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Abstract: Machine Reading Comprehension (MRC) is an AI challenge that requires machines to
determine the correct answer to a question based on a given passage, in which extractive MRC
requires extracting an answer span to a question from a given passage, such as the task of span
extraction. In contrast, non-extractive MRC infers answers from the content of reference passages,
including Yes/No question answering to unanswerable questions. Due to the specificity of the two
types of MRC tasks, researchers usually work on one type of task separately, but real-life application
situations often require models that can handle many different types of tasks in parallel. Therefore,
to meet the comprehensive requirements in such application situations, we construct a multi-task
fusion training reading comprehension model based on the BERT pre-training model. The model
uses the BERT pre-training model to obtain contextual representations, which is then shared by
three downstream sub-modules for span extraction, Yes/No question answering, and unanswerable
questions, next we fuse the outputs of the three sub-modules into a new span extraction output and
use the fused cross-entropy loss function for global training. In the training phase, since our model
requires a large amount of labeled training data, which is often expensive to obtain or unavailable in
many tasks, we additionally use self-training to generate pseudo-labeled training data to train our
model to improve its accuracy and generalization performance. We evaluated the SQuAD2.0 and
CAIL2019 datasets. The experiments show that our model can efficiently handle different tasks. We
achieved 83.2EM and 86.7F1 scores on the SQuAD2.0 dataset and 73.0EM and 85.3F1 scores on the
CAIL2019 dataset.

Keywords: machine reading comprehension; Natural Language Processing; multi-task learning; Self
Training; pre-trained model

1. Introduction

Machine reading comprehension (MRC) aims to teach machines to answer questions af-
ter understanding a given passage [1,2], which can be broadly classified into two categories:
Extractive MRC and Non-extractive MRC. Extractive MRC requires models to extract the
answer span of a question from a reference text. For example, the tasks of close-test [3] and
span extraction [4,5]. Figure 1 shows a span extraction sample in the SQuAD2.0 dataset [6].
In contrast, Non-extractive MRC infers answers to questions from the content of the ref-
erenced passage, including Yes/No question answering [7] and unanswerable question
task [6]. Figure 2 shows an unanswerable question sample in the SQuAD2.0 dataset.

Due to the different task objectives, researchers usually research one type of task.
However, realistic reading comprehension application scenarios usually require models
that can handle many different types of tasks simultaneously. For example, the Chinese
legal text dataset CAIL2019 reading comprehension dataset [8] consists of more than
39,000 sample data, which involve the content of civil and criminal first instance judgments.
The dataset has three tasks: span extraction, yes/no questions answered, and unanswerable
questions, where the span extraction task is the main task, accounting for 83% of total data.
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Yes/no questions answering and unanswerable question task accounts for 14% and 3%,
respectively. This requires multi-task learning.

Multi-task learning is a field of machine learning in which multiple tasks are learned
in parallel while using a shared representation [9–11]. Compared with learning multiple
tasks individually, this joint learning effectively increases the sample size for training the
model, thus leading to performance improvement by increasing the generalization of the
model [12]. To solve multi-tasking MRC is important, and some straightforward solutions
have been proposed. Liu et al. [13] appended an empty word token to the context and
added a simple classification layer for the MRC model. Hu et al. [14] used two auxiliary
losses, independent span loss to predict plausible answers and independent no answer
loss to determine the answerability of the question. Further, an extra verifier is used to
determine whether the predicted answer is contained by the input snippets. Back et al. [15]
developed an attention-based satisfaction score to compare question embeddings with
candidate answer embeddings. Zhang et al. [16] proposed a verifier layer, which is a linear
layer applied to context embeddings weighted by the start and end distributions over
contextual word representations concatenated to [CLS] token representation for BERT. The
above studies are based on the SQuAD2.0 dataset, but the SQuAD2.0 dataset only includes
two different tasks. We want the model to be able to handle more tasks simultaneously,
such as the CAIL2019 reading comprehension dataset, which contains three different tasks.
Researchers usually set up three types of auxiliary losses to jointly train the model. We
think that too much auxiliary loss may hurt the general model training, so we propose
to fuse three different task outputs into a new span extraction output with only one loss
function for global training.

Early neural reading models typically used various attention mechanisms to build
interdependent representations of passages and questions, then predict answer boundaries
in turn. A wide range of attention models have been employed, including Attention
Sum Reader [17], Gated attention Reader [18], Self-matching Network [19], Attention over
Attention Reader [20], and Bi-attention Network [21]. Recently, PrLMs have dominated
the design of encoders for MRC with great success. These PrLMs include ELMo [22],
GPT [23], BERT [24], XLNet [25], Roberta [26], ALBERT [27], and ELECTRA [28]. They
bring impressive performance improvements for a wide range of NLP tasks for two main
reasons: (1) language models are pre-trained on a large-scale text corpus, which allows
the models to learn generic language features and serve as a knowledge base; (2) thanks
to the Transformer architecture, language models enjoy a powerful feature representation
learning capability to capture higher-order, long-range dependencies in text.

In the model training phase, since our model requires a large amount of labeled train-
ing data, which are often expensive to obtain or unavailable in many tasks, we additionally
use self-training to generate pseudo-labeled training data to train our model to improve
the accuracy and generalization performance of the model. Self-training [29,30] is a widely
used semi-supervised learning method [31]. Most related studies follow the framework of
traditional Self-Training and Co-Training and focus on designing better policies for select-
ing confident samples: trains the base model (student) on a small amount of labeled data,
applies it to pseudo-labeled task-specific unlabeled data, uses pseudo-labels to augment
the labeled data, and retrains the student model iteratively. Recently, self-training has been
shown to obtain state-of-the-art performance in tasks such as image classification [32,33],
few-shot text classification [34,35], and neural machine translation [36,37], and has shown
complementary advantages to unsupervised pre-training [32].

In this paper, we propose a machine reading comprehension model based on multi-
task fusion training, and we construct a multi-task fusion training reading comprehension
model based on the BERT pre-training model. The model uses the BERT pre-training model
to obtain contextual representations, which is shared by three downstream sub-modules
of span extraction, yes/no question answering, and unanswerable questions. Next, we
fuse the outputs of the three submodules into a new span extraction output, and we use a
cross-entropy loss function for global training. We use a self-training method to generate
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pseudo-labeled data from unlabeled data to expand labeled data iteratively, thus improving
the model performance and achieving better generalization. The experiments show that
our model can efficiently handle different tasks. We achieved 83.2 EM and 86.7 F1 scores
on the SQuAD2.0 dataset and 73.0 EM and 85.3 F1 scores on the CAIL2019 dataset.

Figure 1. A extractive MRC example.

Figure 2. A non-extractive MRC example.

2. Materials and Methods
2.1. Materials

Two publicly available datasets are used in this study including SQuAD2.0 [6] and
CAIL2019 Reading comprehension dataset [8]. SQuAD 2.0 is a widely used MRC bench-
mark dataset, which combines the 100,000 questions from SQuAD 1.1 [4] with over
50,000 new, unanswerable questions that are the crowd adversarially written to look similar
to the answerable questions. The training dataset contains 87,000 answerable questions and
43,000 unanswerable questions. The CAIL2019 reading comprehension dataset is primar-
ily concerned with civil and criminal first-instance judgments. The training set includes
more than 39,000 questions, mainly span extraction, containing more than 5000 YES/NO
question answering and more than 1000 unanswerable questions.

2.2. Method

We focus on three reading comprehension tasks: span extraction, Yes/No question
answering, and unanswerable questions. They all can be described as a triplet <P, Q, A>,
where P is a passage and Q is a question for P. When question Q is a span extraction task,
the correct answer A is a span text in P; when question Q is a Yes/No question answering,
the correct answer A is the text “YES” or “NO”; when question Q is an unanswerable
question, the correct answer A is the null string. We have conducted experiments on both
SQUAD2.0 and CAIL2019 reading comprehension datasets, and our model should be able
to predict the begin and end position in passage P and extract the span text as answer A
for a question which is the span extraction task and return the text “YES” or “NO” for the
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question which is the Yes/No question answering. For the unanswerable question, the
model can return a null string.

Our MRC model mainly includes two aspects of improvement: the multi-task fusion
training model and the self-training method. The multi-task fusion training model mainly
focuses on the fusion of multi-task outputs and training methods. Self-training mainly
focuses on generating pseudo-labeled training data with high confidence from unlabeled
data to expand the training data.

2.2.1. Embedding

We concatenate question and passage texts as the input, which is firstly represented as
embedding vectors to feed an encoder layer. In detail, the input texts are first tokenized
to word pieces(subword tokens). Let T = {t1, t2, ..., tn} denote as a sequence of subword
tokens of length N. For each token, the embedding vector of the input text is the sum vector
of its token embedding, position embedding, and token-type embedding.

We take X = {x1, x2, ..., xn} as the output of the encoding layer, which is an embedding
feature vector of encoded sentence tokens of length n. Then, the embedded feature vector
is fed to the interaction layer to obtain the contextual representation vector.

2.2.2. Interaction

Following Devlin at all. [24], the encoded sequence X is processed using multiple
layers of Transformers [38] to learn the context representation vector. In the next section,
we use H = {h1, h2, ..., hn} to denote the last layer of hidden states of the input sequence.
Hc is denoted as the last layer of hidden states of the first token (classification token) in
the sequence.

2.2.3. Multi-Tasking Fusion Training

As is shown Figure 3 depicts the whole architecture of our model. The unanswerable
question task is to return an empty string as the answer after discriminating the question
from the text, so we use a linear layer into which Hc is fed as input to obtain the probability
value unk of the unanswerable question. The span extraction task is to find a span in
the passage as an answer. We feed the last_layer hidden states H into a linear layer with
softmax operations to obtain two probability sequences Ls and Le. The Yes/No question
answering task is to return the text “YES” or “NO” as the answer after understanding
the question and the passage. We use sum-pooling to compress the hidden state H of the
last layer into a vector as input to a linear layer to obtain predicted probability values yes
and no.

We use the predicted probability values of the three tasks Ls, unk, yes, and no spliced
together as the new start probability sequence S. In the same way, we can obtain the new
end probability sequence E.

The training target for our model is defined as the cross-entropy loss of start S and
end E:

L = − 1
N

N

∑
i=0

[
log
(

ps
ys

i

)
+ log

(
pe

ye
i

)]
, (1)

where ys
i and ye

i represent the true start and end positions of sample i respectively, and N is
the number of samples.

For prediction, given output start and end probability sequences S and E, we calculate
the span score scorespan, the unanswer score scoreua, the Yes-answer score scoreyes and the
no-answer score scoreno:

scorespan = max(Sk + El), 0 ≤ k ≤ l ≤ n− 2,

scoreua = S0 + E0,

scoreyes = Sn−1 + En−1,

scoreno = Sn + En.

(2)
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We get 4 answer scores, and we choose the answer with the largest score as the final
answer by comparing them.

Figure 3. An overview of our base model. T is the sequence of subword tokens after embedding, X is
the outputs of the encoder layer. Task-specific learning Module sets up three sub-modules to generate
probability sequences or values of different answers for each sample. CAT means concatenates the
input sequence or value.

2.2.4. Self Training

The complete two-stage process is as specified in Algorithm 1. First, in the fine-tuning
phase, the pre-trained MRC model is fine-tuned in a supervised manner on the labeled
dataset Ds. The model is named M0 and is then used as the starting point for the next
phase. In the self-training phase, the training and labeling process is iterated several times.
For each iteration i, we first generated pseudo-labels for the unlabeled dataset Dt using the
model Mi and then trained M0 on the unlabeled dataset using these labels.

Algorithm 1 MRC self-training process

Require: Pre-trained MRC model, Mp; Labeled dataset, Ds; Unlabeled dataset, Dt; Number
of self-training iterations, N; Threshold for filtering pseudo-labels, δ

1: M0 ← train(Mp, Ds)
2: D0 ← label(M0, Dt, δ)
3: for i ∈ [1, n] do
4: Mi ← train(Mi−1, Di−1)
5: Di ← label(Mi, Dt, δ)
6: end for
7: return Mn
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The unlabeled dataset can be described as a tuple < Pt, Qt >, where Pt = {p1, p2, ..., pn}
is a passage, Qt = {q11, q12, ..., qnm} is a question over Pt. To obtain pseudo-labels, we
use the model running on the unlabeled dataset Dt, and Algorithm 2 explains the label-
ing process. For each unlabeled example (ci, qi), the model gives t predicted answers
Aij = {aij1, aij2, ..., aijp} and the corresponding confidence Eij = {eij1, eij2, ..., eijp}. Then we
use a threshold to filter the data, only the examples with maximum confidence above the
threshold are retained. For each question, the answer with the maximum confidence is
used as a pseudo-label.

Algorithm 2 Pseudo-label generation

Require: Model used in self-training process, M; Passages in unlabeled dataset, Ct; Ques-
tions in unlabeled dataset, Qt; Unlabeled dataset, Dt; Threshold for filtering pseudo-
labels, δ

1: D
′ ← ∅

2: for ci ∈ Ct do
3: for qij ∈ Qt do
4: Aij, Eij ∈ M(ci, qij)
5: if maxτ Eij ≥ δ then
6: k← argmax Eij

7: D
′ ← D

′ ∪ (pi, qij, aijk)
8: end if
9: end for

10: end for
11: return D′

In the span extraction task, the model answers questions by generating two probability
distributions for contextual tokens. One is the start position and the other is the end position.
The answer is then extracted by choosing the span between the start and end positions.

Here, we consider probability as a measure of confidence. More specifically, we take
the distributions of the start and end tokens as input, then filter out unlikely candidates
(for example, candidates whose end token precedes the start token) and perform a beam
search with the sum of the start/end distributions as the confidence. The threshold was set
to 0.95, which means that only those examples with the most confident answers scoring
greater than 0.95 were used in the self-training phase.

3. Experiments and Results
3.1. Experiments
3.1.1. Evaluation

Metrics: Two official metrics are used to evaluate the performance of the model. Exact
Match (EM) and a softer metric F1 score, which measures the average overlap between
predicted and ground-truth answers at the token level.

Exact Match (EM): This metric measures the percentage of predictions that match any
one of the ground truth answers exactly. For each question+answer pair, if the characters of
the model’s prediction exactly match the characters of (one of) the True Answer(s), EM = 1,
otherwise EM = 0. This is a strict all-or-nothing metric; being off by a single character
results in a score of 0. When assessing against a negative example, if the model predicts
any text at all, it automatically receives a 0 for that example.

F1 Score: It is a common metric for classification problems, and is widely used in
Question Answering. It is appropriate when we care equally about precision and recall. In
this case, it’s computed over the individual words in the prediction against those in the
True Answer. The number of shared words between the prediction and the truth is the basis
of the F1 score: precision is the ratio of the number of shared words to the total number of
words in the prediction, and recall is the ratio of the number of shared words to the total
number of words in the ground truth. The formula for the F1 score is the following:
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F1 score = 2 ∗ precision ∗ recall
precision + recall

(3)

3.1.2. Setup

We use the available pre-trained models as encoders to build the baseline MRC models:
BERT, ALBERT, ELECTRA. Our implementations for BERT are based on Transformers’
public Pytorch version of the scheme. We use pre-trained language model weights in the
encoder module of the model, using all official hyperparameters. For fine-tuning in our
task, we set the initial learning rate in {2 × 10−5, 3 × 10−5} with a warmup rate of 0.1,
and L2 weight decay of 0.01. Specifically, 2 × 10−5 for BERT, 3 × 10−5 for ALBERT and
ELECTRA. For the batch size, BERT is set to 20, ALBERT and ELECTRA are set to 8. In
all experiments, the maximum number of epochs was set to 3. Texts are tokenized using
wordpieces [39], with a maximum length of 512. Hyperparameters were selected using the
development set.

3.2. Results

Tables 1 and 2 compare our model with the current more advanced models on the
SQuAD2.0 and CAIL2019 datasets. In the English dataset SQuAD2.0, our model improves
compared to the NeurQuRI and BERT models but lags behind the ALBERT and ELECTRA
models. This is because our model is constructed based on the pre-trained language
model, and the ability of the pre-trained model to learn generic language representations is
important for the overall model performance. Currently available pre-trained language
models for machine-reading comprehension tasks include BERT, ALBERT, and ELECTRA.
The ALBERT model as an improved model of the BERT model can effectively improve
the downstream performance of multi-sentence coding tasks through three improvements:
factorized embedding parameterization, cross-layer parameter sharing, and inter-sentence
coherence loss. The ELECTRA model proposes a model training framework borrowed
from the design of GAN networks and a new pre-training task of replaced token detection.
These two improvements allow ELECTRA to learn more contextual representations than
BERT. Theoretically, our model can be designed based on the ALBERT or ELECTRA pre-
trained model. However, the problem is that the training time of the ALBERT or ELECTRA
pre-trained model is much longer than that of the BERT model, and our self-training
method requires iterative training of the model. As such, the time cost is unacceptable.
In the Chinese reading comprehension dataset CAIL2019, we did not find an available
Chinese ALBERT pre-training model, so we did not conduct a comparison experiment
of ALBERT models. Our model improves compared to NeurQuRI, BERT, and ELECTRA
models. Benefiting from our designed task-specific learning module, our model can identify
different task samples and make correct answers better than other models.

Table 1. The results (%) for SQuAD2.0 dataset. Time means Training time of model, ST means our
Self Training method (Section 2.2.4).

Model EM (%) F1 (%) Time (h)

NeurQuRI 81.3 84.3 7
BERT 82.1 84.8 8.5

ALBERT 86.9 89.8 22.5
ELECTRA 87.0 89.9 20
Our model 82.9 86.4 8.5

Our model + ST 83.2 (+0.3) 86.7 (+0.3) 42.5 (5 iters)

We fuse the outputs of different tasks into a new span extract output, train the model
using a cross-entropy loss function. It can effectively prevent the imbalance from different
task losses that confuse the whole model training. Our self-training method is also applied
to the model successfully. The experiments show that the self-training method increases
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0.3EM and 0.3F1 scores in the SQuAD2.0 dataset, and 0.9EM and 1.1F1 scores in the
CAIL2019 reading comprehension dataset compared to our base model.

Table 2. The results (%) for CAIL2019 Reading comprehension dataset. Time means Training time of
model, ST means our Self Training method (Section 2.2.4).

Model EM (%) F1 (%) Time (h)

NeurQuRI 67.2 79.8 5
BERT 69.5 81.7 6

ELECTRA 71.2 83.6 11
Our model 72.1 84.2 6

Our model + ST 73.0 (+0.9) 85.3 (+1.1) 30 (5 iters)

4. Discussion

This paper compares the performance of three methods, including MLT with Fusion
training, MLT with three auxiliary losses, and a pipeline approach. We implemented three
comparative experiments in the CAIL2019 dataset. Based on the idea of Hu et al. [28], we
adopt a BERT model to obtain context representation and use three auxiliary loss functions
to process the output of different task modules. The training loss of the whole model is the
weighted sum of the losses of the three modules. The pipeline approach uses a BERT model
for training the extraction MRC task, turns non-extracted MRC tasks into a classification
task, and learns the classification task directly for the sentences in each passage. Finally, the
predicted results of the two models are combined and the scores are calculated.

The specific experimental comparison results are shown in Table 3. It can be seen that
the performance of the pipeline approach is lower compared to the other two approaches.
It may be the pipeline approach only optimizes the loss of one task and lacks the interaction
of other tasks. However, the pipeline approach also has its advantages, such as better
controllability of the results for each subtask and the convenience of manual observation for
each subtask. In multi-task learning, the magnitude of task loss is considered a perceived
similarity measure. Imbalanced tasks in this regard produce largely varied gradients
which can confuse model training. MLT with three auxiliary losses uses a task weighting
coefficient to help normalize the gradient magnitudes across the tasks. However, its specific
implementation employing an average task loss weighting coefficient does not achieve
the balance among tasks, which may lead to a bias of the model toward a particular task
during training. Our research revealed that the outputs of the different MRC task modules
can be fused into a sequence, and we put it into a loss function for training. The model
can automatically learn the weight coefficient between different tasks during training and
make reasonable judgments. Experiments show that our model, although lower than MLT
with three auxiliary losses in the EM metric, exceeds it by 0.8% in the F1 metric.

Table 3. Comparative experimental results of three multi-task learning methods.

Training Method EM F1

MLT with Fusion training 72.1 84.2
MLT with Three Auxiliary losses 72.6 83.4

Pipeline method 70.6 81.0

It is well known that the size of the labeled dataset affects the performance of the
pre-trained model for downstream task fine-tuning. After that, we apply self-training to the
models trained above to investigate the effect of labeled datasets of different sizes on the
effectiveness of the self-training method for the base model. We set the size of the unlabeled
dataset used for the self-training approach to 100%. Figure 4 shows that the evaluation
performance of base model fine-tuning is highly dependent on the size of the domain
labeled data, and the self-training method always improves the evaluation performance of
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the base model. However, as the evaluation performance of the base model improves, the
self-training method has less and less improvement on the effectiveness of the base model.

(a) (b)

Figure 4. The results of different sized labeled datasets for self-training improvement. (a) SQuAD 2.0
dataset. (b) CAIL2019 Reading Comprehension dataset.

5. Conclusions

In this paper, we construct a multi-task fusion training reading comprehension model
based on a BERT pre-training model. The model uses the BERT pre-training model to obtain
contextual representations, which are then shared by three downstream sub-modules for
span extraction, yes/no question answering and unanswerable questions, and we next
fuse the outputs of the three sub-modules into a new span extraction output and use the
fused cross-entropy loss function for global training. We use self-training to generate
pseudo-labeled training data to train our model to improve its accuracy and generalization
performance. However, our self-training approach requires iteratively training a model,
which consumes a lot of time, and we consider it needs further optimization. Our model
is designed for only three specific tasks and cannot be widely applied to more machine
reading comprehension task scenarios. We hope to explore more effective multi-task
methods for machine-reading comprehension in the future.
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