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Abstract: The present article proposes a methodology for modeling the evolution of stock market
indexes for 2020 using geometric Brownian motion (GBM), but in which drift and diffusion are
determined considering two states of economic conjunctures (states of the economy), i.e., non-crisis
and financial crisis. Based on this approach, we have found that the GBM proved to be a suitable
model for making forecasts of stock market index values, as it describes quite well their future
evolution. However, the model proposed by us, modified geometric Brownian motion (mGBM),
brings some contributions that better describe the future evolution of stock indexes. Evidence in this
regard was provided by analyzing the DAX, S&P 500, and SHANGHAI Composite stock indexes.
Throughout the research, it was also found that the entropy of these markets, analyzed in the periods
of non-crisis and financial crisis, does not differ significantly for DAX—German Stock Exchange
(EU) and S&P 500—New York Stock Exchange (US), and insignificant differences for SHANGHAI
Composite—Shanghai Stock Exchange (Asia). Given the fact that there is a direct link between
market efficiency and their entropy (high entropy—high efficiency; low entropy—low efficiency), it
can be deduced that the analyzed markets are information-efficient in both economic conjunctures,
and, in this case, the use of GBM for forecasting is justified, as the prices have a random evolution
(random walk).

Keywords: geometric Brownian motion; Monte Carlo simulation; entropy; financial crisis;
financial markets

1. Introduction

In this paper we aim to make forecasts, at different moments of time (3, 6, 9, and
12 months), of DAX, S&P 500, and SHANGHAI Composite stock indexes values for 2020,
using geometric Brownian motion (GBM), but in which drift and diffusion are determined
by considering two states of the economic situation weighted with their probabilities of
occurrence. We chose to make the forecasts for 2020, as this year was characterized by the
onset of the health crisis (COVID-19 pandemic) but also by a probability of a financial crisis.
In addition, the real data of the indices from 2020 allowed us to test the forecast models:
GBM and modified geometric Brownian motion (mGBM) at different time intervals of 3,
6, 9, and 12 months. In fact, if investors would not consider the occurrence of a possible
financial crisis, the data used to build the differential equation (GBM) is limited in practice
to the year 2019. This period does not contain a financial crisis in the data, as no such
event took place during this period and, as a result, although GBM may well capture the
future evolution of stock indexes, some nuanced aspects may have been lost sight of in a
closer analysis of these evolutions (we found that year 2019 is the same year when many of
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the stock indexes on the markets examined were historically high, in line with Flitter [1],
Wearden [2], and Carlson [3]). Therefore, if we consider several economic conjunctures,
then this situation could change. In this sense, the states of the economic conjunctures can
be considered as non-crisis and financial crisis, and their probabilities of occurrence are
determined as follows: if the probability of a crisis is known, the probability of non-crisis is
given by the difference between 1: the probability of a crisis. The question that arises is how
can we, in a financial crisis situation, know the probability of occurrence of the financial
crisis, the expected returns, and the risks of investors (returns volatility)?

A complementary direction of the study is the determination of discrete and differen-
tial Shannon entropy, to measure market uncertainty. We consider this approach necessary
because, based on the results obtained, we can observe whether there are differences re-
garding the degree of uncertainty between the analysis periods considered in the paper, the
financial crisis period (2008), and the non-financial crisis period (2019). We consider this
complementary approach useful, as it is known that there is a link between the efficiency of
markets and their entropy [4] and this may provide additional arguments regarding the
use of GBM to make forecasts if in both periods the degree of uncertainty is approximately
the same level (a premise of the efficiency of financial markets is that the price of securities
has a random evolution—random walk).

Therefore, our paper supports the idea of using GBM for forecasting, and, according
to Wilmott in his work “Paul Wilmott introduces quantitative finance” [5], “The widely
accepted model for equities, currencies, commodities, and indexes is dS = µS dt + σS
dB. It is a continuous-time model of an asset price [ . . . ] and the foundation of so much
finance theory”.

In GBM, constant drift and diffusion coefficients are used, but GBM models can also be
used in the cases in which the volatility (necessary in the measurement of the coefficient of
diffusion) is stochastic. Numerical solutions can be used through a Monte Carlo simulation
in the absence of an analytical solution. In addition, Monte Carlo simulation can be
used when there are stochastic diffusion processes with jumps, in which the price of
financial security does not fluctuate continuously and regularly (it varies by jumping in a
discontinuous way).

The GBM, which we can also call the classic GBM, has proven to be a very useful
forecasting tool in finance. However, this tool is less useful in case of a future financial
crisis in the financial markets. One solution in this regard would be the following: if we
know the probability of a crisis and the expected return, respectively, the risks of investors
(return volatility) in a crisis and the coefficients of drift and diffusion can be rewritten to
capture it in the differential equation.

Regarding expected returns and volatility in the financial crisis situation, we can
consider that their values may be those recorded in 2008, a period that characterizes such
a situation well (2008 is our benchmark in the article regarding what we can empirically
understand by a financial crisis). Summarizing, we can say that the periods of analysis
considered for determining the coefficients of drift and diffusion that characterize the two
states of the economic situation in the form of a mix are 2019 (for the non-financial crisis
period) and 2008 (for financial crisis period), to make forecasts for 2020. We emphasize
that, in our analysis, for the two periods mentioned above, we work with sizes such as the
average log-return and the standard deviation of the log-returns, and these can be largely
considered representative to characterize the expected returns by the investors and return
volatilities in non-crisis and financial crisis situations.

Regarding the likelihood of a financial crisis or economic recession, it is worth noting
that these probabilities can be known because of current research increasingly active in
this field of study. Thus, in 2019 many researchers, including Nobel laureates (e.g., Robert
Engle [6,7]), were concerned about measuring the likelihood of a financial crisis in the US
market or in other mature markets. In addition, on 14 October 2019, Bloomberg published
a model used to detect the US recession whose result is given by the probability of the US
recession calculated for the next 12 months in the future.
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Therefore, knowing the appearance probabilities of the two states of the economic
conjuncture and knowing the numerical characteristics (average log-return and the standard
deviation of the log-returns) corresponding to these states, a rewriting of the GBM model
can be performed, referred to as the mGBM model, in which drift and diffusion are
calculated considering these states in the form of a mix. The result is a GBM that can better
capture the evolution of stock indexes, given the fact that in the construction of drift and
diffusion, a possible future financial crisis can also be considered.

That being said, for the present research, we will work with two scenarios regarding
the evolution of DAX, S&P 500, and SHANGHAI Composite stock indexes: Scenario A, in
which the probability of the financial crisis appearance is zero (in which case the GBM is, in
fact, the classical one—GBM), and Scenario B, in which there is a probability of appearance
of the financial crisis (in which case the GBM is a modified one—mGBM), as in Figure 1.

Figure 1. Synoptic representations of the primary objective of the paper.

We also highlight that the solutions generated by the equation of GBM can be deter-
mined both analytically and numerically by GBM using Monte Carlo simulation. We opt
for the second option because, on the one hand, we consider it more useful because of the
possibility of a graphical representation of possible paths. On the other hand, alternative
values for the stock market index (10,000 values) can be obtained by simulation at different
times (3, 6, 9, and 12 months). Based on these values, the number higher than the value
from the date of analysis can be later determined (30 or 31 of December, the closing date of
the stock market). This last fact makes possible the determination of the likelihood that the
stock market index will be higher in future than its value at the date of analysis, and so we
can capture some nuanced aspects of the analysis of simulated data regarding the forecasts.

That being said, the article is further structured as follows: the literature review,
Section 2, presents the most important conceptual approaches; research methodology is
described in the third part; the empiric findings and discussions are described in the fourth
section of the paper; the conclusions of the study are outlined in the final part of the article.

2. Literature Review
2.1. Financial Crisis Forecasting Models

Determining the probability of the financial crisis has been a topic of interest for
economists of all time [8,9]. It is still a topic of interest nowadays; the aspects regarding the
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determination of the crisis occurrence probability in a specific time horizon and defining
optimal early warning systems (EWS) have been researched through various scientific
methodologies. Predicting the exact timing of the crisis is a difficult task, but common
patterns can be identified before the global economic crisis.

A financial crisis is defined as a rare event that meets the following four character-
istics [10]: (a) the economic and social costs generated by the crisis are overwhelming;
(b) they appear very quickly and do not give time for reaction and adoption of preventive
measures, but their anticipation is essential; (c) the implementation of prevention measures
is severe as the citizens consider the crisis unlikely to appear and show reluctance towards
such measures; (d) the crisis prevention measures themselves are costly.

Among the first and most widely used financial crisis prediction models are proba-
bilistic models [11], regression-based models (STV model), Developing Country Studies
Division (DCSD) model and Kaminsky, Lizondo, Reinhart (KLR) signal model. Of the
models mentioned above, studies have shown that the KLR signal model has the best
predictive ability [12]. However, these EWS have evolved over the years and have become
increasingly sophisticated in capturing economic cyclicality. The probability of a crisis oc-
currence was also determined by estimating vulnerability levels through crisis probability
curves using pooled and panel regression [13].

Sarlin [14] tested the efficiency of parametric models compared to nonparametric
models (neural networks) in predicting the financial crisis by applying and testing them on
the economic situation during the 2007 crisis. The result of the study promotes the use of
nonparametric methods in monitoring financial stability. The International Monetary Fund
(IMF), starting from the KLR model, recently adopted nonparametric models to estimate
the probability of a crisis, calibrated on different types of crises: growth crisis, fiscal crisis,
and financial crisis. The models are based on the choice of variables specific to the type
of crises analyzed and on the determination of the threshold of each variable, on groups
of countries: emerging markets and advanced economies [15]. Nevertheless, none of the
parametric models have been abandoned, being used even in the current period to estimate
the probability of a crisis. SRISK is a recent regression-based and well-known econometric
model that measures systemic risk for 23 countries [6,7,16]. Another recent parametric
model is the one developed for the Bloomberg platform by Pickert, Qiu, and McIntyre [17],
and is applied for the United States economy, being updated monthly.

2.2. Rare Events and Uncertainty on Stock Markets

Many economists have studied probability theory, with Zappia [18] conducting a
valuable bibliographic study on the theory of probability, uncertainty, and decision-making
in the vision of Keynes, Bayes, to the animal spirits of Akerlof and Shiller. Financial
crisis forecasting models have evolved with the evolution of mathematical methods, from
“the Marginal revolution and the Keynesian revolution” to the Memory Revolution, which
includes fractional calculus and “fractional dynamic models of economic processes” [19,20].

The impact of the financial crisis on the price of options was analyzed by El-Khatib, Ali
Hajji, and Al-Refai [21], considering the jump-diffusion model and the increase in volatility
during a financial crisis.

To estimate the moment when a potential crisis can occur, the persistence and long
memory of the stock market was also studied through two theories: “Efficient Market
Hypothesis” (EMH) and “Fractal Market Hypothesis” (FMH) [22–27].

Studies show that investors ignore rare events, they think of optimal strategies for
typical situations, and they have a limited ability to act optimally in rare situations. The
expected loss due to suboptimal action in a contingency is inversely proportional to the
probability of contingency [28]. From this point of view, the prevention of the effects of rare
events began to be studied through entropy and probability theory, in anticipation of crisis,
extended to the development of stochastic processes, including Brownian motion [29,30].

Based on the information theory, entropy measures the uncertainty and unpredictabil-
ity of a discrete or continuous random variable. Although entropy is a concept initially
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used in thermodynamics, it has also been introduced in the field of finance. Entropy
is used in finance and applied mainly in issues related to portfolio selection, asset (op-
tions, other derivatives) pricing, and capital increase, being perceived as a form of risk
measurement [31,32].

Studies related to entropy reveal that entropy is a measure of uncertainty [33,34] in
stochastic processes with random variables and probability of distribution. However, it
remains an open topic for research on whether Shannon entropy “is the unique, useful
measure of statistical uncertainty” [35–39].

Several types of entropies can be calculated and used in finance, namely, Shannon,
Tsallis and Tsallis relative entropy, Kullback Cross, Rényi, Havrda—Charvát, Fermi–Dirac
information entropy [40,41]. At the same time, entropy can also be used to measure
statistical dispersion for discrete and continuous distributions, but with different properties
for the latter ones [42]. Shannon entropy “quantifies the expected value of the information
generated from a random variable” [43]; Shannon entropy is a “quantitative measure of
the uncertainty associated with a probability distribution” [44]. Entropy density functions
were used to analyze financial crisis from the perspective of the yield generated by financial
markets; the analysis of the value of entropy allows a thorough and consistent assessment
of the risk on the financial market, which could propose an EWS of a financial crisis [45].

2.3. GBM Models for Stock Market Predictions

Monte Carlo simulation and GBM models are used in economic processes to make
forecasts, especially for stock prices or stock indexes, and to capture their value fluctua-
tions [46], with increased accuracy, according to studies performed [47–52]. Krishna Reddy
and Vaughan Clinton have used GBM model for simulating stock process evolution and
have demonstrated the validity of the model through three test methods [53]. Brownian
motion is the primary tool of modern quantitative finance with which random behaviors
can be modeled [54]. The behavior of financial securities and stock indexes can be pre-
dicted using a random walk model [55], Monte Carlo simulation, geometric Brownian
motion, fractal Brownian motion, and irrational fractional Brownian motion [56,57]. GBM
and entropy calculus were used to model the evolution of stock prices and stock options,
contributing to a new portfolio optimization theory [58]. GBM can model the price behav-
ior of securities in the Black and Scholes Model [59]. GBM is a useful tool in building a
portfolio that optimizes the risk–return relationship, depending on the interest pursued by
the investor [60]. The equation motion for the underlying asset from the Black and Scholes
model is also a GBM [61,62].

In the present paper, we use the Monte Carlo simulation applied on GBM to generate
10,000 possible paths for the evolution of the three stock indexes at different times (3, 6, 9,
12 months) and in different scenarios. Nonetheless, there are other contributions in this
field of research that provide alternative methods to Monte Carlo simulation [63].

3. Research Methodology
3.1. GBM in Non-Crisis and Crisis Conjunctures

Definition 1. Let I be the value of the stock market index, t ∈ (0, T) the time moment, T the total
time, and ∆t = 1

T the time lag. The logarithmic return R(t) of I in the time interval (t, t + ∆t) is
defined as

R(t) = ln
I(t + ∆t)

I(t)
= ∆lnI.

Definition 2. Let {B(t), t ≥ 0} be a stochastic process; {B(t), t ≥ 0} is a Brownian motion if
it verifies:

1. The increments {B(ti+1) – B(ti), i = 1, . . . , n− 1} are independent, where 0 ≤ ti ≤ ti+1,
i = 1, . . . , n− 1.

2. B(x)− B(y) ∼ N(0, x− y), ∀ x < y.
3. B(0) = 0.
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Definition 3. A stochastic process {I(t), t ≥ 0} is a geometric Brownian motion (GBM) if
it verifies

dI(t) = µI(t)dt + σI(t)dB(t), (1)

where µ is drift coefficient and σ is diffusion coefficient.
Applying Itô Lemma in Equation (1), we obtain

d ln I =
(

µ− 1
2

σ2
)

dt + σdB(t),

namely,

I(t) = I(0)exp
(

µt− 1
2

σ2t + σB(t)
)

,

where B(t) = ∅
√

t,∅ ∼ N(0, 1). Therefore,

ln
I(t)
I(0)

=

(
µ− 1

2
σ2
)

t + σ∅
√

t.

Over a time lag it follows

I(t + ∆t) = I(t)exp
((

µ− 1
2

σ2
)

∆t + σ∅
√

∆t
)

(2)

The logarithmic distribution of the stock index return modeled by a GBM is given by

R(t) ∼ N
[(

µ− 1
2

σ2
)

∆t, σ
√

∆t
]

.

As mentioned in the introduction, we propose the modeling of the evolution of the
stock index value in the form of a stochastic process that evolves as a GBM, but in which drift
and diffusion are determined by considering the two economic conjunctures, financial crisis
and non-financial crisis. In this sense, the average log-return and the standard deviation
of log-returns can be deduced from each state of the economic conjuncture (state of the
economy). Given these values and the covariance between logarithmic returns, expected
returns and volatility of the two regimes can be determined as a mix that considers the two
economic conjunctures to which the weights are assigned in the form of probabilities of the
appearance of those conjunctures.

Let (Ω, K, P) be a probability space, where Ω = {s′, s′′ } is the space of economic
conjunctures with s′ ∩ s′′ = ∅ and Ω = s′ ∪ s′′ . Denote p′ = P(s′) the probability of
non-crisis and p′′ = P(s′′ ) the probability of crisis (p′ = 1− p′′ ).

Define R′ = ∆lnI′ and R′′ = ∆lnI ′′ the return logarithm of the stock market index
in the non-crisis period and crisis period, respectively. Consider R′ ∼ N(µ′, σ′) and
R′′ ∼ N(µ′′ , σ′′ ). Let R ∼ N(µ, σ) the return logarithm of the stock market index for both
periods, where we consider

µ =
(

p′p′′
)( µ′

µ′′

)
= p′µ′ + p′′µ′′ (3)

and

σ2 = (p′p′′ )
(

σR′R′ σR′R′′

σR′′ R′ σR′′ R′′

)(
p′

p′′

)
= p′2σ′2 + p′′ 2σ′′ 2 + 2p′p′′ σR′′ R′ .

(4)

If R′ and R′′ are independent (σR′R′′ is insignificantly different by zero), then

σ2 ≈ p′2σ′
2
+ p′′ 2σ′′ 2, (5)
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namely,

σ ≈
√

p′2σ′2 + p′′ 2σ′′ 2. (6)

The time step measures the average profitability. As a result, the larger the unit of time,
the greater the average increase in the value of the stock market index over this period.
Furthermore, for the standard deviation to remain finite while the time step tends to be
zero, the individual terms in the standard deviation expression must be a function of the
time step. The standard deviation of profitability after a time step must therefore be a
function of the square root of the time step [5]. In Equations (3), (5), and (6), the time factor
is added and the values of these numerical characteristics for the total time (T) are defined
as follows:

µ̃ =
p′µ′ + p′′µ′′

∆t
, (7)

σ̃ =

√
p′2σ′2 + p′′ 2σ′′ 2

∆t
. (8)

In the following, we will call a modified geometric Brownian motion (mGBM) a
stochastic process

{
Ĩ(t), t ≥ 0

}
defined by

dĨ(t) = µ̃ Ĩ(t)dt + σ̃ Ĩ(t)dB(t), (9)

where µ̃ and σ̃ are defined in (7) and (8). Then, we obtain

Ĩ(t) = Ĩ(0)exp
((

µ̃− 1
2

σ̃2
)

t + σ̃∅
√

t
)

,

Over a time lag, it follows

Ĩ(t + ∆t) = Ĩ(t)exp
((

µ̃− 1
2

σ̃2
)

∆t + σ̃∅
√

∆t
)

. (10)

The variable lnĨ(t) has normal distribution see also [64]

lnĨ(t) ∼ N
[

lnĨ(0) +
(

µ̃− 1
2

σ̃2
)

t, σ̃
√

t
]

,

with

E
[
lnĨ(t)

∣∣∣lnĨ(0)
]
= lnĨ(0) +

(
µ̃− 1

2
σ̃2
)

t

and
Var

[
lnĨ(t)

∣∣∣lnĨ(0)
]
= σ̃2t.

From the above relation we obtain

E
[

Ĩ(t)
∣∣∣ Ĩ(0)] = Ĩ(t)eµ̃t (11)

and
Var

[
Ĩ(t)

∣∣∣ Ĩ(0)] = Ĩ2(0)e2µ̃t
(

eσ̃2t − 1
)

. (12)

This being said, due to the structural elements described above, it is now possible
to create potential paths for the stock index for the next year, by using the Monte Carlo
simulation, and value ranges can be determined at different times, t, in the future. The
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ranges of values measured on the stock market simulation are roughly equal to the ranges
of values used in Equations (13) and (14), thereby[

E
(

Isim(t)

)
−∅

√
VAR

(
Isim(t)

)
, E
(

Isim(t)

)
+∅

√
VAR

(
Isim(t)

)]
≈ (13)

[
E(I(t)|I(0))−∅

√
VAR(I(t)|I(0)), E(I(t)|I(0)) +∅

√
VAR(I(t)|I(0))

]
, (14)

where Isim(t)
is the value of the index simulated at time t by Monte Carlo method.

3.2. Capital Market Entropy

To measure the capital market entropy, we consider the Shannon entropy, as a measure
of uncertainty in a stochastic process. A stochastic process can be described by a pattern,
a probability distribution of a random variable, and the random variable may be discrete
or continuous. If the probability distribution function assigns a small probability to its
values, the information entropy is high (high uncertainty), and vice versa, if the probability
distribution assigns a high probability to its values, the information entropy is small (the
uncertainty is low).

Formally:
We consider the stock index to be a random variable defined as

I:
(

i1 i2 . . . in
p1 p2 . . . pn

)
(15)

where pi= P(I = ii); pi ∈ [0, 1]; ∑n
i=1 pi= 1. Then, the discrete Shannon entropy is

H(I) = −
n

∑
i=1

pi log2 pi (16)

If I is a continuous random variable with normal distribution density f (x), then the
differential entropy can be determined as

I~N
(

0,σ2
)

, f(i) =
1

σ
√

2π
exp

(
− i2

2σ2

)
(17)

Then, the differential Shannon entropy is

h(I) = −
∫ +∞

−∞
f(i) log2 f(i)di (18)

but
log2 f(i)= lnf(i)· log2 e (19)

From (18) and (19), by way of substitution, the following can be written successively:

h(I) = −
∫ +∞

−∞
f(i) ln f(i)· log2 edi (20)

h(I) = − log2 e
∫ +∞

−∞
f(i) ln f(i)di (21)

h(I) = − log2 e
∫ +∞

−∞
f(i)

[
− i2

2σ2 + ln
1

σ
√

2π

]
di (22)

h(I) = − log2 e
∫ +∞

−∞
f(i)

[
− i2

2σ2− ln
(
σ
√

2π
)]

di (23)
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h(I) =
log2 e
2σ2

∫ +∞

−∞
i2f(i)di + log2

(
σ
√

2π
) ∫ +∞

−∞
f(i)di (24)

but:
E
[
I2
]
= σ2 =

∫ +∞

−∞
i2f(i)di and

∫ +∞

−∞
f(i)di = 1 (25)

From (24) and (25), by way of substitution, the following can be written:

h(I) =
1
2

log2

(
2πeσ2

)
(26)

4. Empirical Results and Discussions

In the following, considering the elements described in the methodology, we forecast the
values of the major stock indexes of the three capital markets: DAX—German Stock Exchange
(U.E.), S&P 500—New York Stock Exchange (U.S.), and SHANGHAI Composite—SHANGHAI
Stock Exchange (Asia). We will also measure the degree of uncertainty of the analyzed
markets through Shannon entropy, using discrete and continuous distribution.

Based on the methodology, in our empirical approaches we consider the following:

• Log-returns are intraday.
• The analysis period and the forecast period are considered at the level of a stock

exchange year (252 days).
• The period through which we characterize the conjuncture of a financial crisis is 2008,

and the period through which we characterize the conjuncture of non-financial crisis
is 2019.

• The forecasts are made for 2020, at 3, 6, 9, and 12 months.
• The data is taken from Thomson’s Reuters’ Eikon Refinitiv platform [65].

4.1. Probability of the Financial Crisis

In our study, we consider the probability of the financial crisis to be at least equal to
the probability of the economic recession (given by Bloomberg in early January 2020 for the
next 12 months, see Figure 2) for the following reasons: financial crises do not necessarily
determine an installation of an economic recession, their causes being both of a financial
nature and a psychological, behavioral nature. Thus, during periods of economic recession,
consumption is affected, companies’ earnings are uncertain, inflation can rise, and erode
the value of earnings, a state of panic and caution sets in, and investors usually seek to
invest in “refuge” assets, and for these mentioned reasons, the period of economic recession
also overlaps with a period of a market collapse, financial crisis.

Figure 2. Bloomberg’s recession probability within 12 months.

What we cannot know exactly is whether the above recession probability is the measure
of a recession comparable to the 2008 recession (the period that characterizes the financial
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crisis in our analyses). However, as recessionary probability models evolve, we will have a
better measure of them. Thus, if we knew the probabilities of the occurrence of different
types of recessions, then we would also know the probabilities corresponding to the
different types of financial crises. It would be better to know the probabilities of financial
crisis corresponding to different types of financial crises, but there may be such scientific
concerns in the future given the importance of their knowledge in economic processes. In
this context, the methodology proposed by us may better capture the future evolution of
stock market indexes.

That being said, we consider that the probability of occurrence of the financial crisis on
the US market (considered the mature market) is similar to the probability of occurrence on
the other analyzed markets (German and Asian markets), because they are also considered
mature markets. In addition, another way in which we can technically capture this aspect
of similarity is by calculating the Granger causality through which we can highlight the
existence of such a link. In this sense, we analyzed the time series during the financial
crisis (2008) of these stock market indexes on account of the Granger causality presented in
Appendix A, Table A1. If the obtained results confirm that a US financial crisis Granger-
causes the other markets (German and Asian markets) to change, we can conclude that
the appearance on the US market of a probability of financial crisis is found to affect the
probability of crisis on other markets.

To not distort the analysis, only common daily trading prices in 2008 were used for
the three indexes analyzed.

For the F-test result of the Granger causality not to be distorted, we must make sure
that the analyzed series are stationary. In this sense, we applied the ADF test; the results
obtained are presented in Appendix A, Table A2.

The results of the ADF test confirm that the series are stationary, and the results
obtained on Granger causality are not distorted.

According to Granger causality test, we obtained the following for lag 1:

• S&P 500 Granger-cause DAX (p-value = 0.00000000002; p-value < 0.05).
• S&P 500 Granger-cause SHANGHAI Composite (p-value = 0.0104; p-value < 0.05).
• The Granger causality test proves that the reciprocal is not valid, S&P 500 is

not Granger caused either by DAX (p-value = 0.5533) or SHANGHAI Composite
(p-value = 0.2403).

• According to Granger causality test, we obtained the following for lag 2:
• S&P 500 Granger-cause DAX (p-value = 0.00000000008; p-value < 0.05).
• S&P 500 Granger-cause SHANGHAI Composite (p-value = 0.0450; p-value < 0.05).
• The Granger causality test proves that the reciprocal is not valid, S&P 500 is

not Granger-caused either by DAX (p-value = 0.7820) or SHANGHAI Composite
(p-value = 0.1301).

As a result, the S&P 500 Granger-caused DAX and SHANGHAI Composite on both
lag 1 and lag 2, but the reciprocal is not valid, which means that the probability of
the financial crisis on the US market is transmitted to other mature markets (DAX and
SHANGHAI Composite).

4.2. Forecasts on Scenarios (A and B) and Graphical Representation

Based on the GBM with Monte Carlo simulation, we estimated the tolerance intervals
in which the values of the stock market indexes will be over 3 months, 6 months, 9 months,
and 1 year, with tolerance levels of 95% and 75% from the date of analysis (30 or 31 of
December 2019, depending on each index) on two Scenarios (A and B), see Appendix A
Tables A3–A5.

Possible paths have been taken in two scenarios:

• Scenario A, in which the probability of a financial crisis is 0 per cent (GBM).
• Scenario B, in which the probability of a financial crisis is: 28 per cent (mGBM).
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For each stock market index examined, 10,000 potential paths were taken for the
next year. In other words, for each stock market index using GBM models with Monte
Carlo simulation, 10,000 alternative simulations (see Brătian [66] for dataset) of the index
were computed for each stock market day from the next year 2020 (see Appendix A,
Figures A1–A3). In these figures there is a graphic representation of GBM models of
10,000 possible paths: (a) Scenario A; (b) Scenario B.

For simulations obtained by applying GBM and mGBM models at 3 months, 6 months,
9 months, and 12 months, we determined the probability that the values of the indexes will
be higher than their corresponding values at the date of analysis (30 or 31 of December
2019, depending on each index) on the two scenarios mentioned above (see Appendix A,
Tables A3–A5).

4.3. Testing the GBM vs. mGBM Models

In the following we will proceed to test the results obtained from the application of
GBM and mGBM models by the following methods presented below.

4.3.1. Using Tolerance Intervals with Different Tolerance Levels

The table below shows the situation with the real values of the three indexes analyzed
(DAX, S&P 500, and SHANGHAI Composite) observed on these markets at 3, 6, 9, and
12 months, see Table 1.

Table 1. Indexes values—3, 6, 9, and 12 months.

Index Closing Date 3 Months a 6 Months b 9 Months c 12 Months d

DAX 30 December 2019 9815.97 12,260.57 12,870.87 13,790.29
S&P 500 31 December 2019 2470.50 3115.86 3363.00 3732.04

SHANGHAI
Composite 31 December 2019 2815.37 3443.29 3336.36 3565.90

Source: Refinitiv Eikon, Thomson Reuters’ platform. a 63 days since the closing date. b 126 days since the closing
date. c 189 days since the closing date. d 252 days since the closing date.

Analyzing the forecasted values in Tables A3–A5 from Appendix A with the real ones
observed in Table 1 for the DAX and S&P 500 stock indexes in 2020, we find the following:

• At 3 months, for tolerance level 95% and 75%, tolerance intervals on Scenarios A and B
do not contain the real value, which means that the probability of the financial crisis is
higher than 28%, but the tolerance interval values in Scenario B generated by mGBM
are closer to the actual value compared to the tolerance interval values in Scenario A
generated by GBM.

• At 6 months, for tolerance level 95%, the real values are contained in tolerance intervals
for both Scenario A and Scenario B, but for tolerance level 75%, the real value is
contained only by tolerance intervals from Scenario B generated by mGBM.

• At 9 and 12 months, for tolerance level 95%, the real values are contained in tolerance
intervals for both Scenario A and Scenario B, but for tolerance level 75%, the real value
is contained only by tolerance intervals from Scenario B generated by mGBM for DAX,
and for S&P 500, the real values are contained in both Scenarios A and B for a tolerance
level of 75%.

• At 3, 6, 9, and 12 months, the expected index values in Scenario B generated by mGBM
are closer to the real values (the expected index value for S&P 500 at 9 months is
identical to the real value at 9 months) than expected index values in Scenario A
generated by GBM.

Analyzing the forecasted values in Tables A3–A5 from Appendix A with the real ones
observed in Table 1 for SHANGHAI Composite stock index in 2020, we find the following:

• At 3 months, for tolerance level 95%, the real values are contained in tolerance intervals
for both Scenario A and Scenario B, but for tolerance level 75%, the real value is con-
tained only by tolerance intervals from Scenario B generated by mGBM. At 3 months,
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the expected index value in Scenario B generated by mGBM is closer to the real value
than the expected index value in Scenario A generated by GBM.

• At 6 months, for tolerance level 95%, the real values are contained in tolerance intervals
for both Scenario A and Scenario B, but for tolerance level 75%, the real value is
contained only by tolerance intervals from Scenario A generated by GBM.

• At 9 months, for tolerance level 95%, the real values are contained in tolerance intervals
for both Scenario A and Scenario B„ but for tolerance level 75%, the real value is
contained only by tolerance intervals from Scenario A generated by GBM.

• At 12 months, for both tolerance levels of 95% and 75%, the real values are contained
only in Scenario A generated by GBM.

• At 6, 9, and 12 months, the expected index value in Scenario A generated by GBM is
closer to real values than the expected index value in Scenario B generated by mGBM;
at 3 months, the real value is closed to the expected index value which can be found in
Scenario B generated by mGBM.

In conclusion, the real values of the DAX and S&P 500 stock indexes are confirmed at
3, 6, 9, and 12 months on Scenario B generated by mGBM, and for SHANGHAI Composite,
the real values are confirmed at 3 months on Scenario B generated by mGBM, and at 6, 9,
and 12 months the real values are confirmed on Scenario A generated by GBM.

4.3.2. Probability That the Forecasted Value of the Stock Market Indexes Will Be Higher
Than the Value from the Analysis Date (30 or 31 of December 2019)

In Table 2 below, we present the closing prices at the date of the analysis. From the
forecasted results in Tables A3–A5 from Appendix A, it can be seen the probability that
these prices will be higher at 3, 6, 9, and 12 months, based on the simulations performed on
the two Scenarios A and B.

Table 2. Indexes closing dates and prices.

Index Closing Date Closing Price

DAX 30 December 2019 13,249.01
S&P 500 31 December 2019 3230.78

SHANGHAI Composite 31 December 2019 3050.124
Source: Refinitiv Eikon, Thomson Reuters’ platform.

What we can observe is that for Scenario A generated by GBM, the probability that
the index values will be higher than the closing price is much higher compared to Scenario
B generated by mGBM. As a result, the mGBM model better captures the real situation (see
Table 1) recorded for DAX and S&P 500 given the real results of these indexes at 3, 6, 9, and
12 months, but it is not capturing the real situation for SHANGHAI Composite for which
the real situation is better captured by the GBM model, except for the values at 3 months.

4.3.3. Robustness Testing

To test the robustness of the GBM model compared to the robustness of the mGBM
model we used mean average percentage error (MAPE).

MAPE is calculated according to Equation (27), and its values can be interpreted
according to Table 3.

MAPE =
1
n

n

∑
t=1

∣∣∣∣At − St
At

∣∣∣∣ (27)
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Table 3. MAPE values and interpretation.

MAPE Value Interpretation

<0.1 Highly accurate forecasting
0.1–0.2 Good forecasting
0.2–0.5 Reasonable forecasting

>0.5 Inaccurate forecasting
Source: [67].

MAPE was used in the following two forms:

• The smallest MAPE for Scenario A, respectively, the smallest MAPE for Scenario B [67].
In this sense, from the 10,000 simulations, the simulation with the smallest MAPE on
each scenario, at 12 months, is chosen (see Table 4).

• The average of MAPE for scenario A, respectively the average of MAPE for Scenario B.
In this sense, the average of MAPE is calculated for the 10,000 simulations, on each
scenario, at 12 months (see Table 4).

At = actual value; St = simulated value.

Table 4. MAPE values for DAX, S&P 500, and SHANGHAI Composite.

Index Time
Smallest MAPE Average of MAPE

Scenario A Scenario B Scenario A Scenario B

DAX 12 months 0.05699 0.04537 0.22664 0.14429
S&P 500 12 months 0.03542 0.03801 0.16336 0.11639

SHANGHAI
Composite 12 months 0.02680 0.02599 0.12036 0.14260

Source: Authors’ computation.

Based on the results obtained after testing, we can conclude the following:

• For the smallest MAPE it is observed that the forecasts are highly accurate for both
GBM and mGBM model, but better values are found for mGBM. This fact can also be
noticed from the graphic representation (see Figures 3–5).

• The average of MAPE shows a good forecast for both the GBM and mGBM models,
but better values for mGBM, except for the DAX index for which only mGBM is a
good forecast.

Figure 3. (a,b) DAX index—graphic representation of Close prices and Monte Carlo simulation.
(a) Scenario A; (b) Scenario B. Source: Authors’ computation.
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Figure 4. (a,b) S&P 500 index—graphic representation of Close prices and Monte Carlo simulation.
(a) Scenario A; (b) Scenario B. Source: Authors’ computation.

Figure 5. (a,b) SHANGHAI Composite index—graphic representation of Close prices and Monte
Carlo simulation. (a) Scenario A; (b) Scenario B. Source: Authors’ computation.

4.3.4. Measuring the Degree of Market Uncertainty through Shannon Entropy

Regarding the uncertainty of the markets, calculated using the discrete Shannon
entropy and the Shannon differential entropy and whose results are found in Table 5, we
can make the following remarks:

• Using a discrete distribution for the periods considered during the financial crisis and
the non-financial crisis, the degree of uncertainty of the markets examined is the same
with minor variations. This means that, regardless of the economic situation (crisis or
non-crisis), the uncertainty in the markets is roughly the same.

• Using continuous distribution for periods considered to be a financial crisis and a
non-financial crisis, it is found that the degree of uncertainty in the markets examined
varies significantly from the situation discussed above. We note that, in the situation of
the financial crisis, the degree of uncertainty in the markets examined is significantly
higher than in the situation of the non-financial crisis.



Mathematics 2022, 10, 309 15 of 23

Table 5. Shannon entropy on analyzed indexes.

Index
Discreet Entropy Differential Entropy

Crisis Period
(2008)

Non-Crisis
Period (2019)

Crisis Period
(2008)

Non-Crisis
Period (2019)

DAX 7.977279923 7.977279923 11.860790049 11.457051386
S&P 500 7.961406908 7.969343416 9.626546525 9.282319764

SHANGHAI
Composite 7.977279923 7.977279923 12.099958213 9.460556827

Source: Authors’ computation.

We find a high level of entropy in the analyzed markets both in the crisis period and
in the period of non-financial crisis, and, given the fact that there is a direct link between
market efficiency and their entropy (high entropy—high efficiency; low entropy—low
efficiency), it can be deduced that the analyzed markets are information-efficient, and in
this case, the use of GBM for forecasting is justified, as the prices have a random evolution
(random walk). In the case of the DAX—German Stock Exchange (U.E.) and S&P 500—New
York Stock Exchange (U.S.) stock indices, discreet and differential entropy do not differ
in the crisis and non-crisis scenarios; there are insignificant differences in the case of
SHANGHAI Composite—Shanghai Stock Exchange (Asia).

5. Conclusions

The GBM proved to be a suitable model for making forecasts of stock market index
values, as it describes their future evolution quite well. However, the model proposed
by us (mGBM), in which drift and diffusion are determined by considering two states
of the economic situation weighted with their probabilities of occurrence, brings some
contributions through which some subtle nuances that better describe the future evolution
of stock indexes (confirms for two indexes out of three analyzed—DAX, S&P 500, and for
SHANGHAI Composite partially confirms at 3 months) are captured. Thus, in general, on
account of the analyzed stock market indexes, the model proposed by us better describes
the future trajectories of these indexes. We consider these aspects important, because, based
on such a model, investors have the possibility of a better understanding of the forecasting
process when the probability of a financial crisis appears on the markets.

However, what cannot be very well captured are the temporary shocks on the capital
markets, as shown in this case by the shock generated by the COVID-19 pandemic in March,
as seen in Figures 3–5.

The forecasts for 2020 are supported by the fact that the actual data for this year are
compared with the forecast data, and, consequently, the results can be considered verisimilar.

The limitations of this study come from the fact that, in this paper, we model the
behavior of random variables, but the factors that generate their effects are unknown.
Through quantitative finance, we do not research the structural reasons for the price
evolution of a financial security, but instead we use the stochastic calculation to obtain its
corresponding value. The analysis of the causes that can justify these results is the topic of
behavioral finance, which can analyze the behavior of investors and describe the state of
the economy at various times. Another limitation comes from the fact that the results of
the analysis are presented on only three stock indices (DAX, S&P 500, and SHANGHAI
Composite) associated with large economies, and the results could be different in emerging
markets. This aspect will be the subject of future research that will contain analysis of
several stock indices from different markets, both mature and emerging.
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Appendix A. Tests, Forecasts, and Simulations of the Stock Market Indexes DAX,
S&P 500 and SHANGHAI Composite

Table A1. Granger causality tests, DAX, S&P 500, and SHANGHAI Composite.

Pairwise Granger Causality Tests
Date: 19 December 2020 Time: 12:00

Sample: 3 January 2008–30 December 2008
Lags: 1

Null Hypothesis: Obs F-Statistic Prob.

lnReturnDAX does not Granger Cause lnReturnS_P500
218

0.35254 0.5533
lnReturnS_P500 does not Granger Cause lnReturnDAX 50.6279 2.E-11

lnReturnSHANGHAI_COMPOSITE does not Granger Cause lnReturnS_P500
218

1.38660 0.2403
lnReturnS_P500 does not Granger Cause lnREturnSHANGHAI_COMPOSITE 6.67552 0.0104

lnReturnSHANGHAI_COMPOSITE does not Granger Cause lnReturnDAX
218

1.42410 0.2340
lnReturnDAX does not Granger Cause lnReturnSHANGHAI_COMPOSITE 6.02846 0.0149

Pairwise Granger Causality Tests
Date: 12/19/20 Time: 12:03

Sample: 1/03/2008 12/30/2008
Lags: 2

Null Hypothesis: Obs F-Statistic Prob.

lnReturnDAX does not Granger Cause lnReturnS_P500
203

0.24626 0.7820
lnReturnS_P500 does not Granger Cause lnReturnDAX 26.2816 8.E-11

lnReturnSHANGHAI_COMPOSITE does not Granger Cause lnReturnS_P500
203

2.06087 0.1301
lnReturnS_P500 does not Granger Cause lnReturnSHANGHAI_COMPOSITE 3.14937 0.0450
lnReturnSHANGHAI_COMPOSITE does not Granger Cause lnReturnDAX

203
1.73381 0.1793

lnReturnDAX does not Granger Cause lnReturnSHANGHAI_COMPOSITE 3.42624 0.0344

Source: Authors’ computation in EViews.

https://doi.org/10.5281/zenodo.4534307
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Table A2. ADF tests, DAX, S&P 500, and SHANGHAI Composite.

Null Hypothesis: lnReturnDAX has a unit root
Exogenous: Constant

Lag Length: 0 (Automatic—based on SIC, maxlag = 14)

t-Statistic Prob. *

Augmented Dickey–Fuller test statistic −15.91247 0.0000
Test critical values: 1% level −3.460313

5% level −2.874617
10% level −2.573817

* MacKinnon (1996) one-sided p-values.

Null Hypothesis: lnReturnS_P500 has a unit root
Exogenous: Constant

Lag Length: 0 (Automatic—based on SIC, maxlag = 14)

t-Statistic Prob. *

Augmented Dickey–Fuller test statistic −16.93707 0.0000
Test critical values: 1% level −3.460313

5% level −2.874617
10% level −2.573817

* MacKinnon (1996) one-sided p-values.

Null Hypothesis: lnReturnSHANGHAI_COMPOSITE has a unit root
Exogenous: Constant

Lag Length: 0 (Automatic—based on SIC, maxlag = 14)

t-Statistic Prob. *

Augmented Dickey–Fuller test statistic −16.50747 0.0000
Test critical values: 1% level −3.460313

5% level −2.874617
10% level −2.573817

* MacKinnon (1996) one-sided p-values. Source: Authors’ computation in EViews.

Table A3. Forecasted values for the index DAX, 2020.

Price on 30 December: 13,249.01
Index DAX Crisis Non-Crisis

Stock exchange German Stock
Exchange Drift coefficient −0.4864 0.2278 covariance −0.000006582

Country Germany Diffusion
coefficient 0.3796 0.1400 correlation −0.031204783

The range of values in which we find the price

Probability a Scenario A b Scenario B b Time

95%

12,021.68 21,222.70 9.704.27 17,601.26 12 months
11,978.67 19,418.23 10,144.20 16,952.26 9 months
11,950.71 17,695.32 10,677.63 16,216.48 6 months
12,113.21 15,933.58 11,416.86 15,305.12 3 months

75%

13,956.05 19,342.85 11,331.39 15,952.53 12 months
13,537.88 17,933.13 11,566.25 15,532.33 9 months
13,170.76 16,550.29 11,846.40 15,067.76 6 months
12,911.39 15,159.02 12,219.03 14,478.48 3 months
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Table A3. Cont.

Scenario

How many of
the 10,000

Monte Carlo
simulations will

be below
13,249.01

The probability that the price will
be above 13,249.01

Expected index
value

Volatility index
value Time

A

621 93.8% 16,649.45 2342.08 12 months
859 91.4% 15,735.50 1910.97 9 months

1300 87% 14,860.52 1469.36 6 months
2105 79% 14,035.21 977.22 3 months

B

4532 54.7% 13,641.96 2009.18 12 months
4526 54.7% 13,549.29 1724.38 9 months
4570 54.3% 13,457.08 1400.58 6 months
4717 52.8% 13,348.75 2009.18 3 months

Source: Authors’ computation; a Tolerance levels; b Tolerance intervals.

Table A4. Forecasted values for the index S&P 500, 2020.

Price on 31 December: 3230.78
Index S&P 500 Crisis Non-Crisis

Stock exchange New York Stock
Exchange Drift coefficient −0.4732 0.2534 covariance 0.000013887

Country United States Diffusion
coefficient 0.4115 0.1250 correlation 0.067985261

The range of values in which we find the price

Probability a Scenario A b Scenario B b Time

95%

3145.29 5177.62 2417.58 4361.33 12 months
3075.40 4729.59 2513.73 4185.36 9 months
3030.33 4299.67 2637.96 3978.01 6 months
3023.5 3859.89 2800.65 3734.98 3 months

75%

3564.06 4772.64 2833.38 3977.93 12 months
3416.46 4403.81 2871.25 3854.75 9 months
3291.04 4049.40 2920.64 3714.74 6 months
3193.31 3694.34 2995.53 3547.84 3 months

Scenario

How many of
the 10,000

Monte Carlo
simulations will

be below
3230.78

The probability that the price will
be above 3230.78

Expected index
value

Volatility index
value Time

A

255 97.5% 4168.35 525.46 12 months
448 95.5% 3910.14 429.28 9 months
846 91.5% 3670.22 329.72 6 months

1632 83.7% 3443.83 217.73 3 months

B

3866 61.3% 3405.66 497.63 12 months
4007 59.9% 3363.00 427.61 9 months
4151 58.5% 3317.69 345.26 6 months
4444 55.6% 3271.69 240.13 3 months

Source: Authors’ computation; a Tolerance levels; b Tolerance intervals.
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Figure A1. (a,b) Possible paths, DAX index—graphic representation Monte Carlo GBM simulation
(10,000 possible paths). (a) Scenario A; (b) Scenario B. Source: Authors’ computation in OriginPro.

Figure A2. (a,b) Possible paths, S&P index—graphic representation Monte Carlo GBM simulation
(10,000 possible paths). (a) Scenario A; (b) Scenario B. Source: Authors’ computation in OriginPro.
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Table A5. Forecasted values for the index SHANGHAI Composite, 2020.

Price on 31 December: 3050.124
Index SHANGHAI

Composite Crisis Non-crisis

Stock exchange Shanghai Stock
Exchange Drift coefficient −1.0344 0.1799 covariance −0.000000426

Country China Diffusion
coefficient 0.4500 0.1791 correlation −0.001331561

The range of values in which we find the price

Probability a Scenario A b Scenario B b Time

95%

2355.08 4976.39 1686.77 3529.50 12 months
2415.69 4582.90 1877.33 3549.90 9 months
2516.07 4166.91 2115.50 3524.89 6 months
2636.12 3747.29 2415.56 3453.72 3 months

75%

2889.35 4398.88 2044.60 3141.72 12 months
2853.48 4107.65 2208.28 3193.79 9 months
2846.72 3824.79 2399.05 3225.73 6 months
2859.72 3521.34 2626.71 3234.44 3 months

Scenario

How many of
the 10,000

Monte Carlo
simulations will

be below
3050.124

The probability that the price will
be above 3050.124

Expected index
value

Volatility index
value Time

A

1821 81.8% 3649.39 664.26 12 months
2133 78.7% 3493.29 549.64 9 months
2573 74.3% 3344.09 429.81 6 months
3188 68.1% 3194.21 290.08 3 months

B

8367 16.3% 2596.64 466.04 12 months
7984 20.2% 2702.55 419.26 9 months
7563 24.4% 2813.09 353.71 6 months
6861 31.4% 2929.84 263.84 3 months

Source: Authors’ computation; a Tolerance levels; b Tolerance intervals.

Figure A3. (a,b) Possible paths, SHANGHAI index—graphic representation Monte Carlo GBM
simulation (10,000 possible paths). (a) Scenario A; (b) Scenario B. Source: Authors’ computation
in OriginPro.



Mathematics 2022, 10, 309 21 of 23

References
1. Flitter, E. Stocks Are on the Verge of the Best Year Since 1997. Nytimes.com. 2019. Available online: https://www.nytimes.com/

2019/12/27/business/stock-market-best-year.html (accessed on 16 April 2020).
2. Wearden, G. Global Stock Markets Post Best Year Since Financial Crisis. the Guardian. 2019. Available online: https://www.

theguardian.com/business/2019/dec/31/global-stock-markets-post-best-year-since-financial-crisis (accessed on 16 April 2020).
3. Carlson, B. The Stock Market Has Hit 19 New Highs in 2019 Alone. Why? Fortune. 2019. Available online: https://fortune.com/

2019/11/14/stock-market-2019-high-performance-ytd/ (accessed on 16 April 2020).
4. Risso, W.A. The informational efficiency and the financial crashes. Res. Int. Bus. Financ. 2008, 22, 396–408. [CrossRef]
5. Wilmott, P. Paul Wilmott Introduces Quantitative Finance; John Wiley & Sons: Hoboken, NJ, USA, 2007.
6. Engle, R.F.; Ruan, T. Measuring the probability of a financial crisis. Proc. Natl. Acad. Sci. USA 2019, 116, 18341–18346. [CrossRef]

[PubMed]
7. Engle, R.F.; Ruan, T. Supplementary Information for Measuring the Probability of a Financial Crisis. 2019. Available online: https:

//www.pnas.org/content/pnas/suppl/2019/08/27/1903879116.DCSupplemental/pnas.1903879116.sapp.pdf (accessed on
15 February 2020).

8. Tilfani, O.; Ferreira, P.; Dionisio, A.; Youssef El Boukfaoui, M. EU Stock Markets vs. Germany, UK and US: Analysis of Dynamic
Comovements Using Time-Varying DCCA Correlation Coefficients. J. Risk Financ. Manag. 2020, 13, 91. [CrossRef]

9. Guedes, E.; Dionísio, A.; Ferreira, P.; Zebende, G. DCCA cross-correlation in blue-chips companies: A view of the 2008 financial
crisis in the Eurozone. Phys. A Stat. Mech. Its Appl. 2017, 479, 38–47. [CrossRef]

10. Bussière, M.; Fratzscher, M. Low probability, high impact: Policy making and extreme events. J. Policy Model. 2008, 30, 111–121.
[CrossRef]

11. Mohti, W.; Dionísio, A.; Ferreira, P.; Vieira, I. Contagion of the Subprime Financial Crisis on Frontier Stock Markets: A Copula
Analysis. Economies 2019, 7, 15. [CrossRef]

12. Shi, J.; Gao, Y. A study on KLR financial crisis early-warning model. Front. Econ. China 2010, 5, 254–275. [CrossRef]
13. Acosta, L.A.; Galli, F. Crisis Probability Curves (CPCs): A model for assessing vulnerability thresholds across space and over

time. J. Environ. Sci. Manag. 2013, 16, 36–49.
14. Sarlin, P. On biologically inspired predictions of the global financial crisis. Neural Comput. Appl. 2012, 24, 663–673. [CrossRef]
15. Basu, S.S.; Chamon, M.; Crowe, C.W. A Model to Assess the Probabilities of Growth, Fiscal, and Financial Crises; International Monetary

Fund: Washington, DC, USA, 2017. Available online: https://www.imf.org/en/Publications/WP/Issues/2017/12/15/A-Model-
to-Assess-the-Probabilities-of-Growth-Fiscal-and-Financial-Crises-45484 (accessed on 16 April 2020).

16. Engle, R.F.; Ruan, T. How Much SRISK Is Too Much? Financ. Cris. Ejournal 2018. SSRN 3108269. Available online: https:
//www.stern.nyu.edu/sites/default/files/assets/documents/REngle_SRISK.pdf (accessed on 15 February 2020).

17. Pickert, R.; Qiu, Y.; Mcintyre, A. Bloomberg—U.S. Economic Recession. 2020. Available online: https://www.bloomberg.com/
graphics/us-economic-recession-tracker/ (accessed on 2 March 2020).

18. Zappia, C. Re-Reading Keynes after the Crisis: Probability and Decision; Quaderni del Dipartimento di Economia Politica-Working
Paper; Università degli Studi di Siena: Siena, Italy, 2012.

19. Tarasov, V.E. On History of Mathematical Economics: Application of Fractional Calculus. Mathematics 2019, 7, 509. [CrossRef]
20. Mohti, W.; Dionísio, A.; Vieira, I.; Ferreira, P. Financial contagion analysis in frontier markets: Evidence from the US subprime

and the Eurozone debt crises. Phys. A Stat. Mech. Its Appl. 2019, 525, 1388–1398. [CrossRef]
21. El-Khatib, Y.; Hajji, M.A.; Al-Refai, M. Options Pricing in Jump Diffusion Markets during Financial Crisis. Appl. Math. Inf. Sci.

2013, 7, 2319–2326. [CrossRef]
22. Caporale, G.M.; Gil-Alana, L.; Plastun, A.; Makarenko, I. Long memory in the Ukrainian stock market and financial crises.

J. Econ. Finance 2014, 40, 235–257. [CrossRef]
23. Han, C.; Wang, Y.; Xu, Y. Nonlinearity and efficiency dynamics of foreign exchange markets: Evidence from multifractality and

volatility of major exchange rates. Econ. Res.-Ekonomska Istraživanja 2020, 33, 731–751. [CrossRef]
24. Fama, E.F. Efficient Capital Markets: A Review of Theory and Empirical Work. J. Financ. 1970, 25, 383. [CrossRef]
25. Peters, E.E. Fractal Market Analysis: Applying Chaos Theory to Investment and Economics; John Wiley & Sons: Hoboken, NJ, USA,

1994; Volume 24.
26. Mohti, W.; Dionísio, A.; Ferreira, P.; Vieira, I. Frontier markets’ efficiency: Mutual information and detrended fluctuation analyses.

J. Econ. Interact. Coord. 2018, 14, 551–572. [CrossRef]
27. Ferreira, P.; Loures, L.C. An Econophysics Study of the S&P Global Clean Energy Index. Sustainability 2020, 12, 662.
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