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Abstract: Performance of convergence to the optimum value is not completely a known process due to
characteristics of the considered design problem and floating values of optimization algorithm control
parameters. However, increasing robustness and effectiveness of an optimization algorithm may
be possible statistically by estimating proper algorithm parameters values. Not only the algorithm
which utilizes these estimated-proper algorithm parameter values may enable to find the best fitness
in a shorter time, but also it may supply the optimum searching process with a pragmatical manner.
This study focuses on the statistical investigation of the optimum values for the control parameters of
the harmony search algorithm and their effects on the best solution. For this purpose, the Taguchi
method integrated hybrid harmony search algorithm has been presented as an alternative method for
optimization analyses instead of sensitivity analyses which are generally used for the investigation
of the proper algorithm parameters. The harmony memory size, the harmony memory considering
rate, the pitch adjustment rate, the maximum iteration number, and the independent run number
of entire iterations have been debated as the algorithm control parameters of the harmony search
algorithm. To observe the effects of design problem characteristics on control parameters, the new
hybrid method has been applied to different engineering optimization problems including several
engineering-optimization examples and a real-size engineering optimization design. End of extensive
optimization and statistical analyses to achieve optimum values of control parameters providing rapid
convergence to optimum fitness value and handling constraints have been estimated with reasonable
relative errors. Employing the Taguchi method integrated hybrid harmony search algorithm in
parameter optimization has been demonstrated as it is a reliable and efficient manner to obtain the
optimum results with fewer numbers of run and iteration.

Keywords: hybrid harmony search algorithm; Taguchi method; algorithm control parameter
optimization; engineering design problems; reinforced cantilever retaining wall design

1. Introduction

The well-functioning optimum designs, which aim to reach stable and economic or
productive mechanisms in engineering regulation, are based on mathematical theorems and
approaches. While optimization methods were applied by Newton, Lagrange, Cauchyeski,
and so on for smaller-sized problems in ancient times, today produce the solutions with
improved or hybrid versions of the optimization algorithms for large-size complex engi-
neering designs. In this conjuncture, metaheuristic optimization algorithms that enable
them to achieve reasonable solutions in a shorter time have been commonly employed in
complicated engineering designs, since environmental and global phenomena due to devel-
oping technology and increasing population have been raised in the last two decades [1].
Although each of them adopts a different process and texture within itself, many effective
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and robust metaheuristic optimization algorithms hitherto have been developed dealing
with better optimization processes than previous ones.

Metaheuristic optimization methods are the algorithms that generate solutions to large-
scale design optimization problems which are inspired by natural events such as swarms
(bird, fish, etc.), physics, evolution, or uniqueness [2]. Major metaheuristic optimization
algorithms improved by mimicking the characteristics and feeling of swarms that try to
survive and meet some needs such as nutrition, defense, and migration in nature are the ant
colony optimization (ACO) [3], the particle swarm optimization (PSO) [4], the artificial bee
colony algorithm (ABC) [5], and the whale optimization algorithm (WOA) [6]. While the
gravitational search algorithm (GSA) [7] and big bang-big crunch algorithm (BB-BC) [8] are
evaluated as based on physics, optimization methods such as the cuckoo search algorithm
(CSA) [9], the firefly algorithm (FA) [10], and the bat algorithm (BA) [11] are inspired
by animals’ nature. The differential evolution (DE) [12] and the biogeography-based
optimization (BBO) [13] are based on evolution concepts such as the genetic algorithm
(GA) [14] and the simulated annealing algorithm (SA) [15].

As different from the other algorithms the harmony search algorithm (HSA) presented
by Geem et al. [16] is based on the music and mimics the process of finding the best
harmony of the notes performed by musicians’ intuition. The HSA, which is a powerful
and effective optimization method because of its simple algorithm scheme, gives fast
results, has an easy-to-apply algorithm, has been exceedingly employed by the researchers
for design optimization analysis. Thanks to the implementation of the algorithm to design
optimization problems effectively and convergence achievement of optimum solutions,
hybrid and improved versions of HSA have been employed in the several fields of civil,
electrical, industrial, software, mechanical engineering, scheduling, clustering, networking,
image processing, and so on [2].

To boost the convergence performance of metaheuristic algorithms and their capacity
to produce solutions with fewer iterations, improved versions [17,18] and hybrid versions
of algorithms [19–21] combined each other have been proposed by researchers. In Figure 1a,
the number and the percentage of conducted studies considering hybrid optimization
algorithms in literature [22] are demonstrated as a comparison graph by years. It is seen
that the usage of hybrid metaheuristic optimization algorithms has increased considerably
in the last two decades. The distribution of hybrid optimization studies for the different
fields has been examined by utilizing the Web of Science database and obtained results
are given in Figure 1b [22]. Although other studies except for the fields given in the figure
correspond to 78% out of whole fields, it is obvious that the hybrid optimization algorithm
studies have a considerable extent of usage in, especially multidisciplinary engineering
studies. Hybrid HSA studies included setting algorithm parameters and hybridization of
HSA with other metaheuristic algorithms as well as collocation of the artificial intelligence
algorithms, which are depicted in Figure 1c as the result of a comprehensive literature
survey [23]. According to the graph, harmony search hybrid optimization studies carried
out in the last five years being 72% out of all studies published between 2008 and 2021
shows that hybrid studies of HSA substantially have been preferred by researchers. Results
given in Figure 1 belong to all types of studies such as research articles, proceeding papers,
early access, book chapters, review articles, and so on.



Mathematics 2022, 10, 327 3 of 36

Mathematics 2022, 10, x FOR PEER REVIEW 3 of 37 
 

 

optimum with fewer computational attempts. To investigate reasonable factors, design 
comprehensive sensitivity analyses have been performed considering different values of 
algorithm control parameters [24]. Although sensitivity analyses are employed as a path 
for the researcher to converge to the optimum result, it takes time because it follows a 
trial-and-error method. In addition, it can’t guarantee the appropriate value of a parame-
ter when it is closest to the optimum solution. In most of the studies using metaheuristic 
algorithms, the values of the algorithm parameters are chosen by referring to the studies 
in the literature. As it may vary depending on discrete-continuous design variables, con-
straint-unconstrained cases, and the size of the current design problem with the numbers 
of design variables and constraints and so on in the search for the appropriate value of the 
metaheuristic algorithm parameter, it would be a better manner to find algorithm param-
eter values considering the current handled optimization problem. According to a study 
presented by Uray et al. [25] which investigated optimum values of the scatter search al-
gorithm parameters by the Taguchi method, it has been seen that it is possible to estimate 
the statistically appropriate values of the algorithm parameters according to a selected 
objective. 

(a) 

 

(b) 

 

(c) 

 

Figure 1. Web of Science citation report studies in literature following: (a) Change between pub-
lished years of hybrid optimization studies and numbers with percentages; (b) Distribution of hy-
brid optimization studies according to fields; (c) Change between published years of hybrid and 
based on harmony search optimization studies and numbers. 

One of the statistical experimental design methods commonly utilized to investigate 
the parameter effect on the quality in the manufacturing or design process of goods is the 

Figure 1. Web of Science citation report studies in literature following: (a) Change between published
years of hybrid optimization studies and numbers with percentages; (b) Distribution of hybrid
optimization studies according to fields; (c) Change between published years of hybrid and based on
harmony search optimization studies and numbers.

In the literature, the number of optimization studies carried out utilizing metaheuristic
algorithms and their improved or hybrid versions so far is mainly due to the researcher’s
effort to reach better convergence to the optimum solution. The literature survey has been
demonstrated the popularity of these algorithms in applying engineering design problems
even for real-size complex ones. While the possibility of finding new solutions has increased
by adding some algorithm parameters to the optimum search process, formed mathematical
expressions combining two or more optimization algorithms effectively enable to reach
optimum results. Even though new or hybrid versions of metaheuristic algorithms have
been suggested in this manner, investigating the reasonable values of the current algorithm
parameters is an important issue for convergence to the optimum with fewer computational
attempts. To investigate reasonable factors, design comprehensive sensitivity analyses
have been performed considering different values of algorithm control parameters [24].
Although sensitivity analyses are employed as a path for the researcher to converge to the
optimum result, it takes time because it follows a trial-and-error method. In addition, it
can’t guarantee the appropriate value of a parameter when it is closest to the optimum
solution. In most of the studies using metaheuristic algorithms, the values of the algorithm
parameters are chosen by referring to the studies in the literature. As it may vary depending
on discrete-continuous design variables, constraint-unconstrained cases, and the size of
the current design problem with the numbers of design variables and constraints and
so on in the search for the appropriate value of the metaheuristic algorithm parameter,
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it would be a better manner to find algorithm parameter values considering the current
handled optimization problem. According to a study presented by Uray et al. [25] which
investigated optimum values of the scatter search algorithm parameters by the Taguchi
method, it has been seen that it is possible to estimate the statistically appropriate values of
the algorithm parameters according to a selected objective.

One of the statistical experimental design methods commonly utilized to investigate
the parameter effect on the quality in the manufacturing or design process of goods is the
Taguchi method [26,27]. Thanks to this successful and robust design method, it can esti-
mate the optimum value of considering effective parameters according to specific response
values depending on desired aim. Studies for Taguchi method hybridization of the meta-
heuristic optimization algorithms such as the simulated annealing (SA) algorithm [28], the
genetic algorithm (GA) [29,30], and particle swarm optimization (PSO) [31] are instances
to overcome problems encountered in their field and obtained better results. In the study,
which is conducted shape optimization design by employing Taguchi method hybrid ver-
sion with the HSA, more optimum design variable values have been acquired regardless of
the investigating for optimum values of the HSA parameters [32]. In the study which used
statistical mathematical models improved by considering the Taguchi method employed as
objective function and design constraints, the optimum design of the cantilever retaining
wall has been investigated via HSA [33]. According to the extensive research results in the
literature, no study has been found in which the optimum values for the number of runs
and the number of maximum iterations with optimum HSA control parameters have been
investigated based on the Taguchi method with different engineering problems.

Thus, in this study, some of the considered complex benchmark engineering design
optimization problems and a real-size engineering design optimization problem have been
employed to examine HSA parametric effect and to investigate the optimum values of
algorithmic parameters. In this scope, statistical and optimization analyses to be presented
in this paper have been conducted as follows:

• The effect of variable run values on finding the optimum solution by employing
different complex benchmark engineering design optimization problems and a real-
size engineering design problem, frequently considered in optimization analyzes in
the literature has been investigated;

• Taguchi method integrated hybrid harmony search algorithm (TIHHSA) has been
generated based on the HSA and Taguchi method, namely the proposed hybridization
can be defined as initial optimization for optimum algorithm parameter values of HSA;

• The effect of HSA parameters on the objective function and the optimum number
of runs and maximum iterations with optimum HSA control parameters have been
examined for different engineering optimization design problems utilizing TIHHSA;

• Whether the variation of the optimum values of the HSA parameters depending on
the nature of the engineering design optimization problem has been evaluated;

• According to accomplished optimum results for engineering design optimization
problems, the robustness, and the benefits of TIHHSA presented a new method have
been interpreted and evaluated with previously reported studies in the literature.

2. Materials and Methods
2.1. Complex Benchmark Engineering Design Optimization Problems

In this section, the welded beam design (WBD), the pressure vessel design (PVD),
the gear train design (GTD), and the speed reducer design (SRD) engineering design
optimization problems demonstrated in Figure 2 have been presented with their design
variables, constraints, and objective functions.
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2.1.1. Welded Beam Design Problem

The first considered benchmark engineering design example is the design of the weld
joint of thickness h and length l between the bar and beam with cross-section b x t and the
total length L + l (Figure 2a). The welded beam benchmark engineering design problem
(WBD) [34], which considers the shear stress in the weld (τ), bending stress in the beam
(σ), buckling load on the bar (Pc), end deflection of the beam (δ), and side constraints for
the minimum cost, are employed in the optimization analyses (Equation (A1), Appendix A
section). Design variables are the thickness of the weld (h) as x1 within the range [0.1 in.,
2 in.], the length of the welded joints (l) as x2 within the range [0.1 in., 10 in.], the width of
the beam (t) as x3 within the range [0.1 in., 10 in.], and the thickness of the beam (b) as x4
within the range [0.1 in., 2 in.].

2.1.2. Pressure Vessel Design Problem

The pressure vessel design (PVD) problem [35], in which a cylindrical pressure vessel
is capped with hemispherical heads at both ends of a vertical cylindrical shell by using the
welded joint, is demonstrated in Figure 2b. For PVD, the thickness of the shell (Ts), the
thickness of the head (Th), inner radius (R), and the length of the cylindrical section of the
vessel (without including the head) are treated as the design variables. It is one of the well-
known complex engineering design optimization problems that gives its minimum cost,
including material, forming, and welding, under the influence of constraints such as the
thickness of heads and shell, certain values of working pressure, volume, and shell length.

While the design variables of R (x3) and L (x4) are taken as continuous, which are
between ranges in [10 in., 200 in.], the discrete integer design variables as multiples of 0.0625
between ranges in [(0.0625 × 99) in., (0.0625 × 99) in.] are considered for Ts (x1) and Th (x2),
due to the available thicknesses of rolled steel plates (Equation (A2), Appendix A section).
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2.1.3. Gear Train Design

Sandgren [35] introduced the gear train design (GTD) with discrete and integer design
variables, then it has been treated as an engineering design optimization problem to research
the numbers of teeth on each gear with the desired gear ratio. The output shaft’s angular
velocity ratio to the input shaft’s angular velocity should be close to 1/6.931 for the desired
gear ratio. In the GTD problem, each design variable corresponds to Ta (x1), Tb (x2), Td (x3),
and Tf (x4), which takes a value between 12 and 60 as an integer due to considering the
number of them (Figure 2c).

The objective function without constraints, which aims to minimize the difference
between desired gear ratio and the current gear ratio, is given by Equation (A3) (Appendix A
section).

2.1.4. Speed Reducer Design

Speed reducer design (SRD), one of the complex benchmark engineering design
optimization problems, was first studied by Golinski [36]. The SRD problem satisfies eleven
constraints at the minimum gear box’s weight and is accepted as a benchmark for the new
metaheuristic optimization methods. The design consists of gears between the engine and
propeller working at its most efficient speed of rotating with seven design variables. In
the design problem demonstrated in Figure 2d, face width, b (x1), teeth module, m (x2),
number of pinion teeth (x3), shaft length 1 (x4), shaft length 2 (x5), shaft diameter 1 (x6),
and shaft diameter 2 (x7) are considered as design variables.

Design variables of the design problem are determined following ranges, [2.6 cm, 3.6
cm] is for x1, [0.7 cm, 0.8 cm] is for x2, [17 pieces, 28 pieces] is for x3, [7.3 cm, 8.3 cm] is for x4
and x5, [2.9 cm, 3.9 cm] is for x6, and [5.0 cm, 5.5 cm] is for x7. Mathematical formulations
for the objective function and the constraints include the limits on the bending stress of the
gear teeth, surface stress, transverse deflections of shafts 1 and 2 due to transmitted force,
and stresses in shafts 1 and 2 (Equation (A4), Appendix A section).

2.2. Real-Size Engineering Design Optimization Problem

In today’s world, where obtaining the most economical designs in a short time gains
importance, metaheuristic optimization algorithms have become an alternative method.
In this context, Afzal et al. [37] have reported that hundreds of retaining wall design
optimization studies for solving such real-life designs were conducted in the literature. In
geotechnical engineering, the design of a cantilever retaining wall is a complex engineering
problem used to provide stability against lateral soil loads that happen between two
soil levels. Furthermore, the trial-error method utilized in the traditional wall design is
challenging, and finding the safe design is time-consuming considering many iterations
due to the existence of various soil and slope properties.

The reinforced concrete cantilever retaining wall design (RCRW) (Figure 3) has been
selected as a real-size engineering design optimization problem because of the abovemen-
tioned cases. In investigating optimum RCRW designs, Building Code Requirements for
Structural Concrete (ACI 318-05) and commentary (ACI 318R-05) [38] have been consid-
ered as design provisions for stable and safe design. Arranged mathematical expressions
by investigating some of the optimum RCRW studies in the literature [39–43] have been
presented in this section. In the design problem demonstrated in Figure 3a, base width (x1),
toe extension, (x2), stem bottom width (x3), stem top width (x4), base thickness (x5), key
distance from toe (x6), key width (x7), key thickness (x8), vertical steel area in the stem per
unit length of the wall (x9), horizontal steel area of the toe slab (x10), horizontal steel area of
the heel slab (x11), and vertical steel area of the shear key per unit length of the wall (x12) are
considered as design variables in the design optimization of an RCRW. The RCRW design
stability conditions taken as design constraints in the optimization process are checked
according to acting loads on the wall demonstrated in Figure 3b for geotechnical external
and internal reinforced concrete stability conditions.
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The steel areas (As) of x9, x10, x11, and x12 design variables have been determined
with the number (n) and diameter (db) of the rebar. The steel areas for x9, x10, x11, and x12
design variables have been determined by considering together the number and diameter
of reinforcement for the stem, toe, heel, and key of the wall, respectively.

By employing the limit bounds of the design variables tabulated in Table 1 the design
space has been formed. Input parameters utilized for geotechnical and design as RCRW
design problem are demonstrated in Table 2.

Mathematical formulations of sliding, overturning, and bearing capacity safety factors
detailed given in Equation (A5) (Appendix A section) have been utilized to satisfy of
geotechnical external stability of the wall [44].

In terms of providing internal reinforced concrete stability, the flexural strengths
(Mns,t,h,k) resistance to design moments (Mds,t,h,k) have been examined for four critical
cross-sections; (i) the section linked stem to base slab, (ii) the initial section of the toe
extension from the stem, (iii) initial section of heel extension from the stem, (iv) the section
linked the key to base slab (Figure 3c). In the same way, the design shear forces (Vds,t,h,k)
should be safely fulfilled by nominal shear strength (Vns,t,h,k) at critical cross-sections of
the wall. The nominal shear and flexural strengths for the critical cross-sections of the wall
have been computed via Equation (A6) (Appendix A section) [38]. In Equation (A6), b is
the width of the section (1000 mm), d is the height of the section, and a is the depth of the
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equivalent rectangular stress block. Design shear forces (Vds,t,h,k) and moments (Mds,t,h,k)
due to lateral soil and surcharge loads given Figure 3b at critical cross-sections, which are
stem, toe, heel, and key have been determined by utilizing Equation (A7) (Appendix A
section), respectively [39,41,45,46].

Table 1. The design variables and limit bounds for wall dimensions and reinforcement.

Design Variables Lower Bound Upper Bound

x1 (m) 1.96 5.50
x2 (m) 0.65 1.16
x3 (m) 0.25 0.50
x4 (m) 0.25 0.50
x5 (m) 0.40 0.50
x6 (m) 1.96 5.50
x7 (m) 0.20 0.50
x8 (m) 0.20 0.50

x9, x10, x11, x12

n (piece) 3 30
db (mm) 10 30
As (cm2) 2.356 212.0575

Table 2. Input parameters for optimization analyses of RCRW.

Input Parameters Symbol Value Unit

Stem height H 4.5 m
Surcharge load q 30 kPa
Backfill slope β 0 ◦

Internal friction angle of the retained soil and the base soil Ør and Øb 36 and 34 ◦

Unit weight of retained soil, base soil, and concrete γr, γb, and γc 17.5, 18.5, 23.5 kPa
Cohesion of base and retained soils cb and cr 0 kPa

Depth of soil in front of the wall Df 0.75 m
Terzaghi bearing capacity factors for Øb = 34◦ [45] Nc, Nq, Nγ 52.64, 36.50, 38.04 –

The factor of safety for sliding and overturning stability SFss and SFso 1.50 –
The factor of safety for bearing capacity SFsb 3.00 –

Reinforcing steel yield strength fy 400 MPa
Concrete compressive strength fc 21 MPa

Concrete cover cc 0.07 m
Shrinkage and temperature reinforcement percentage ρst 0.002 –
Nominal strength coefficient for the flexural moment φm 0.90 –

Nominal strength coefficient for shear force φ 0.75 –
Reinforcement location factor (1.0 for concrete below < 30.48 cm) ψt 1.00 –

Coating factor (for uncoated bars) ψe 1.00 –
Lightweight aggregate concrete factor (1.0 for normal-weight conc.) λ 1.00 –

Cost of steel and concrete Cs and Cc 0.4 and 40 $/kg and
$/m3

Randomly selected steel areas (Ass,t,h,k) from the design pool for calculating flexural
strengths (Mns,t,h,k) should be greater than the minimum steel area (Asmins,t,h,k) and smaller
than the maximum steel area (Asmaxs,t,h,k). Furthermore, obtained reinforcement bar lengths
in the optimum design should be satisfied bond strength as minimum development length
(Lds,t,h,k) or minimum hook development length (Ldhs,t,h,k) for all members according
to design code. The abovementioned design criteria with required details have been
demonstrated by Equation (A8) (Appendix A section) [38].

The mathematical expression of an RCRW design categorized as one of the most
challenging real-size engineering design optimization problems is given in Equation (A9)
(Appendix A section). The equation is presented each of stem (s), toe (t), heel (h), and key
(k) critical cross-sections of RCRW. Due to the necessity of satisfying external and internal
stability conditions RCRW optimum design is a complex engineering problem with 12
design variables and 26 design and side constraints.
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2.3. Harmony Search Algorithm

The harmony search algorithm which is applied to many complex and real-size engi-
neering design problems successfully is based on the principle of finding the best harmony
with the notes played by the musicians in an orchestra [16]. In this process of reaching the
best harmony, each musician may play notes or choose any notes randomly from whole
possible combinations in their mind, which correspond to design space filled with different
values of design variables. The harmony memory (HM) matrix, which stores the design
variables values of the problem in the algorithm, is created by mimicking the situation
which plays the notes from the musicians’ minds in the music-making process. The HM
matrix is depicted by Equation (1).

HM =



x(1,1) x(2,1) . . . . . . x(Nvar−1,1) x(Nvar,1)
x(1,2) x(2,2) . . . . . . x(Nvar−1,2) x(Nvar,2)

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
x(1,HMS−1) x(2,HMS−1) . . . . . . x(Nvar−1,HMS−1) x(Nvar,HMS−1)

x(1,HMS) x(2,HMS) . . . . . . x(Nvar−1,HMS) x(Nvar,HMS)


HMS × Nvar

(1)

where HMS and Nvar correspond to harmony memory matrix size and the number of
design variables, respectively.

A new harmony (solution vector) improves by considering three cases which are
memory consideration, random selection, and pitch adjustment mechanisms. In memory
consideration and a random selection, whether selecting the note in the mind of the
musician or not is decided according to the value of harmony memory consideration rate
(HMCR), which is an algorithm control parameter. If a random number (rnd (0,1)) assigned
in the algorithm is smaller than HMCR, a harmony is selected from HM. Otherwise, a
random harmony is selected from the design space with the possibility of (1−HMCR).
The probabilistic process of updating for each design variable value depending on HMCR,
where xi

′ is the new solution vector and Xi is a random selection from the defined range of
design variables in design space, is given by Equation (2).

x′i =
{

x′i ∈
{

x1
i , x2

i , x3
i , . . . , xHMS

i
}

w.p.(HMCR)
x′i ∈ Xi = {xi(1), xi(2), . . . , xi(K)} w.p.(1−HMCR)

(2)

Similar to the process of achieving the best harmony by tuning each musical instrument
appropriately, the pitch adjustment mechanism in the algorithm is applied considering
pitch adjustment rate (PAR) if HMCR possibility is valid in updating the value of the
current design variable. If assigned new rnd (0,1) value for current design variable is
smaller than PAR, design variable is updated according to possibility HMCRxPAR which
is given in Equation (3). Otherwise, the updating process is not applied (1 − PAR) [16,47].

x′i =


xi(k + m) w.p. HMCRxPARx× PAR× 0.5
xi(k−m) w.p. HMCR× PAR× 0.5
xi(k) w.p. HMCR× (1− PAR)

(3)

Here, xi(k) and m correspond to the kth element in Xi and neighboring value (usually
is taken a value of 1), respectively.

In addition, the steps of classical HSA are itemized as follows:

• Step 1: HSA is initialized by determining the constant algorithm parameters (HMS,
HMCR, PAR, and maximum iteration number) and generating design space with
design variable values according to range limitation;

• Step 2: HM matrix is formed randomly by selecting from design space;
• Step 3: Improvisation of a new HM matrix conceiving memory consideration, random

selection, and pitch adjustment mechanisms is carried out;
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• Step 4: HM matrix is updated depending on whether a better solution is obtained, and
then the worst solution is drawn from HM by replacing the better one;

• Step 5: Until the current iteration is reached the predefined maximum iteration number,
Step 3 and Step 4 are repeated. If it is conducted HSA is ended.

2.4. Taguchi Method Background

By determining the proper orthogonal array for the current problem is possible to
limit the number of analyses required for pre-research in the Taguchi method [26,27], which
is based on statistical and a robust design manner. Thus, the orthogonal array which has a
specific array configuration with an extraordinary set of Latin Squares reduces research
costs and allows parametric analysis with fewer trials [48]. The general representation of
orthogonal array is Ld(a)k or Ld mean that d is the total number of trials; a is the number of
levels; k is the number of parameters; L is the type of the orthogonal array. In the Taguchi
design, initially, the parameters that are assumed to be effective on the response value
are determined, and the appropriate orthogonal arrays tabulated in Table 3 are selected
according to the definite number of parameters and the number of levels.

Table 3. Orthogonal array.

Ld
Ld(a)k L4 L4 L8 L8 L9 L9 L9 L18 L16 L16 L16 L16 L25 L25 L25 L25

d 4 4 8 8 9 9 9 18 16 16 16 16 25 25 25 25
k 2 2 4 5 2 3 4 5 2 3 4 5 2 3 4 5
a 2 3 2 2 3 3 3 3 4 4 4 4 5 5 5 5

Finding the best combination of parameters from the cluster which is formed with
different levels of the parameter is possible by using Taguchi Method with less trial,
contrary to performing all analyses as in the full factorial design. For instance, if it is
desired to investigate the parameter effect and the optimum values of the parameters in
a design problem that has five parameters with four levels, 1024 (45) trials are required
in a full factorial design demonstrated schematically in Figure 4. The data set of 1024
combinations is repeated with each other with a specific rule and in order. The harmony
search algorithm must be run to find the best combination from between 1024 algorithm
parameter combinations, including all values of design parameters with their levels. Here,
the best combination means the minimum value of the objective function for the best-
acquired value of parameters. In Figure 4, Pmn (m = 1, . . . ,k; n = 1, . . . ,a) corresponds to
design parameters with their levels, which have an impact on the response. The number of
design parameters (k) and their levels (m) have been taken as five and four, respectively.

However, only 16 trials are performed, which is sufficient to predict the desired results
with an acceptable error employing the L16 orthogonal array according to the Taguchi
method. Calculating the Signal/Noise (S/N) ratio is another of two important steps in the
Taguchi design method. The Signal/Noise ratio (S/N) is described by Taguchi to decrease
variance and is used as performance criteria in experiment design. The S/N ratio is divided
into three depending on the purpose of application; smaller is better, nominal is best, larger
is better as given in, respectively, Equations (4)–(6).

S/N = −10 log
[
∑
(

Y2
)

/n
]

(4)

S/N = −10 log
[
∑
(
Y
)
/σ2

]
(5)

S/N = −10 log
[
∑
(

1/Y2
)

/n
]

(6)
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Here, Y is the response value; n is the number of repetitions; Y and σ are the arithmetic
mean and the standard deviation of the Y values. The S/N ratios are determined for
the obtained Y values by the Taguchi designs. By employing the ascertained S/N ratios,
the arithmetic mean of all S/N ratios (η) is calculated and then ηij is determined via
Equation (7). While ηij informs about the change depending on the response value in all
levels of each parameter, (S/N)ij is the sum of the S/N ratios whose levels are equal to j
for the ith design parameter. The effect of the parameters on the selected response value is
determined by the variance value which shows the distance of the numbers in the series
to the mean of all the numbers in the series. The variance (νi), which is defined as the
sum of the squares of the deviations of the data from the arithmetic mean, is calculated
according to the ηi values, and variance analyses (ANOVA) are performed (Equation (8)).
In the Taguchi approach, the prediction of the response value (ηprediction) by considering
the value that has the most influential parameter level on the design for each parameter
is ascertained via Equation (9), which ηpi is the average S/N ratio value in the estimated
optimum parameter level for the current parameter. The relative error (ε) is calculated by
employing the predicted response value (ηprediction) and the real value of response (ηreal)
which is acquired by substituting the predicted optimum parameter level of parameters by
Equation (10).

ηij =
(S/N)ij

a
(i = 1, . . . , k; j = 1, . . . , a) (7)

ν2
i =

[
j

∑
i=1

(
ηij − η

)2
]

1
a− 1

(8)

ηprediction = η+
k

∑
i=1

(
ηpi − η

)
(9)

ε =
ηprediction − ηreal

ηreal
× 100 (10)
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2.5. A New Hybrid Method Based on Taguchi for Optimum Values of Algorithm Parameters

In this study, a novel Taguchi method integrated hybrid harmony search algorithm
(TIHHSA) has been presented that enables optimum algorithm parameter values by statis-
tically predicting the best fitness value. The TIHHSA flowchart, which explains of forming
Taguchi design matrix, initializing HSA, and performing Taguchi analyses, is depicted as
three sections in Figure 5.
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2.5.1. Forming Taguchi Design Matrix

Finding the best combination is possible by using Taguchi Method with the least
trial, contrary to performing 1024 analyses such as full factorial design which is involved
formed by design parameters with their parameter levels. Initially, the design parameters
and their defined ranges which affect the response value of the optimization problem
to investigate the best combinations that give the minimum fitness (objective) value are
specified according to the process of forming the Taguchi design matrix given in Figure 5.

As the Taguchi design matrix (DM) is not created randomly or repetitively according
to a certain rule, the parameter and its parameter level given differently for each design in
the orthogonal array table are considered for generating DM. In this study, the harmony
memory size (HMS), the harmony memory consideration rate (HMCR), the pitch adjust-
ment rate (PAR), the maximum iteration number (MAXITER), and the independent run
number of whole iterations (RUN) have been accepted as design parameters that directly
affect the convergence rate to the desired fitness value. Parameter levels have been set as
20, 30, 40, 50 for HMS, 0.80, 0.85, 0.90, 0.95 for HMCR, 0.10, 0.20, 0.30, 0.40 for PAR, 2000,
4000, 6000, 8000 for MAXITER and 30, 100, 500, 1000 for RUN. To generate the Taguchi
design matrix (DM), the appropriate orthogonal array L16 (L16(4)5) from Table 3 has been
chosen by five different design parameters, each of which has four levels. If an example
is given for the creation of the 8 of design no in the DM, the parameter levels take as 2
for HMS, 4 for HMCR, 3 for PAR, 2 for MAXITER, and 2 for the RUN as seen in Table 4.
Accordingly, design no 8 is generated by selecting 30 for HMS, 0.95 for HMCR, 0.30 for
PAR, 2000 for MAXITER, and 100 for the RUN. Similarly, the other designs are formed
according to parameter level for the current parameter.

Table 4. L16 orthogonal array and Taguchi design matrix.

Design No
Design Parameters with Levels DM

P1 P2 P3 P4 P5 HMS HMCR PAR MAXITER RUN

1 1 1 1 1 1 20 0.80 0.10 2000 30
2 1 2 2 2 2 20 0.85 0.20 4000 100
3 1 3 3 3 3 20 0.90 0.30 6000 500
4 1 4 4 4 4 20 0.95 0.40 8000 1000
5 2 1 2 3 4 30 0.80 0.20 6000 1000
6 2 2 1 4 3 30 0.85 0.10 8000 500
7 2 3 4 1 2 30 0.90 0.40 2000 100
8 2 4 3 2 1 30 0.95 0.30 4000 30
9 3 1 3 4 2 40 0.80 0.30 8000 100

10 3 2 4 3 1 40 0.85 0.40 6000 30
11 3 3 1 2 4 40 0.90 0.10 4000 1000
12 3 4 2 1 3 40 0.95 0.20 2000 500
13 4 1 4 2 3 50 0.80 0.40 4000 500
14 4 2 3 1 4 50 0.85 0.30 2000 1000
15 4 3 2 4 1 50 0.90 0.20 8000 30
16 4 4 1 3 2 50 0.95 0.10 6000 100

2.5.2. Initializing HSA Process

The process of HSA is performed by employing pre-defined design variables, design
constraints, and objective function of complex benchmark engineering design optimization
problems which are the welded beam (WBD), the pressure vessel (PVD, the gear train (GTD),
and the speed reducer (SRD) engineering design problems and the real-size reinforced
concrete cantilever retaining wall (RCRW) design.

In the optimization process of 16 designs, the algorithm parameters are assigned
by considering DM tabulated in Table 4. End of the optimization process the best fit-
ness values are acquired as response values for each row of DM and engineering design
optimization problems.
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2.5.3. Performing Taguchi Analyses

In this section, the S/N ratios of response value have been calculated via Equation (4),
which is given for smaller is the better purpose, for WBD, PVD, GTD, SRD, and RCRW
engineering design optimization problems, separately. The graphs that show the variation
between the determined ηij values via Equation (7) and the design parameter with their
levels were drawn. The variance (ν) values of design parameters by employing η and ηi
values according to Equation (8) and the parameter effect (PE) on response value based on
the sum of squares for the design parameters are specified.

And then the verification analyses are performed vis a vis estimated optimum values
of design parameters which are suggested for ηprediction value depicted in Equation (9). By
assigning the HMS, HMCR, PAR, MAXITER, and RUN optimum values that come from
the Taguchi approach results to HSA, optimization analyses are conducted again for each
design optimization problem and ηreal is determined. The relative error (ε) which is a
reliability criterion of the Taguchi design is calculated by Equation (10).

3. Design Experiments and Results

In this section, the optimization analysis results reached by the HSA and the proposed
TIHHSA method have been given with the aim of investigating different engineering
optimization design problem’s characteristic effect on the fitness value. In the optimization
analyses performed with HSA, the variation of the fitness values achieved for different
numbers of run values according to the characteristics of different engineering optimization
problems has been examined. The robustness of the proposed TIHHSA method has been
evaluated for engineering optimization design problems and the optimum values of the
algorithm parameters have been estimated with the HMS, HMCR, PAR, MAXITER, and
RUN effects obtained from the variance analyses (ANOVA).

3.1. Optimization Analyses of Engineering Design Problems and Real-Size Engineering Design
Optimization Problem

In this section, the optimization analyses result of the welded beam (WBD), the
pressure vessel (PVD), the gear train (GTD), and the speed reducer (SRD) benchmark
engineering design problems and the real-size reinforced concrete cantilever retaining wall
(RCRW) design have been presented. In the optimization analysis through harmony search
algorithm (HSA) [16], the algorithm parameters are selected as HMS = 20, HMCR = 0.90,
and PAR = 0.35 [47]. Deb’s rules [49] are implemented as a constraint-handling strategy. The
best solution is determined according to penalty values of all constraints with the fitness
values. The best solution is evaluated according to the current fitness value if solutions
have the same penalty value or no penalty.

Different run cases (R30, R100, R500, R1000) have been chosen to investigate the effect
of variable run values on the minimum objective function, in the optimization analyses. HS
algorithm is performed until maximum iteration numbers reach 30,000. This process has
been repeated for different independent runs as 30, 100, 500, and 1000. In the evaluation
of the results, while the best iteration number (BIN) corresponds to the iteration in which
no more minimum objective function value is yielded with ongoing analysis, the best run
number (BRN) is the best-obtained fitness value among all runs for each case. The best,
the worst, the mean, the standard deviation (StD), and the median values of the minimum
objective function (fitness value) have been determined for BRN and BIN, separately.

Achieved statistical evaluations of optimization analyses satisfied the constraints are
tabulated in Table 5 for WBD, PVD, GTD, and SRD.
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Table 5. Statistical results for f(x) optimum values of engineering design optimization problems.

Case
Run Iteration

BRN Best Mean Worst StD Median BIN Best Mean Worst StD Median

W
BD

($
) R30 14(47%) 1.85149 2.62202 3.67302 0.463237 2.57699 28,383(95%) 1.85149 2.10940 7.12472 0.295862 1.97920

R100 33(33%) 1.80231 2.71590 4.23073 0.467682 2.51094 22,548(75%) 1.80231 1.95674 7.35794 0.309656 1.82127
R500 34(7%) 1.75598 2.70736 4.48978 0.500434 2.61591 21,170(71%) 1.75598 2.16143 4.28967 0.312273 2.32239

R1000 276(28%) 1.74026 2.69101 4.89958 0.492996 2.61779 28,817(96%) 1.74026 1.76394 2.36984 0.104493 1.74136

PV
D

($
) R30 21(70%) 6089.66 6815.66 7428.54 404.478 6856.34 16,355(55%) 6089.66 6342.58 43,582.4 2212.31 6094.59

R100 13(13%) 6195.10 6970.5 7502.81 367.191 7038.74 24,997(83%) 6195.10 6436.25 44,557.6 1508.82 6228.33
R500 216(43%) 6000.09 6865.0 7497.80 415.43 6898.75 23,513(78%) 6000.09 6265.77 55,383.2 1979.37 6051.16

R1000 795(80%) 5959.86 6887.8 7557.39 400.214 6919.51 24,449(82%) 5959.86 6417.04 25,980.4 1918.94 6065.6

G
TD

(u
ni

tl
es

s)

R30 7 (23%) 1.54505 × 10−10 4.7459 × 10−8 5.3303 × 10−7 1.0461 × 10−7 1.6106 × 10−8 512 (2%) 1.54505 × 10−10 9.0999 × 10−8 4.7841 × 10−5 2.0475 × 10−6 1.5451 × 10−10

R100 77 (77%) 2.70086 × 10−12 5.8049 × 10−8 7.7986 × 10−7 1.2036 × 10−7 1.3531 × 10−8 12,552 (42%) 2.70086 × 10−12 8.2076 × 10−7 6.1311 × 10−3 7.0792 × 10−5 2.7009 × 10−12

R500 34 (7%) 2.70086 × 10−12 4.9250 × 10−8 1.3811 × 10−6 1.0699 × 10−7 1.8274 × 10−8 210 (1%) 2.70086 × 10−12 2.4972 × 10−5 1.0236 × 10−2 4.8766 × 10−4 2.7009 × 10−12

R1000 198 (20%) 2.70086 × 10−12 4.5731 × 10−8 1.0883 × 10−6 9.0341 × 10−8 1.8274 × 10−8 10 (0%) 2.70086 × 10−12 2.7009 × 10−12 2.7009 × 10−2 7.5126 × 10−26 2.7009 × 10−12

SR
D

(k
g) R30 5(17%) 2994.93 2999.97 3090.64 17.1989 2996.53 22,048(73%) 2994.93 3008.39 4933.98 66.3806 2996.80

R100 59(59%) 2994.79 2996.69 3001.84 1.21818 2996.37 23,877(80%) 2994.79 3002.48 3260.32 28.4670 2997.22
R500 244(49%) 2994.90 2997.30 3098.08 6.27332 2996.60 25,612(85%) 2994.90 3010.85 5137.55 91.5543 2995.26

R1000 112(11%) 2994.84 2997.23 3092.00 4.29835 2996.55 20,879(70%) 2994.84 3006.64 5430.07 88.7313 3000.99

NOTE: The bolded values are the best fitness.



Mathematics 2022, 10, 327 16 of 36

According to Table 5, the minimum fitness value of the WBD problem has been found
for the R1000 case as $1.74026 in 28,817 iterations, which corresponds to 96% of the optimum
search process performed with 30,000 iterations. After this value was accomplished for
276 runs out of 1000 (276/1000 × 100 = 28%), no more minimum fitness was not reached
during continuing runs. For the other run cases (R30, R100, R500), while the optimum
values have been achieved on the average of 80% of 30,000 iterations, it is seen that the
average of 38% of all runs is enough for this search process.

It is clearly shown that the minimum fitness value of PVD has been gained for the
R1000 case as $5959.86 in 82% out of 30,000 iterations and 795 runs out of 1000 (80%). While
the minimum fitness values have been found in an average of 70% of the optimum search
process, an average of 42% of independently operated runs has been sufficient to acquire
the minimum objective function value for R30, R100, and R500 cases.

Though increasing the run number has been caused that the algorithm obligates to
investigate more optimum value, the only best fitness value of GTD problem has revealed
as 2.70086 × 10−12 in the case of R100. While the algorithm has been reached the best
fitness value in 210 and 10 trials out of 30,000 iterations, it is seen that 34 and 198 runs are
enough to find the optimum solution for R500 and R1000 cases, respectively.

When the values tabulated for the SRD problem are examined, it is observed that
the best fitness value (2994.79 kg) has been just attained for the R100 case alike for the
GTD problem, even though the optimization process for more runs which is ongoing. The
searching process for the minimum fitness value of the SRD problem has been performed
with 30,000 iterations and the best value has been found in 23,877 iterations out of entire
iterations that means 80% of the process. The more minimum fitness value has not been
reached for increasing runs.

Since the algorithm cannot reach a better solution after reaching the best solution, the
process is conducted again to possibly find a more minimum result with different runs.
It is observed that more fitness values have been generally yielded with increasing runs
for different design problems. The fitness values of WBD and PVD design problems have
been achieved for the R1000 case when given statistical result tables are examined. The
fitness value of GTD and SRD design problems has been obtained for the R100 case in
optimization analyses which are seen that the fitness value is not changing with continuing
analysis any longer.

It has been seen from the statistical results given in Table 6 for the optimum cost
(RCRW1) and the optimum weight (RCRW2) of the real-size engineering design optimiza-
tion problem (RCRW) that the optimum results are not achieved at the equal runs for
different objective functions of the same optimization problem. The optimum results have
been reached in the R500 case for RCRW1 as $179.449/m and the R100 case for RCRW2 as
5883.61 kg/m. For RCRW1, the optimization process has been completed in 98% iterations
out of whole iterations and 359(72%) run out of 500 runs. In contrast with RCRW1, it has
been seen that this process for RCRW2 is conducted at the time when is operated in 25,444
iterations out of 30,000 and 38 runs out of 500 runs.

Table 6. Statistical results for f(x) optimum values of real-size RCRW engineering design
optimization problem.

Case
Run Iteration

BRN Best Mean Worst StD Median BIN Best Mean Worst StD Median

R
C

R
W

1
($

/m
)

R30 11(37%) 180.082 185.85 194.525 4.52073 185.329 29,447(98%) 180.082 186.376 627.563 21.5973 181.305
R100 76(76%) 179.842 186.153 198.7 4.39706 186.333 29,975(99%) 179.842 186.275 468.5 21.6613 181.156
R500 359(72%) 179.449 186.049 200.756 4.72074 185.306 29,405(98%) 179.449 184.779 480.697 21.1682 180.267

R1000 379(38%) 179.693 186.064 200.572 4.6882 185.019 23,496(78%) 179.693 184.553 462.683 19.8148 179.699

R
C

R
W

2
(k

g/
m

) R30 4(13%) 5886.67 5964.16 6411.61 128.141 5898.14 26,196(87%) 5886.67 5987.62 9578.21 348.742 5894.12
R100 38(38%) 5883.61 5962.77 6302.54 108.939 5910.18 25,444(85%) 5883.61 5964.5 11,125.5 358.102 5884.06
R500 319(64%) 5883.64 5958.45 6764.28 126.388 5903.05 22,311(74%) 5883.64 6007 9570.89 401.738 5892.82

R1000 735(74%) 5884.09 5955.51 6966.85 115.767 5901.38 28,442(96%) 5884.09 6005.54 9984.8 449.616 5884.82

NOTE: the bolded values are the best fitness values.
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The minimum objective function value comparison between the previously reported
studies in the literature which were conducted by utilizing different metaheuristic algo-
rithms and the obtained results of design optimization problems are given for WBD, PVD,
GTD, and SRD in Figure 6a [35,50–70]. In the same figure, general (b) and zoomed (c)
view iteration history graphs of the best solution (fmin) for the best run among all runs are
demonstrated. Detailed comparisons of results for design problems of WBD, PVD, GTD,
and SRD with the studies in the literature are given for optimum solutions in Tables A1–A4
and for constraints in Table A5 of the Appendix A section.
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It is seen that the optimal fmin value ($1.74026) acquired with the HSA algorithm when
is R1000 case in this study is approximately 1% greater than the value ($1.7248) yielded
with the hybrid Taguchi harmony search algorithm [54] according to comparison given
in Figure 6a for WBD. The fmin value acquired as $5959.86 in the R1000 case for PVD is
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above the best fitness value with 2% ($5852.6394) presented according to the study by Gao
et al. [58], which utilized the HSA with the bandwidth improvisation to the pitch adjustment
rate. The reached optimum value of GTD in the R30 case which is 2.70086 × 10−12 is the
same as the best values presented in the literature [61–64]. The acquired optimum value
(2994.79 kg) for SRD is higher than the best fitness value (2876.22 kg) presented in the
literature study [66] with 4% obtained according to the Taguchi-aided optimization search
method.

The comparison between obtained minimum objective function values of RCRW
designs of the optimum cost (RCRW1) and the optimum weight (RCRW2) and the opti-
mization study of retaining wall design in the literature are shown in Figure 7a [40]. The
optimum search process at the run value which is the best solution (fmin) for R30, R100,
R500, and R1000 is given as the general view and zoomed view of iteration history graphs
in Figure 7b,c, respectively. Detailed results with the comparison of the optimum values
in the literature for RCRW1 and RCRW2 designs are listed in Tables A6 and A7 of the
Appendix A section, respectively.

Mathematics 2022, 10, x FOR PEER REVIEW 18 of 37 
 

 

The comparison between obtained minimum objective function values of RCRW de-
signs of the optimum cost (RCRW1) and the optimum weight (RCRW2) and the optimi-
zation study of retaining wall design in the literature are shown in Figure 7a. The opti-
mum search process at the run value which is the best solution (fmin) for R30, R100, R500, 
and R1000 is given as the general view and zoomed view of iteration history graphs in 
Figure 7b,c, respectively. Detailed results with the comparison of the optimum values in 
the literature for RCRW1 and RCRW2 designs are listed in Table A6 and Table A7 of the 
Appendix A section, respectively. 

RC
RW

1 

   

RC
RW

2 

   
 (a) (b) (c) 

Figure 7. Optimization analyses result for the optimum cost and the optimum weight of RCRW 
designs, respectively: (a) Comparisons graphs between the best fitness values and the literature 
study; (b) General view iteration history graphs; (c) Zoomed view iteration history graphs. 

According to the comparison of optimum designs with the literature studies given in 
Figure 7a, it is obvious that RCRW1 and RCRW2 optimum objective function values 
($179.4495/m and 5883.61 kg/m) are greater than the best values ($163.98/m and 5668.5 
kg/m) presented by Gandomi et al. [40] as 9% and 4%, respectively. In this study, it has 
been determined that the optimum solutions yielded by the HSA for two different objec-
tive functions of a real size engineering design optimization problem are close to the lit-
erature values which were reached by using different algorithms in general for compari-
son. Although it is presented as the best solution acquired with the biogeography-based 
optimization (BBO) algorithm considering the optimization problem, it is not specified 
whether the optimum solution of the 26 constraints utilized in the study is provided. Since 
it is important to obtain the best solution that provides all constraints of the optimization 
problem, the values of the constraints accomplished for this study, in which the mathe-
matical model of the optimization problem is compared, are given in Table A8 of the Ap-
pendix A section. 

Conducted analyses have been shown that the appropriate numbers of iteration and 
the independent run of entire iterations, which formed the extent of the acquiring opti-
mum process, are significant to reaching the best fitness value instead of many or fewer 
numbers of them. The reaching process of the maximum iteration number defined as the 
run is accepted 30 times in the literature of optimization studies and the most minimum 
fitness value satisfying the design constraints is presented as the optimum result. The 
minimum fitness values have been yielded by operating different design problems with 

Figure 7. Optimization analyses result for the optimum cost and the optimum weight of RCRW
designs, respectively: (a) Comparisons graphs between the best fitness values and the literature
study; (b) General view iteration history graphs; (c) Zoomed view iteration history graphs.

According to the comparison of optimum designs with the literature studies given
in Figure 7a, it is obvious that RCRW1 and RCRW2 optimum objective function val-
ues ($179.4495/m and 5883.61 kg/m) are greater than the best values ($163.98/m and
5668.5 kg/m) presented by Gandomi et al. [40] as 9% and 4%, respectively. In this study,
it has been determined that the optimum solutions yielded by the HSA for two different
objective functions of a real size engineering design optimization problem are close to the
literature values which were reached by using different algorithms in general for compari-
son. Although it is presented as the best solution acquired with the biogeography-based
optimization (BBO) algorithm considering the optimization problem, it is not specified
whether the optimum solution of the 26 constraints utilized in the study is provided. Since
it is important to obtain the best solution that provides all constraints of the optimization
problem, the values of the constraints accomplished for this study, in which the math-
ematical model of the optimization problem is compared, are given in Table A8 of the
Appendix A section.
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Conducted analyses have been shown that the appropriate numbers of iteration and
the independent run of entire iterations, which formed the extent of the acquiring optimum
process, are significant to reaching the best fitness value instead of many or fewer numbers
of them. The reaching process of the maximum iteration number defined as the run is
accepted 30 times in the literature of optimization studies and the most minimum fitness
value satisfying the design constraints is presented as the optimum result. The minimum
fitness values have been yielded by operating different design problems with different runs
when the number of the runs is greater than 30 according to the results given in the tables.
It observed that while the more minimum fitness values generally are obtained with the
increasing runs in some engineering design problems, the minimum result may not be
found with larger runs too in some of them. This brings to the fore the necessity that the
number of executions of the optimization algorithm may have an optimum value.

3.2. Taguchi Analyses

The best combination, which provided the best fitness value for the welded beam
design (WBD), the pressure vessel design (PVD), the gear tear design (GTD), the speed
reducer design (SRD), the reinforced concrete cantilever retaining wall design (RCRW1)
optimization problems have been investigated in terms of design parameters effective
on the searching optimum solutions via the Taguchi method integrated hybrid harmony
search algorithm (TIHHSA) as visualized in Figure 5.

3.2.1. Part I: Investigation of Five Optimum Design Parameter Values with Effect on the
Fitness Value

For the abovementioned aim, by considering different values of design parameters,
the harmony memory size (HMS), the harmony memory consideration rate (HMCR), the
pitch adjustment rate (PAR), maximum iteration number (MAXITER), and the independent
run number of the whole iterations (RUN), 16 designs given in Table 4 formed according to
L16 orthogonal array have been performed. By utilizing obtained the minimum objective
function values, f(x), for each design optimization problem, the Signal/Noise ratios (S/N),
defined in Equation (4) with the aim of the case of smaller is better, have been calculated
and listed with the response values of different engineering design optimization problems
in Table 7.

Table 7. Response values (f(x)) and S/N ratios of response values.

Design
No

f(x) S/N

WBD
($)

PVD
($)

GTD
(Unitless)

SRD
(kg)

RCRW1
($/kg) WBD PVD GTD SRD RCRW1

1 2.1880 6595.36 9.94 × 10−11 3002.24 196.841 −6.8010 −76.38 200.052 −69.5489 −45.882
2 1.8766 6315.66 2.70 × 10−12 2996.59 183.264 −5.4672 −76.01 231.37 −69.5325 −45.262
3 1.8656 6040.75 2.70 × 10−12 2996.09 181.325 −5.4165 −75.62 231.37 −69.5311 −45.169
4 1.8073 5985.52 2.70 × 10−12 2996.03 180.652 −5.1405 −75.54 231.37 −69.5309 −45.137
5 1.8383 6039.20 2.70 × 10−12 2995.6 183.881 −5.2881 −75.62 231.37 −69.5297 −45.291
6 1.8528 6014.33 2.70 × 10−12 2995.81 181.395 −5.3564 −75.58 231.37 −69.5303 −45.173
7 2.1053 6116.35 2.31 × 10−11 3002.82 189.297 −6.4661 −75.73 212.736 −69.5506 −45.543
8 2.5046 6389.99 2.70 × 10−12 3001.70 187.417 −7.9747 −76.11 231.37 −69.5474 −45.456
9 2.1041 6257.68 2.70 × 10−12 2996.93 185.566 −6.4615 −75.93 231.37 −69.5335 −45.370

10 2.0103 6385.19 9.94 × 10−11 2998.29 186.013 −6.0654 −76.10 200.052 −69.5375 −45.391
11 1.7921 6105.73 2.70 × 10−12 2997.21 183.491 −5.0673 −75.71 231.37 −69.5343 −45.272
12 2.0951 6286.05 2.70 × 10−12 3000.60 188.117 −6.4240 −75.97 231.37 −69.5442 −45.489
13 1.9126 6136.63 2.70 × 10−12 2998.17 190.651 −5.6324 −75.76 231.37 −69.5371 −45.605
14 2.0021 6169.29 2.70 × 10−12 3002.63 195.777 −6.0298 −75.80 231.37 −69.550 −45.835
15 1.9833 6186.53 2.70 × 10−12 2998.66 183.548 −5.9477 −75.83 231.37 −69.5386 −45.275
16 2.1366 6147.29 2.70 × 10−12 2997.24 183.776 −6.5943 −75.77 231.37 −69.5344 −45.286

η 2.0047 6198.22 1.61 × 10−11 2998.50 186.313 −6.0083 −75.84 226.29 −69.5382 −45.402
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The rank (R) which indicates the order of design parameters effect from largest to
smallest have been accomplished by using ηij values for each design optimization prob-
lem. The sum of squares (SS), variance (ν), and rank (R) values acquired from ANOVA
analyses are demonstrated in Table 8. The Taguchi method which is a fractional factorial
design is a saturated model [71,72]. It means that all degrees of freedom are used in the
estimation. For this reason, p values are not given in Table 8 as no residual error occurs in
the Taguchi design with L16(4)5. While the RUN is the most effective parameter being that
the biggest variance value having for WBD, PVD, and GTD designs, the MAXITER is the
most important parameter for SRD and RCRW1 in reaching minimum objective function.
Although the possibility of obtaining the more minimum or the most minimum fitness
value is triggered by extending the optimization process with more iteration such as SRD
and RCRW1 designs, it occurs the outcome that unavailability of no more optimum values
with continuing analyses and needed for a new independent run process such as WBD,
PVD, and GTD problems.

Table 8. Results of variance analyses of WBD, PVD, GTD, SRD, and RCRW1 optimization problems.

Optimization
Problem

Evaluation
Criteria

Design Parameter

HMS HMCR PAR MAXITER RUN

WBD
SS 0.6492 1.7416 1.2039 1.1445 4.0607
ν 0.216309 0.580439 0.401491 0.381525 1.35359
R 5 2 3 4 1

PVD
SS 0.0754 0.0865 0.0188 0.1542 0.4473
ν 0.02515 0.028833 0.006269 0.051393 0.149109
R 4 3 5 2 1

GTD
SS 164.432 164.432 456.416 456.416 654.917
ν 54.8032 54.8032 152.065 152.065 218.268
R 4 5 2 3 1

SRD
SS 4.44 × 10−5 9.58 × 10−6 4.53 × 10−5 6.15 × 10−4 1.36 × 10−4

ν 1.48 × 10−5 3.21 × 10−6 1.51 × 10−5 2.05 × 10−4 4.55 × 10−5

R 4 5 3 1 2

RCRW1
SS 0.052 0.1184 0.0349 0.4879 0.0535
ν 0.0173 0.0395 0.0116 0.1626 0.0179
R 4 2 5 1 3

It is observed from the variance results that the PAR and the HMS have an average
or minimal effect with rank values of 3 or 5 and 3, 4 or 5. In improvising a new solution
of the HSA, if the assigned random number is smaller than HMCR, the PAR is compared
to a new random number. In satisfying this condition, the solution is improved, and its
new fitness value is determined. As including the PAR in this process depends on the
possibility of an assigned random number, it is commented that the PAR may not be a
much effective parameter to find the minimum except for the GTD problem. The PAR
is the second effective design parameter on the best fitness value for GTD which is an
unconstrained design problem. The HMS design parameter may not be the most critical
one since the solutions of HM become the same each other with increasing iteration for
each different run to reach the fmin.

In addition, the prediction of the response value (ηprediction), and the optimum param-
eter combination have been determined separately for each design problem (Table 9). The
real response values (ηreal) which are specified by considering the optimum parameter
combination have been obtained with verification analyses (Table 10).
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Table 9. Verification analyses data and results with optimum values of design parameters.

Optimization Problem Optimum Parameter Combination fmin (ηprediction)

WBD HMS1-HMCR3-PAR2-MAXITER4-RUN4 $1.63817
PVD HMS2-HMCR3-PAR4-MAXITER4-RUN4 $5813.73
GTD HMS4-HMCR4-PAR2-MAXITER2-RUN3 2.60398 × 10−12

SRD HMS1-HMCR1-PAR2-MAXITER3-RUN3 2994.16 kg
RCRW1 HMS1-HMCR3-PAR2-MAXITER4-RUN3 $177.724/m

Table 10. Statistical results from verification analyses of engineering design optimization problems.

Case
Run Iteration

BRN Best
(ηreal)

Mean Worst StD Median BIN Best
(ηreal)

Mean Worst StD Median

WBD 202/1000(20%) 1.7455 2.8743 5.10816 0.54932 2.8190 2598/8000
(32%) 1.7455 1.82 9.44763 0.418665 1.7455

PVD 897/1000(89%) 6054.14 7000.4 8272.08 427.637 7032.49 7828/8000
(98%) 6054.14 7153.31 42,950.5 3947.25 6180.14

GTD 2/500 (0.4%) 2.70086 ×
10−12

5.4247
× 10−8

1.38114
× 10−6

1.34484
× 10−7

1.31252
× 10−8

312/4000
(8%)

2.70086
× 10−12

2.99998
× 10−5

5.5068 ×
10−3

3.7964 ×
10−3

2.70086
× 10−12

SRD 399/500
(80%) 2995.97 3004.43 3022.88 4.62559 3003.84 5746/6000

(96%) 2995.97 3062.32 5322.68 296.145 2996.6

RCRW1 425/500
(85%) 181.035 191.431 206.659 5.36727 191.363 7740/8000

(97%) 181.035 199.648 386.834 38.1441 189.368

Since the optimum values of MAXITER and RUN have been accomplished as their
maximum values (MAXITER = 6000 and 8000 and RUN = 500 and 1000) for different
optimization design problems except for GTD, it is concluded that finding more fitness
values are needed more research process for constrained optimization design problems.
Generally, it is detected from the yielded results that the optimum values of algorithm
parameters of HSA (HMS, HMCR, PAR) have been altered according to the characteristics
of the design problem. In cases with smaller HMS values (20, 30) for WBD, PVD, and
RCRW1, the large HMCR value (0.90) has increased the probability that the new solutions
improvised in the algorithm is selected from the HM, while the new solution has been
randomly selected from the design space with the possibility of small HMCR value (0.80)
for SRD. The GTD unconstrainted design problem whose optimum values are obtained for
HMS = 50 and HMCR = 0.95 shows that the optimum search has been sufficient with fewer
iterations and runs due to the different characteristics of the design optimization problem
and its small size.

3.2.2. Part II: Investigation of Four Optimum Design Parameter Values with Effect on the
Fitness Value

It is apparent from analyses that the most effective algorithm parameter for reaching
the best fitness value is mostly the RUN with S/N ratios and a change percentage of
parameter effect for the 5P case. Furthermore, the minimum objective function value is
estimated via the TIHHSA, when the optimum RUN value equals 1000 for WBD and PVD
and 500 for GTD, SRD, and RCRW1 problems. For this reason, the S/N ratios, variance,
and optimum Taguchi parameter values have been repeated by analyses which are taken
as fix values whose optimum RUN value for four parameters (the 4P case) to reasonably
observe the parameter effect of the other design parameters. According to DM given in
the first section of Table 11, optimization analyzes have been performed and then response
values given in the second section of Table 11 have been obtained.
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Table 11. Response values (f(x)) and S/N ratios of response values.

DM
f(x) S/N
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RUN

WBD
PVD

GTD
SRDR
CRW1

WBD
($)

PVD
($)

GTD
(Unitless)

SRD
(kg)

RCRW1
($/kg) WBD PVD GTD SRD RCRW1

1 20 0.80 0.10 2000 1000 500 1.8162 6105.21 2.70 × 10−12 3000.31 190.785 −5.1831 −75.71 231.37 −69.54 −45.611
2 20 0.85 0.20 4000 1000 500 1.7882 6029.48 2.70 × 10−12 2996.04 183.739 −5.0485 −75.61 231.37 −69.53 −45.284
3 20 0.90 0.30 6000 1000 500 1.8059 5978.28 2.70 × 10−12 2996.04 182.141 −5.1340 −75.53 231.37 −69.53 −45.208
4 20 0.95 0.40 8000 1000 500 1.8331 6033.37 2.70 × 10−12 2996.22 180.155 −5.2637 −75.61 231.37 −69.53 −45.113
5 30 0.80 0.20 6000 1000 500 1.7931 6055.08 2.70 × 10−12 2996.34 182.660 −5.0721 −75.64 231.37 −69.53 −45.233
6 30 0.85 0.10 8000 1000 500 1.7869 5999.42 2.70 × 10−12 2996.01 181.975 −5.0420 −75.56 231.37 −69.53 −45.200
7 30 0.90 0.40 2000 1000 500 1.8419 6127.22 2.70 × 10−12 3000.97 189.144 −5.3055 −75.75 231.37 −69.55 −45.536
8 30 0.95 0.30 4000 1000 500 1.7892 6052.60 2.70 × 10−12 2997.24 183.061 −5.0532 −75.64 231.37 −69.53 −45.252
9 40 0.80 0.30 8000 1000 500 1.9165 6003.01 2.70 × 10−12 2996.23 184.049 −5.6501 −75.57 231.37 −69.53 −45.299
10 40 0.85 0.40 6000 1000 500 1.8280 6044.31 2.70 × 10−12 2996.86 182.456 −5.2397 −75.63 231.37 −69.53 −45.223
11 40 0.90 0.10 4000 1000 500 1.8945 6098.92 2.70 × 10−12 2997.09 182.774 −5.5498 −75.71 231.37 −69.53 −45.238
12 40 0.95 0.20 2000 1000 500 2.1363 6034.29 2.70 × 10−12 3002.13 189.270 −6.5932 −75.61 231.37 −69.55 −45.542
13 50 0.80 0.40 4000 1000 500 1.9349 6087.48 2.70 × 10−12 2997.00 190.329 −5.7333 −75.69 231.37 −69.53 −45.590
14 50 0.85 0.30 2000 1000 500 1.9848 6213.94 2.70 × 10−12 3001.98 199.838 −5.9544 −75.87 231.37 −69.55 −46.014
15 50 0.90 0.20 8000 1000 500 1.8826 6073.32 2.70 × 10−12 2995.93 180.585 −5.4950 −75.67 231.37 −69.53 −45.134
16 50 0.95 0.10 6000 1000 500 2.0482 6091.36 2.70 × 10−12 2997.44 182.249 −6.2276 −75.69 231.37 −69.54 −45.213

η 1.8800 6064.21 2.70 × 10−12 2997.74 185.326 −5.4716 −75.66 231.37 −69.54 −45.356
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In contrast to the Taguchi design with L16(4)5, obtained p values with SS and R values
which are due to the reduction of the number of parameters for the Taguchi design with
L16(4)4 are given in Table 12. The variance values (Table 12) have been specified by utilizing
the S/N ratios (the third section of Table 11) have been calculated with the aim of smaller
is the best. MAXITER is the most effective algorithm parameter according to variance
and rank values for PVD, SRD, and RCRW1 design optimization problems. While the
MAXITER has the first rank value for SRD and RCRW1 problems whose sizes are higher
than the others due to the number of design constraints and design variables, it hasn’t been
a critical factor for the WBD problem. The HMS and HMCR design parameters are the
first and second effective factors, respectively. It is noticed that the HMCR and PAR design
parameters, which are included in the process of reaching the best solution according to the
random number assigned in the algorithm, generally have lower variance. Conducting the
statistical analysis with four design parameters instead of five has not shown reasonable
and changing results for the GTD problem which is unconstrained and has a relatively
small problem size.

Table 12. Results of variance analyses of WBD, PVD, GTD, SRD, and RCRW1 optimization problems.

Optimization
Problem

Evaluation
Criteria

Design Parameter

HMS HMCR PAR MAXITER

WBD

SS 1.803926 0.53773 0.061213 0.45212
ν 0.60131 0.17924 0.020407 0.150711
p 0.100039 0.353229 0.901733 0.405384
R 1 2 4 3

PVD

SS 0.031716 0.001684 0.003575 0.040544
ν 0.0105718 0.000560958 0.00119166 0.0135146
p 0.405366 0.971217 0.921773 0.332366
R 2 4 3 1

SRD

SS 1.98 × 10−5 1.33 × 10−6 1.20 × 10−6 5.93 × 10−6

ν 6.57677 × 10−6 4.40671 × 10−6 4.02287 × 10−7 1.97717 × 10−4

p 0.046127 0.077733 0.658534 0.000333
R 3 2 4 1

RCRW1

SS 0.094191 0.092708 0.050628 0.598937
ν 0.0314006 0.0309005 0.0168764 0.199651
p 0.141871 0.144468 0.272054 0.012293
R 2 3 4 1

In Table 13, the prediction of the response value (ηprediction), and the optimum pa-
rameter combination have been demonstrated for each design problem. In verification
analyses, the minimum objective function values (ηreal) with the statistical evaluations have
been obtained for estimated optimum values of design parameters (Table 14). While the
optimum value of MAXITER has been found as its maximum level as 4 (8000) for PVD,
SRD, and RCRW1, its optimum level is 2 (4000) and 1 (2000) for WBD and GTD, respec-
tively. It is observed that the optimum level of HMS is equal to 1 (20) for all optimization
design problems except for WBD to reach the minimum objective function. Consequently,
it is concluded that the optimum values of HSA parameters act upon properties of the
considered design optimization problem although the convergence of the minimum fitness
value has increased with many iterations.
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Table 13. Verification analyses data and results with optimum values of design parameters.

Optimization Problem Optimum Parameter Combination fmin (ηprediction)

WBD HMS2-HMCR2-PAR4-MAXITER2 $1.7291
PVD HMS1-HMCR4-PAR2-MAXITER4 $5973.13
GTD HMS1-HMCR1-PAR1-MAXITER1 2.70086 × 10−12

SRD HMS1-HMCR1-PAR2-MAXITER4 2995.11 kg
RCRW1 HMS1-HMCR3-PAR2-MAXITER4 $177.842/m

Table 14. Statistical results from verification analyses of engineering design optimization problems.

Case

Run Iteration

BRN
(%)

Best
(ηreal)

Mean Worst StD Median BIN (%) Best
(ηreal)

Mean Worst StD Median

WBD 373/1000
(37%) 1.78312 1.88853 6.22216 0.320969 1.82613 3561/4000

(89%) 1.78312 2.82897 4.61973 0.492371 2.74472

PVD 881/1000
(88%) 6005.19 7125.64 8728.03 503.107 7169.81 7870/8000

(%98) 6005.19 7442.32 67288.7 3342.35 6395.62

GTD 89/500
(%18)

2.70086
× 10−12

5.4247
× 10−8

1.38114
× 10−6

1.34484
× 10−7

1.31252
× 10−8

1250/2000
(63%)

2.70086
× 10−12

2.99998
× 10−5

5.5068
× 10−3

3.7964
× 10−3

2.70086
× 10−12

SRD 195/500
(40%) 2995.63 3002.75 3275.14 13.0823 3001.31 7187/8000

(90%) 2995.63 3037.28 5194.7 234.639 2998.37

RCRW1 460/500
(92%) 180.301 190.495 206.994 5.28013 190.4 7841/8000

(98%) 180.301 204.729 385.939 48.688 188.459

4. Discussion

In this section, yielded results from optimization and statistical analyses by utilizing
proposed TIHHSA with different design parameters have been evaluated in terms of
different design optimization problems. In addition, the examination of the change of
design parameters for different design problems in terms of 5P and 4P cases has been made
according to the comparison graphics given in Figures 8 and 9. By utilizing S/N ratios,
the ηij values have been determined and the variation between response value and design
parameter levels are demonstrated for each design optimization problem according to
five design parameters (the 5Pcase) and four design parameters (the 4P case) as shown in
Figure 8a–e.

The S/N ratios which are control parameters in the Taguchi design supply information
about the variation of the design parameters in different levels. In variation evaluations
of ηij values based on S/N ratios, three features have been observed. The first feature is
belonging to the WBD problem with four design variables and seven design constraints
and the PVD problem with four design variables and three design constraints and it is
detected that there is an important change between S/N ratios of 5P and 4P. It is assumed
that the contributions of other design parameters (HMS, HMCR, PAR, and MAXITER) are
perceived more clearly, since the RUN parameter, which has the most variation in the 5P
case, is taken as constant for its optimum value in the 4P case. The second feature, which
has not emerged any change from 5P to 4P, is observed for the GTD problem with four
design variables and no design constraints. It has been interpreted as no change because
there are no design constraints, and it is a relatively small-size design optimization problem.
The third feature has been determined for large-size design optimization problems which
are SRD with seven design variables and eleven design constraints and RCRW1 with twelve
design variables and twenty-six design constraints. As it has been apparent in the figures,
since the RUN design parameter is not significantly effective in the 5P case, there is no
significant change in other parameters in the 4P case.
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The parameter percentage (PE, %) values which are based on the sum of squares
values acquired from variance analyses are demonstrated for 4P and 5P cases of all design
optimizations problems in Figure 9. In the 4P case where the RUN design parameter is
taken as constant for depending on optimum values of the current design optimization
problem, an increase has been monitored in the PE values yielded for the HMS, HMCR,
PAR, and MAXITER design parameters compared to the 5P case. The PE values of the
RUN design parameter in the 5P case have been obtained 46%, 57%, 35%, 16%, and 7% for
WBD, PVD, GTD, SRD, and RCRW1 problems, respectively. When the PE values 4P and
5P cases have been compared in terms of changes in MAXITER values, it has been seen
that the PE values have increased from 13% to 16% for WBD, from 20% to 52% for PVD,
from 24% to 25% for GTD, from 72% to 95% for SRD and from 65% to 72% for RCRW1
problem. The HMS, HMCR, PAR, MAXITER and RUN design parameters have been the
most effective factor for cases of WBD-4P (63%), GTD-4P (25%), GTD-4P (25%), SRD-4P
(95%), and PVD-5P (57%), respectively.

When the optimum design parameter combinations estimated for the 4P and 5P cases
of different design optimization problems (Figure 10) are compared, it is detected that a
generalization cannot be made because it changes depending on the nature of the design
optimization problem. This result has recognized that taking into account the different
number of design variables, the process of reaching the best solution providing many
design constraints has occurred differently for especially HSA design parameters. While
the ηreal values for 5P case have been accomplished as $1.7455, $6054.14, 2.70 × 10−12,
2995.97 kg and 181.035 ($/m), they have been found for 4P case as $1.78312, $6005.14,
2.70 × 10−12, 2995.63 kg, and 180.301($/m) for WBD, PVD, GTD, SRD, and RCRW1 prob-
lems, respectively. Except for the WBD problem with 2% of change, it has not been found
more minimum objective function values. When the relative error (ε, %) values, which are
calculated by using ηreal and ηprediciton, for all design optimization problems and the cases
have been examined, the maximum ε value has been marked as 6% (Figure 8f).
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A comparison of the best fitness values presented in this study with those reported in
the literature [73], which was shared the best fitness values of HSA and their variant, has
been conducted for the WBD design optimization problem. When the mentioned study
has been examined in terms of the best fitness value and the optimum values of the HS
algorithm, it is seen that fmin value ($1.72489123) is obtained for HMS = 8, HMCR = 0.80,
PAR = 0.30, and MaxIter = 200,000. In this study, the fmin value has been estimated as
$1.7291 and has been found as $1.7455 with verification analyses at HMS = 20, HMCR
= 0.95, PAR = 0.20, MAXITER = 8000, and RUN = 1000. These results show that it is
possible to convergence to the best fitness value with fewer iterations in the optimization
process. Besides, it is concluded that the fmin value ($1.7455) is reasonable according to
compared with the optimum values acquired for other heuristic optimization methods
given in Table A1 of the Appendix A section. Being almost the close fmin values eachother
show that the Taguchi method is an alternative and effective in estimating the optimum
algorithm parameter values of HSA.

The optimum values of MAXITER and RUN have been found as their maximum
values (MAXITER = 6000 and 8000 and RUN = 500 and 1000) for different optimization
design problems, except for GTD. While the f(x) minimum values of WBD and PVD for
HMS = 20, HMCR = 0.90, PAR = 0.35, MAXITER= 30,000 and RUN = 1000 have been
obtained as $1.74026 and $5959.86, the same values of GTD and SRD for HMS = 20, HMCR
= 0.90, PAR = 0.35, MAXITER = 30,000 and RUN = 100 have been found as 2.70086 × 10−12

and 2994.79 kg (Table 5). While fmin (ηreal) of WBD $1.7455 which is quite close to $1.74026
has been found for HMS = 20, HMCR = 0.90, PAR = 0.20, MAXITER = 8000 and RUN =
1000, fmin (ηreal) of PVD $6054.14 which is quite close to $5959.86 too has been found for
HMS = 30, HMCR = 0.90, PAR = 0.40, MAXITER = 8000 and RUN = 1000.
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5. Conclusions

In this study, optimum values of harmony search algorithm (HSA) design parameters,
which are the harmony memory size (HMS), the harmony memory consideration rate
(HMCR), the pitch adjustment rate (PAR), maximum iteration number (MAXITER), and the
independent run number of whole iterations (RUN), have been investigated for complex
benchmark engineering design problems (the welded beam (WBD), the pressure vessel
(PVD), the gear train (GTD), and the speed reducer (SRD)) and complicated real-size
reinforcement cantilever retaining wall (RCRW) design problem. To examine the optimum
values of algorithm design parameters, the Taguchi method integrated hybrid harmony
search algorithm (TIHHSA) has been presented as a new hybrid method based on the
Taguchi Method which is a statistical-based experiment procedure utilized in boosting
algorithmic quality. In addition, the effect of algorithm design parameters on the best fitness
value and characteristics of the optimization problem has been studied. The results yielded
according to the optimum algorithm design parameters and the best fitness values, whose
values do not change with repetitive statistical, and optimization analyzes for different
engineering design optimization problems, are as follows;

Accomplished results from the Taguchi analyses show that converging to the best
fitness value is possible with fewer iteration numbers in a shorter time;

• The obtained estimations have a reasonable relative error in determining optimum
values of algorithm design parameters without performing many trials;

• It has been seen that the optimum values of the algorithm design parameters vary de-
pending on the nature of the design optimization problem, which includes the number
of design variables, the number of design constraints, exposure to the constraints.

• Instead of taking into account the value of the algorithm parameter proposed for char-
acteristically different optimization problems in the literature, it has been concluded
that using the optimum values yielded statistically according to the nature of the
problem is an effective and prosperous manner in converging to the optimum.

• Instead of the trial-error method, which is time-consuming and exhaustive, it has
been concluded that the newly proposed TIHHSA is a robust and reliable method
for estimating the optimum algorithm parameter values of the harmony search meta-
heuristic optimization technique in a shorter time without conducting sensitivity
analyses which are utilized to increase convergence rate in the solution of the design
optimization problem.
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Appendix A

Design variables :
→
x = [h, l, t, b]T

Minimize : f
(→

x
)
= 1.10471x2

1x2 + 0.04811x3x4(14.0 + x2)

Subject to : g1

(→
x
)
= τ

(→
x
)
− τmax ≤ 0

g2

(→
x
)
= σ

(→
x
)
− σmax ≤ 0

g3

(→
x
)
= x1 − x4 ≤ 0

g4

(→
x
)
= 0.10471x2

1 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0

g5

(→
x
)
= 0.125− x1 ≤ 0

g6

(→
x
)
= δ

(→
x
)
− δmax ≤ 0

g7

(→
x
)
= P− Pc

(→
x
)
≤ 0

where τ
(→

x
)
=
√
(τ′)2 + 2(τ′)(τ′′ ) x2

2R + (τ′′ )2 τ′ = P√
2x1x2

τ′′ = MR
J

M = P
(
L + x2

2
)

R =

√
x2

2
4 +

(
x1+x3

2

)2
σ
(→

x
)
= 6PL

x4x2
3
δ
(→

x
)
= 4PL3

Ex3
3x4

J = 2
{√

2x1x2

[
x2

2
12 +

(
x1+x3

2

)2
]}

Pc

(→
x
)
=

4.013E
√

x2
3x6

4
6L2

(
1− x3

2L

√
E

4G

)
P = 6000lb L = 14in. E = 30× 106psi G = 12× 106psi
τmax = 13, 600psi σmax = 30, 000psi δmax = 0.25in.

(A1)

Design variables :
→
x = [Ts, Th, R, L]T

Minimize : f
(→

x
)
= 0.6224x1x3x4 + 1.7781x2x2

3 + 3.1661x2
1x4 + 19.8621x2

1x3

Subject to : g1

(→
x
)
= −x1 + 0.0193x3 ≤ 0

g2

(→
x
)
= −x2 + 0.00954x3 ≤ 0

g3

(→
x
)
= −πx2

3x4 − 4
3πx3

3 + 1, 296, 000 ≤ 0

g4

(→
x
)
= x4 − 240 ≤ 0

(A2)

Design variables :
→
x = [Ta, Tb, Td, Tf]

T

Minimize : f
(→

x
)
=
(

1
6.931 −

x2x3
x1x4

)2 (A3)

Design variables :
→
x = [x1, x2, x3, x4, x5, x6, x7]

T

Minimize : f
(→

x
)
= 0.7854x1x2

2
(
3.3333x3

3 + 14.9334x3 − 43.0934
)
− 1.5079x1

(
x2

6 + x2
7
)

+7.4777
(
x3

6 + x3
7
)
+ 0.7854

(
x4x2

6 + x5x2
7
)

Subject to : g1

(→
x
)
= 27x−1

1 x−2
2 x−1

3 ≤ 1.0

g2

(→
x
)
= 397.5x−1

1 x−2
2 x−2
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g3

(→
x
)
= 1.93x3

4x−1
2 x−1

3 x−4
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g4
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x
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2 x−1

3 x−4
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g5

(→
x
)
=
(
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4x−2

2 x−2
3 + 16.9× 106
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/1102x6
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x ) =

(
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5x−2
2 x−2
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)

/852x6
7 ≤ 1.0

g7

(→
x
)
= x2x3/40 ≤ 1.0 g8

(→
x
)
= 5x2/x1 ≤ 1.0 g9

(→
x
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(→
x
)
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Fss =
(∑ Wc+∑ Ws+Q+∑ PAy) tan( 2

3 Ob)+ 2
3 x1cb+∑ PP

∑ PAx

Fso =
∑ Wixi+∑ PAyxPAy

∑ PAxxPAx
Fsb =

qult
qmax

∑ Wc = [x1x5 + Hx4 + 0.5(x3 − x4)H + x7x8]γc
∑ Ws = [H + 0.5 tan(β)(x1 − x2 − x3)](x1 − x2 − x3)γr
∑ PAx = [q + 0.5γrKa[tan(β)(x1 − x2 − x3) + H + x5]][tan(β)(x1 − x2 − x3) + H + x5]Kacosβ
∑ PAy = [q + 0.5γrKa[tan(β)(x1 − x2 − x3) + H + x5]][tan(β)(x1 − x2 − x3) + H + x5]Kasinβ
∑ PP = 0.5γb(Df + x8)

2Kp + 2c(Df + x8)
2√Kp

Ka = cosβ cosβ−
√

(cosβ)2−(cos Or)
2

cosβ+
√

(cosβ)2−(cos Or)
2 Kp = tan2

(
45 + Ob

2

)
qult = cbNc + γb(Df + x8)Nq + 0.5γbx1Nγ

q min
max

=
(∑ Wc+∑ Ws+Q+∑ PAy) tan( 2

3 Ob)+ 2
3 x1cb+∑ PP

x1

(
1± 6e

x1

)
e =

∑ Wixi+∑ PAyxPAy−∑ PAxxPAx

(∑ Wc+∑ Ws+Q+∑ PAy) tan( 2
3 Ob)+ 2

3 x1cb+∑ PP

(A5)

Vns,t,h,k = φ0.17
√

fcbd
Mns,t,h,k = φmAsfy

(
d− a

2
) (A6)

Mds = 1.7
[

qKacosβ ((x1−x2−x3)tanβ+H)2

2 + Kaγrcosβ ((x1−x2−x3)tanβ+H)3

6

]
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8
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2
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(A7)

Asmin = 0.25
√

fc
fy

bd ≥ 1.4 bd
fy

Asmax = 0.75× 0.85 fc
fy
β1

(
600

600+fy

)
bd

Ld =


12fyψtψeλ

25
√
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≥ 300mm for db < 19mm

12fyψtψeλ

20
√
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(

0.24fy√
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)
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Design variables :
→
x = [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12]

T

Minimize : fcost

(→
x
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= CsWst + CcVc
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(→
x
)
= Wst + 100Vcγc
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SFss
g2

(→
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Table A1. Optimum values and comparison of the best solutions in literature for WBD.

Optimum Solutions x1(h)(in.) x2(l) (in.) x3(t) (in.) x4(b) (in.) f(x) ($)

Li
te

ra
tu

re

Ragsdell and Phillips [50] 0.24550 6.1960 8.2730 0.2455 2.38593
Deb [51] 0.2489 6.173 8.1789 0.2533 2.433116

Coello [52] 0.2088 3.4205 8.9975 0.21 1.7483
Huang et al. [53] 0.203137 3.542998 9.033498 0.206179 1.73346

Yildiz [54] 0.20573 3.47042 9.03649 0.205735 1.7248
Çarbaş and Saka [55] 0.203907 3.499898 9.063898 0.205594 1.72966

C
as

e
PS

R30 0.206741 3.65285 8.54856 0.231265 1.85149
R100 0.171535 4.42418 8.98313 0.208289 1.80231
R500 0.198864 3.66442 8.94678 0.209895 1.75598

R1000 0.19823 3.64539 9.02857 0.206407 1.74026
WBD-5P 0.195872 3.70387 9.07235 0.205574 1.7455
WBD-4P 0.188171 3.95948 8.91723 0.21133 1.78312

PS Present study.

Table A2. Optimum values and comparison of the best solutions in literature for PVD.

Optimum Solutions x1(Ts) (in.) x2(Th)
(in.) x3(R) (in.) x4(L) (in.) f(x) ($)

Li
te

ra
tu

re

Sandgren [35] 1.125 0.625 48.97 106.72 7982.5
Kannan and Kramer [56] 1.25 0.625 50 120 7198.20

Deb [57] 0.9375 0.50 48.329 112.679 6410.381
Coello [52] 0.8125 0.4375 40.3239 200.0 6288.7445

Gao et al. [58] 0.75 0.375 38.8441 221.612 5852.639
Çarbaş and Saka [55] 0.8125 0.4375 42.09845 176.6366 6059.7143

C
as

e
PS

R30 0.876366 0.434563 45.3293 140.344 6089.66
R100 0.915835 0.454142 47.2497 121.872 6195.1
R500 0.833985 0.413952 43.1577 163.94 6000.09

R1000 0.814181 0.403799 42.1533 176.032 5959.86
PVD-5P 0.84119 0.430252 43.5749 159.245 6054.14
PVD-4P 0.822121 0.409189 42.367 173.44 6005.19

PS Present study.

Table A3. Optimum values and comparison of the best solutions in literature for GTD.

Optimum Solutions x1(Ta)
(piece)

x2(Tb)
(piece)

x3(Td)
(piece)

x4 (Tf)
(piece) Gear ratio f(x) (unitless)

Li
te

ra
tu

re

Zhang and Wang [59] 43 16 19 49 0.1442 2.36 × 10−9

Deb and Goyal [60] 33 14 17 50 0.1442 1.362 × 10−9

Parsopoulos and Vrahatis [61] 43 16 19 49 0.1442 2.701 × 10−12

Gandomi [62] 43 16 19 49 0.1442 2.701 × 10−12

Arora et al. [63] 43 16 19 49 0.1442 2.701 × 10−12

Deniz [64] 43 16 19 49 0.1442 2.701 × 10−12

C
as

e
PS

R30 44 13 21 43 0.144292 1.54505 × 10−10

R100 43 16 19 49 0.144281 2.70086 × 10−12

R500 49 16 19 43 0.144281 2.70086 × 10−12

R1000 49 16 19 43 0.144281 2.70086 × 10−12

GTD-5P 49 16 19 43 0.144281 2.70086 × 10−12

GTD-4P 49 16 19 43 0.144281 2.70086 × 10−12

PS Present study.
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Table A4. Optimum values and comparison of the best solutions in literature for SRD.

Optimum Solutions x1 (cm) x2 (cm) x3 (piece) x4 (cm) x5 (cm) x6 (cm) x7 (cm) f(x) (kg)

Li
te

ra
tu

re

Li and Papalambros
[65] 3.50 0.70 17.00 7.30 7.71 3.3500000 5.2900000 2996.30977

Kuang et al. [66] 3.60 0.70 17.00 7.30 7.80 3.4000000 5.0000000 2876.22
Azarm and Li [67] 3.50 0.70 17.00 7.30 7.71 3.3500000 5.2900000 2996.30978
Vanderplaats [68] 3.50 0.70 17.00 7.30 7.30 3.3502145 5.2865176 2985.15188

Ray [69] 3.50 0.70 17.00 7.30 7.30 3.3502145 5.2865176 2985.15188
Carbas et al. [70] 3.50 0.70 17.00 7.17984 7.70889 3.35009 5.28668 2993.13917

C
as

e
PS

R30 3.5001 0.700016 17.0017 7.30052 7.71562 3.35025 5.28667 2994.93
R100 3.50014 0.700021 17.0002 7.30117 7.71637 3.35053 5.28667 2994.79
R500 3.50029 0.700019 17.0001 7.3009 7.71572 3.35053 5.28681 2994.90

R1000 3.50025 0.700016 17.0004 7.30034 7.71652 3.35036 5.28673 2994.84
SRD-5P 3.50184 0.700073 17.0008 7.3036 7.72133 3.35036 5.28679 2995.97
SRD-4P 3.50006 0.700006 17.0034 7.30108 7.71868 3.3516 5.28677 2995.63

PS Present study.

Table A5. Constraint values of WBD, PVD, and SRD optimization problems.

R30 R100 R500 R1000 5P 4P R30 R100 R500 R1000 5P 4P

WBD

g1(x) −8.821 −0.086 −7.948 −7.525 −65.745 −32.706

SRD

g1(x) 0.92592 0.92598 0.92595 0.92595 0.92536 0.92587
g2(x) −178.142 −14.670 −1.819 −45.079 −213.275 −7.722 g2(x) 0.80178 0.80190 0.80188 0.80187 0.80134 0.80165
g3(x) −0.025 −0.037 −0.011 −0.008 −0.010 −0.023 g3(x) 0.50085 0.50086 0.50081 0.50079 0.50141 0.50012
g4(x) −3.317 −3.338 −3.400 −3.414 −3.407 −3.368 g4(x) 0.09535 0.09539 0.09536 0.09539 0.09555 0.09545
g5(x) −0.082 −0.047 −0.074 −0.073 −0.071 −0.063 g5(x) 0.99994 0.99944 0.99944 0.99974 0.99975 0.99752
g6(x) −0.235 −0.235 −0.235 −0.236 −0.236 −0.235 g6(x) 0.99998 0.99998 0.99982 0.99991 0.99985 0.99987
g7(x) −2211.802 −202.416 −330.005 −55.908 −1.921 −446.574 g7(x) 0.29754 0.29751 0.29751 0.29751 0.29755 0.29756

PVD

g1(x) −0.002 −0.002 −0.004 −0.001 −0.001 0.000 g8(x) 0.99999 0.99999 0.99994 0.99995 0.99958 0.99999
g2(x) −0.002 −0.002 −0.003 −0.002 −0.002 −0.015 g9(x) 0.41667 0.41667 0.41669 0.41669 0.41684 0.41667
g3(x) −89.466 −89.466 −636.323 −9.038 −412.835 −498.618 g10(x) 0.94861 0.94859 0.94862 0.94866 0.94824 0.94882
g4(x) −99.656 −99.656 −118.128 −76.060 −63.968 −80.755 g11(x) 0.99996 0.99987 0.99997 0.99986 0.99924 0.99958

Table A6. Optimum values of RCRW design for the optimum cost (RCRW1).

Optimum
Solutions

x1
(m)

x2
(m)

x3
(m)

x4
(m)

x5
(m)

x6
(m)

x7
(m)

x8
(cm2)

x9
(cm2)

x10
(cm2)

x11
(cm2)

x12
(cm2)

f(x)
($/kg)

Li
te

ra
tu

re

Gandomi
[40] 2.709 1 0.412 0.25 0.4 2.455 0.2 0.2 21.9911 11.7809 11.7809 4.7124 163.98

Gandomi
[40] 2.727 1.035 0.36 0.28 0.401 2.274 0.293 0.296 32.1699 13.3517 13.8544 8.6394 182.79

Gandomi
[40] 2.816 0.988 0.447 0.294 0.422 2.223 0.367 0.203 21.9911 15.2681 15.2681 12.7234 185.05

Gandomi
[40] 2.694 0.836 0.403 0.27 0.405 2.346 0.227 0.445 23.7504 12.7234 22.6195 26.1380 182.84

C
as

ePS

R30 3.3439 1.1598 0.3526 0.2504 0.4 2.5435 0.2002 0.2 21.2999 14.3212 18.8016 7.1532 180.082
R100 3.3431 1.1596 0.3917 0.25 0.4001 2.4623 0.2001 0.2002 18.8963 14.2586 18.9194 9.5172 179.842
R500 3.3351 1.1593 0.4418 0.25 0.4001 3.0523 0.2004 0.2002 16.6776 14.3189 16.557 7.2319 179.449
R1000 3.3394 1.1593 0.3916 0.2501 0.4 2.7275 0.2004 0.2003 18.691 14.392 18.7638 7.2583 179.693

RCRW1−5P 3.36761 1.15955 0.391877 0.250366 0.400094 2.84595 0.200248 0.201545 18.7689 14.4128 18.7273 10.0995 181.035
RCRW1−4P 3.34757 1.15992 0.394711 0.250081 0.400157 2.37294 0.202173 0.201494 18.7718 14.1765 18.7523 9.34978 180.301

PS Present study.
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Table A7. Optimum values of RCRW design for the optimum weight (RCRW2).

Optimum
Solutions

x1
(m)

x2
(m)

x3
(m)

x4
(m)

x5
(m)

x6
(m)

x7
(m)

x8
(cm2)

x9
(cm2)

x10
(cm2)

x11
(cm2)

x12
(cm2)

f(x)
($/kg)

Li
te

ra
tu

re

Gandomi
[40] 2.709 1 0.412 0.25 0.4 2.455 0.2 0.2 21.9911 11.7809 11.7809 4.7124 5668.5

Gandomi
[40] 2.727 1.035 0.36 0.28 0.401 2.274 0.293 0.296 32.1699 13.3517 13.8544 8.6394 6034.4

Gandomi
[40] 2.816 0.988 0.447 0.294 0.422 2.223 0.367 0.203 21.9911 15.2681 15.2681 12.7234 6095.9

Gandomi
[40] 2.694 0.836 0.403 0.27 0.405 2.346 0.227 0.445 23.7504 12.7234 22.6195 26.1380 6094.4

C
as

ePS

R30 3.342 1.1599 0.2505 0.2504 0.4 3.1292 0.2001 0.2001 35.1479 14.1715 21.5672 7.0299 5886.67
R100 3.3426 1.16 0.2501 0.2501 0.4 3.0709 0.2001 0.2002 35.1127 15.0607 21.2321 7.0677 5883.61
R500 3.343 1.1581 0.25 0.25 0.4001 3.0355 0.2001 0.2002 35.247 14.4184 21.3267 7.3429 5883.64
R1000 3.3434 1.1594 0.2501 0.25 0.4 3.1304 0.2001 0.2001 35.2741 14.1095 21.2558 9.3741 5884.09

RCRW1−5P 2.709 1 0.412 0.25 0.4 2.455 0.2 0.2 21.9911 11.7809 11.7809 4.7124 5668.5
RCRW1−4P 2.727 1.035 0.36 0.28 0.401 2.274 0.293 0.296 32.1699 13.3517 13.8544 8.6394 6034.4

PS Present study.

Table A8. Constraint values of RCRW designs for optimum cost and optimum weight.

Optimum Cost (RCRW1) Optimum Weight (RCRW2)

R30 R100 R500 R1000 5P 4P R30 R100 R500 R1000

g1(x) −0.0462 −0.043 −0.037 −0.0421 −0.0497 −0.0441 −0.0536 −0.0537 −0.0543 −0.0541
g2(x) −0.638 −0.6334 −0.6224 −0.6305 −0.6613 −0.6376 −0.6468 −0.6472 −0.648 −0.6484
g3(x) −2.5539 −2.569 −2.5824 −2.5638 −2.6425 −2.5813 −2.5106 −2.5112 −2.5092 −2.5137
g4(x) −0.1129 −0.1141 −0.0221 −0.0199 −1.8384 −0.3677 −0.0072 −0.0142 −0.0149 −0.0925
g5(x) −0.0001 −0.0004 0.0000 −0.0002 −0.0009 −0.0085 −0.0633 −0.0615 −0.061 −0.0615
g6(x) −0.4023 −0.4058 −0.4103 −0.4057 −0.4115 −0.4066 −0.3937 −0.4242 −0.3951 −0.3944
g7(x) −0.0326 −0.0701 −0.0052 −0.0728 −0.0531 −0.07 −0.062 −0.0482 −0.0464 −0.0472
g8(x) −0.9964 −0.9973 −0.9964 −0.9964 −0.9974 −0.9973 −0.9964 −0.9964 −0.9964 −0.9973
g9(x) −0.3955 −0.4637 −0.5333 −0.4635 −0.464 −0.4684 −0.1169 −0.1154 −0.115 −0.1154
g10(x) −0.4032 −0.4065 −0.4107 −0.4064 −0.4096 −0.407 −0.3956 −0.3955 −0.3964 −0.3959
g11(x) −0.065 −0.0845 −0.1132 −0.0858 −0.0767 −0.0847 −0.0179 −0.0175 −0.0167 −0.017
g12(x) −0.9936 −0.9935 −0.9936 −0.9935 −0.9934 −0.9936 −0.9935 −0.9935 −0.9935 −0.9935
g13(x) −0.4189 −0.2727 −0.0625 −0.2729 −0.2724 −0.2671 −0.7519 −0.7523 −0.7524 −0.7523
g14(x) −0.0097 −0.0095 −0.0095 −0.0097 −0.0095 −0.0093 −0.0097 −0.0618 −0.0095 −0.0097
g15(x) −0.2573 −0.2571 −0.151 −0.2573 −0.2571 −0.257 −0.3504 −0.3408 −0.3406 −0.3408
g16(x) −0.0087 −0.2569 −0.0077 −0.0077 −0.3028 −0.2492 −0.0092 −0.0092 −0.0092 −0.2569
g17(x) −0.6471 −0.7181 −0.7813 −0.718 −0.7182 −0.7202 −0.1734 −0.1721 −0.1718 −0.1721
g18(x) −0.7929 −0.793 −0.793 −0.7929 −0.793 −0.793 −0.7929 −0.7814 −0.793 −0.7929
g19(x) −0.7239 −0.724 −0.7585 −0.7239 −0.724 −0.724 −0.6844 −0.689 −0.689 −0.689
g20(x) −0.7931 −0.7241 −0.7934 −0.7934 −0.7059 −0.7269 −0.793 −0.793 −0.793 −0.7241
g21(x) −0.5477 −0.536 −0.5199 −0.5356 −0.5393 −0.5356 −0.578 −0.5781 −0.5788 −0.5784
g22(x) −0.1795 −0.2036 −0.0247 −0.1232 −0.0954 −0.2308 −0.0038 −0.0214 −0.0321 −0.0039
g23(x) −0.2382 −0.3654 −0.3654 −0.3652 −0.3654 −0.3655 −0.3652 −0.3652 −0.3654 −0.3652
g24(x) −0.6364 −0.6365 −0.6365 −0.6364 −0.6365 −0.6365 −0.6364 −0.4909 −0.6365 −0.6364
g25(x) −0.6364 −0.6365 −0.6365 −0.6364 −0.6365 −0.6365 −0.4182 −0.5636 −0.5638 −0.5636
g26(x) −0.1113 −0.3654 −0.1115 −0.1113 −0.1115 −0.3655 −0.1113 −0.1113 −0.1115 −0.3652
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41. Kalemci, E.N.; İkizler, S.B.; Dede, T.; Angın, Z. Design of Reinforced Concrete Cantilever Retaining Wall Using Grey Wolf
Optimization Algorithm. Structures 2020, 23, 245–253. [CrossRef]
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