strategies on the validation and NET-TEST data samples.

Training Strategy Validation,
Precision

Validation,
Recall

Validation,
F1

Test,
Precision

Test,
Recall

Test,
F1

YOLOv4-tiny-base 0.741 0.953 0.834 0.628 0.981 0.766
YOLOv4-tiny-synt 0.852 0.966 0.905 0.700 0.980 0.819

YOLOv4-tiny-synt + mosaic 0.860 0.951 0.904 0.726 0.991 0.838

The precision values consistently increase with more complex learning strategies for
both validation and testing datasets. The substantial jump (almost 15% for the valida-
tion dataset and 11% for the test dataset) is observed after the expansion of the train-
ing/validation datasets by synthetic images with randomized positions of contours of flies.
For the best training strategy, the precision values are higher for the validation than for the
test dataset (0.860 versus 0.726). At the same time, all proposed models show high recall
values on the following validation and test datasets: 0.953 and 0.981 for the YOLOv4-tiny-
base, and 0.951 and 0.991 for the best model (YOLOv4-tiny-synt + mosaic). This implies
that all models are able to identify the locations of individual flies in the images almost
without false positives. The analysis of the model predictions’ performance for different
types of images showed their advantage as the following: the ability to separate flies from
each other when they are densely stacked (touching each other). The expansion of the
training dataset by synthetic images had a positive effect on recall for validation data, but
not for the test dataset. In general, the use of synthetic images in training significantly
improves the classification performance (F1 measure, test dataset) by 7.2% relative to the
YOLOv4-tiny-base model with a set of basic augmentations on the test dataset. The use
of the mosaic method also has a positive effect, raising the recall metric value by 1% rel-
ative to the baseline model (YOLOv4-tiny-base). The mosaic generation of the synthetic
images (YOLOv4-tiny-synt + mosaic) increases the accuracy by another 2.6% relative to
the preceding model (YOLOv4-tiny-synt) on the test dataset. The F1 measure of the best
model YOLOv4-tiny-synt + mosaic for the test dataset is 0.838, which is lower than for the
validation dataset (0.904).

3.2. Comparison of the Performance of Automatic and Expert Recognition

The results of the performance assessment of fly gender recognition by geneticists
and the YOLOv4-tiny-synt + mosaic model are shown in Table 4. The average precision of
expert classification on a sample of images obtained by mobile devices is 0.716. This is 1%
worse than the classification by the YOLOv4-tiny-synt + mosaic model. On images acquired
with the Canon 5D Mark IV digital camera and good lighting conditions, the precision
of the expert recognition was improved by 18.4% to 0.9. The YOLOv4-tiny-synt + mosaic
model is 9.8% better than on the Canon 5D Mark IV images in comparison with cell phone
images (precision = 0.824). The average precision of the expert recognition on high-quality
images is 7.6% better than the YOLOv4-tiny-synt + mosaic model.
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Table 4. Fly gender recognition performance by experts and the YOLOv4-tiny-synt + mosaic network
on the independent set of high-quality images.

Prediction Source Image Source Precision

Expert 1 Mobile device 0.732
Expert 2 Mobile device 0.713
Expert 2 Mobile device 0.704

YOLOv4-tiny-synt + mosaic Mobile device 0.726
Expert 1 Canon 5D Mark IV 0.900
Expert 2 Canon 5D Mark IV 0.880
Expert 2 Canon 5D Mark IV 0.920

YOLOv4-tiny-synt + mosaic Canon 5D Mark IV 0.824

In making this comparison, we estimated the time to manually classify flies on the
images obtained from mobile devices (290 flies with 29 flies per image). The average time to
label this data was ~11 min. The minimum time was 10 min, the maximum 11 min 47 s. On
average, 2.27 s were spent per fly. It is necessary to note that the time required for the exact
determination of a fly’s gender implementing their flipping is at least three times greater.

3.3. Analysis of Factors Affecting the Accuracy of Recognition

Our results on the NET-TEST test sample were obtained for images of flies on different
phone cameras, under different lighting conditions, for two genotypes of flies. It allows
us to evaluate the effect of various factors on the accuracy of gender recognition in flies.
Table 5 allows us to compare the recognition performance characteristics (TP, FP, FN, and
F1 measure) for different mobile devices. The F1 ranges from 0.696 (Xiaomi Redmi 5 model)
to 0.887 (Xiaomi Redmi Note 8T model).

Table 5. Fly gender recognition performance depending on the mobile device on which the images
were acquired for the YOLOv4-tiny-synt + mosaic network.

Device Image Number TP FP FN F1 Measure

Xiaomi Redmi 5 3 39 33 1 0.696
Xiaomi Mi Max 3 3 41 32 0 0.719

Xiaomi Redmi Note 9S 7 123 79 2 0.752
Xiaomi Mi Note 10 Lite 3 47 20 0 0.824

Samsung J2 3 53 20 0 0.841
Xiaomi Redmi Note 8T 23 535 132 4 0.887

It should be noted that the smartphones of different models differ in the number of
cameras and their characteristics (Table 1). For instance, the Xiaomi Redmi Note 9S, Xiaomi
Mi Note 10 Lite, and Xiaomi Redmi Note 8T devices have 4 cameras each. The Xiaomi
Mi Max 3 device has two cameras, while the Xiaomi Redmi 5 and Samsung Galaxy J2
have one camera. We can see that devices with four cameras from the same manufacturer
generally outperform devices with fewer cameras. In fact, for Xiaomi devices, the accuracy
increases with the increased optics quality (in terms of the number of cameras). The high
recognition performance, however, was demonstrated by the Samsung Galaxy J2, which
has one camera (an exception to the trend).

Table 6 shows the accuracy estimates obtained with different intensities of illumination
of the paper with flies.
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Table 6. The performance of fly gender recognition for different paper sheet illumination conditions
for the YOLOv4-tiny-synt + mosaic network.

Illumination, lm Image Number TP FP FN F1 Measure

400 6 134 40 1 0.867
600 8 180 52 2 0.869
800 9 221 40 1 0.915

Without measurement 19 303 184 3 0.764

It can be seen from the table that for 800 lm the F1 measure reaches 0.915, which
noticeably exceeds the values obtained both at lower illumination conditions (600 and
400 lm) and for the data, for which no illumination measurement was made. Interestingly,
the results are not significantly different between the 600 and 400 lm experiments.

Table 7 demonstrates the performance of the fly gender recognition by YOLOv4-tiny-
synt + mosaic for two fly lines separately. The F1 measures are close, with the difference
being less than 1%. Apparently, the difference in fly lines does not significantly affect the
accuracy of our method.

Table 7. Performance of fly gender recognition by YOLOv4-tiny-synt + mosaic network for flies from
two lines separately.

Line Image Number TP FP FN F1 Measure

Canton-S 12 222 89 0 0.833
Harwich 30 616 227 7 0.840

Table 8 shows the performance estimation for flies of different genders. The F1 measure
differs markedly for flies of different genders. It is higher for males compared to females
by almost 8%.

Table 8. Performance of fly gender recognition by YOLOv4-tiny-synt + mosaic network for flies of
different gender.

Gender Image Number TP FP FN F1 Measure

Female 574 466 211 4 0.812
Male 581 372 105 3 0.873

3.4. Recognition Performance Analysis Depending on the Position of Flies

We analyzed the effect of the position of flies on a paper sheet on the accuracy of their
gender recognition. The analysis was performed on a sample of 10 images obtained using
the Canon 5D Mark IV. In this data, most of the errors occur in the recognition of females
(43 cases). Misidentification of gender in males was only in three cases. In addition, there
were two cases where the fly was not detected in the image.

Manual annotation of 290 flies in these images showed that 83% of the flies laid on
the side, 14% on the back, and 3% on the front. The precision of determining the gender of
flies on the side was 82% (F1 = 0.905), on the back 90% (F1 = 0.935), and on the front 100%
(F1 = 1). Precision is 8% higher when the fly lays on its back than when it is on the side.
Note that most flies lie on the side, and it is for this category that recognition accuracy is
the lowest.

3.5. FlyCounter Mobile App

The main parts of the interface of our developed mobile application include the
following: the main menu, the image acquisition interface, the output screen of the image
analysis results, the list of saved results, the screen for viewing the saved results, as well as
the interface for the application setup. The interface is shown in Figure 4.
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Figure 4. Interface of the FlyCounter mobile application. (a). Main menu. (b). Image analysis output
screen: the summary about the number of females, males, and their ratio is shown at the top of the
screen; the center of the screen demonstrates labelled flies. (c). List of saved measurements.

At the top of the output screen, a summary of the total number of flies is provided, as
well the number of females, males, and their ratio as a decimal fraction. In the center of
the screen there is an image of labelled flies (females in red, males in blue). At the bottom
of the screen, there are control buttons to save the results and switch to the next image
acquisition interface.

We evaluated the data processing time of the YOLOv4-tiny network on mobile devices.
The time was measured from the moment of starting its work and the moment of returning
the prediction results. We did not include the time taken to obtain an image from the
device camera and its preprocessing step. The evaluation was performed for 10 images.
The average time per image for neural network data processing does not exceed 4 s: 3.2 s
for the Xiaomi Mi Max, 1.4 s for the Xiaomi Mi Note 10 Lite, 3.5 s for the Xiaomi Redmi 5,
3.8 s for the Galaxy A3 SM-A320F, 2.5 s for the Xiaomi Redmi Note 8T, and 1.5 s for Xiaomi
Redmi Note 9S. Note that the time for the imaging and preprocessing steps usually takes
several seconds. Thus, our app is convenient for instant fly counting and their gender
determination. It should be noted that the application does not require Internet access; all
data processing is performed on the processor of the mobile device.

4. Discussion
4.1. Choosing the Network Model

Deep learning of neural networks has made significant breakthroughs in the detection
and classification of objects in digital images [19,22,26]. Identification and classification
of insects in digital images is one of the areas of application for these methods. In such
tasks, there are a number of typical problems that have to be solved one way or another to
achieve the best result [9].

First of all, it is the practical need to perform data processing on mobile devices. In
this regard, exploring opportunities in recognition and classification-based on networks
like YOLO is important.

We used the YOLOv4-tiny network topology to recognize gender in images obtained
from a cell phone camera. It turned out that the processing of the network data is performed
in a few seconds on the processors of mobile devices, which indicates the high computation
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performance of this architecture. It demonstrates that similar apps could be developed for
insect monitoring in the field, where Internet communication may not be available.

4.2. Dataset Preparation and Expansion by Synthetic Images

Another difficulty with such problems is generating a large, well-annotated dataset
of images to train the networks. For such small objects as Drosophila, it turns out to
be a laborious procedure, taking into account that flies need to be flipped for accurate
identification. Despite the rather large size of the sample we obtained, we decided to
expand the dataset with the synthetic image generation procedure. This technique has
proven useful for solving similar problems [15,16]. We used both the fly contours cropped
from the image and the mosaic generation of image blocks in creating such synthetic data.
It improved the accuracy of fly recognition by 10% (F1 increased from 0.766 to 0.838). Thus,
such a technique in the solution of similar problems seems very promising.

4.3. Performance of the Network Model

We showed that the identification of flies in the images, regardless of gender (the recall
parameter), is high (0.991). Flies are well-identified, even in the case of their mutual contact
in a group of several insects. In general, the identification of touching flies based on neural
networks is more reliable compared to the previously proposed application [4], for which
the recognition error was about 2%. Thus, the method proposed in this paper allows us to
estimate the number of insects in the image with high accuracy.

Our results demonstrate the notable differences between precision/recall/F1 values
for the validation and testing datasets (Table 3). It should be noted, however, that the
location of flies in the images used for training/validation and testing are different. Flies
of the same gender in the original training/validation images are located closely on the
same part of the paper sheet (Figure S1, Supplementary File). This could result in an
unfavorable effect of the CNN training: the classification is affected by nearby flies that
have the same gender. In the test, images of the flies of different genders are located
randomly on the grid, providing a different local image context for each fly. This could
be the reason for the difference in performance metrics for validation and testing datasets.
Synthetic images provide random placement of flies in the image irrespectively of their
gender and result in a remarkable increase in the performance metrics (YOLOv4-tiny-base
versus YOLOv4-tiny-synt strategies, see Table 3).

We were not able, however, to achieve a high degree of accuracy within gender
recognition in flies. The precision value of the best model was 73%. This performance can
hardly satisfy geneticists when estimating a parameter such as the gender ratio of flies in
a population; the error is too high. Thus, the use of our application for solving practical
problems related to fly gender identification is not reliable enough. However, this option in
our application is present, at least for making a very coarse estimate.

4.4. Comparison with Other Methods and Experts’ Evaluation

The high accuracy of gender recognition in insects (beetles and wasps) was shown by
the method proposed in Tuda et al. [17] based on SVM. For intraspecific classification by
gender, the accuracy was 88.5–98.5%. However, their protocol involved obtaining images
of insects on a white background using a scanner. Thus, the quality of the images was
sufficiently high.

Gender recognition in Drosophila proved to be quite a challenge, not only in our
case. Roosjen et al. [18] obtained comparable accuracy characteristics when recognizing
Drosophila on sticky trap images (AUC was 0.506 for females and 0.603 for males). Note
that the imaging conditions in this work were difficult compared to ours. It is interesting,
however, that, as in our work, the recognition of males turned out to be more accurate.
Based on manual labelling of fly contours, we estimated that the average area projected
onto a sheet of paper for males was 3.356 mm2 (the standard deviation is 0.699 mm2),
and for females, 3.418 mm2 (standard deviation is 0.683 mm2). Thus, females are larger



Mathematics 2022, 10, 295 17 of 19

than males by ~1.8%, but the standard deviation of the size of males is larger by 2.2%.
Apparently, size alone is not a sufficient factor to classify flies. Probably, males have more
pronounced visual manifestations of sexual characteristics (e.g., the presence of a dark spot
on the tip of the abdomen), which allows them to be more accurately identified.

A comparison of our method with the experts’ evaluation on the same series of images
showed that for images obtained with a cell phone camera, the recognition accuracy of the
machine algorithm is close to that of the experts. In the case of a high-quality digital camera,
high resolution, and good lighting, the experts in the images identify the gender with
higher accuracy than our method. This indicates there is an opportunity for improvement
in the neural network prediction algorithms.

4.5. Factors Affecting the Performance of the Method

We evaluated the various factors unrelated to the algorithm that affect recognition
accuracy. The genotype of flies does not significantly affect the performance, despite the
fact that one of the lines (Harwich) differs from the other in the white color of the eyes.
Thus, we can judge that our network does retrieve the external traits of flies associated
specifically with gender. Based on our analysis, we can conclude that by improving the
quality of the image (by increasing its resolution and quality lighting), the recognition
accuracy can be improved. However, creating conditions for high-quality imaging will
complicate the imaging protocol, which we would like to avoid.

Perhaps the key factor in influencing the accuracy of gender estimation is the position
of flies on the paper. Most of them lie on their sides, and it is this position that shows the
lowest recognition performance. In a sense, the position on the front or on the back gives,
ideal results. However, the position of the flies is the factor that seems to be the least likely
to be affected. Apparently, when immobilized, the flies adopt a posture that results in them
being more likely to be on their sides than on their back or front.

We can assume several options for improving the protocol by which the recognition
accuracy can be improved. First of all, it requires the use of a high-quality digital camera
and light sources. However, this would require the allocation of a special workplace for
evaluations and the purchase of additional equipment. In addition, a person with special
qualifications may be required to set up the lights and camera, and the bright light and
additional thermal radiation may adversely affect the viability of the flies.

Our work shows that recognition methods have some difficulties at the current stage,
which are mostly caused by imperfections in the protocol of image acquisition (due to its
simplicity). However, it is hoped that the improvement of image analysis methods will
allow us to achieve better results in the future while maintaining the usability of mobile
devices and the speed of data processing.

5. Conclusions

We proposed an algorithm based on the YOLOv4-tiny network to identify and de-
termine the gender of Drosophila flies located on a white sheet of paper using a mobile
app. Three variants of the training strategy, which differ in the use of synthetic images
during training, are investigated. It is shown that training on a sample including synthetic
images of flies, generated by superimposing their contours on an artificial background,
as well as the mosaic transposition of fragments of the images, allows one to obtain the
highest accuracy of recognition. At the same time, the method has a high value of the
recall parameter, which indicates a high accuracy in the identification of flies in the image.
Gender recognition is less accurate. Among the factors most strongly influencing the
accuracy of fly gender recognition, the factor of location on the leaf proved to be the most
important. Flies that lie on their sides are recognized as the worst, but their proportion is
the highest. In addition, increased light intensity, the higher quality of the device’s camera,
and increased image resolution had a positive effect on recognition performance. The
results also show that the performance of gender recognition is worse in females than in
males. The application of YOLOv4-tiny made it possible to implement the fly recognition
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method as an application for mobile devices. In this case, the time that the algorithm takes
to process one image is less than 4 s.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/math10030295/s1/. ‘Supplementary File.pdf’ (PDF format): Supplementary Figures S1–S5.
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AUC Area under the receiver operation curve
AP Average precision
CNN Convolutional neural network
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SVM Support Vector machine
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