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Abstract: As the necessity of location information closely related to everyday life has increased, the
use of global navigation satellite systems (GNSS) has gradually increased in populated urban areas.
Contrary to the high necessity and expectation of GNSS in urban areas, GNSS performance is easily
degraded by multipath errors due to high-rise buildings and is very difficult to guarantee. Errors
in the signals reflected by the buildings, i.e., multipath and non-line-of-sight (NLOS) errors, are
the major cause of the poor accuracy in urban areas. Unlike other GNSS major error sources, the
reflected signal error, which is a user-dependent error, is difficult to differentiate or model. This
paper suggests training a multipath prediction model based on support vector regression to obtain
a function of the elevation and azimuth angle of each satellite. To extract an unbiased multipath
from the GNSS measurements, the clock error of high-elevation QZSS was estimated, and the clock
offset with other constellations was also calculated. A nonlinear multipath map was generated, as a
result of training with the extracted multipaths, by a Support Vector Machine, which appropriately
reflected the geometry of the building near the user. The model was effective at improving the urban
area positioning accuracy by 58.4% horizontally and 77.7% vertically, allowing us to achieve a 20 m
accuracy level in a deep urban area, Teheran-ro, Seoul, Korea.

Keywords: deep urban area positioning; GNSS; multipath; non-line-of-sight error; support vector
regression; support vector machine

1. Introduction

Global navigation satellite systems (GNSS) have been used as the main navigation
source in various location-based services (LBS), such as vehicle navigation [1,2] and smart
phone location services, for the past 30 years, and are also expected to be used for au-
tonomous cars [3,4] and unmanned aerial mobility (UAM) vehicles [5,6]. Its capability
to provide absolute position information with only four visible satellites in any weather
conditions anywhere on earth [7–10] enables it to provide position information to all fields
related to location worldwide. As the necessity of position information for everyday life,
such as in car navigation and smart phones, has increased, GNSS usage has gradually
increased in densely populated urban areas. Contrary to the high demand and expectations
for GNSS in urban areas, GNSS performance is easily degraded by multipath errors due to
high-rise buildings, and robust and reliable navigation is a primary challenge for urban
navigation [6]. In urban environments, satellite signals are easily blocked and/or reflected
by tall buildings [11], and GNSS is not accurate or reliable due to severe multipath errors
and unfavorable satellite geometry [6]. Multipath and non-line-of-sight (NLOS) signals
are major error sources of GNSS in urban canyons. Although multipath and NLOS should
be acknowledged as separate phenomena, they usually occur together and, thus, they
are difficult to deal with separately in dense urban areas [12]. GNSS receivers perceive
NLOS-type reflected signals as actual measurements [12], which might cause errors of
several hundred meters.
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The most usual method for reflected signal error mitigation is to increase the number of
multi-GNSS signals [13,14]. Unlike other GNSS major error sources, which can be removed
by differential GNSS (DGNSS) [15] or real time kinematics (RTK) [16,17], the reflected
signal error, a user-dependent error, is difficult to differentiate or model. Instead, satellite
elevation angle or signal strength measures, such as signal-to-noise ratio (SNR), can be
used for selecting or weighting the satellites to be used for positioning. However, this
multi-constellation system, with a large number of satellites, is often not effective, since
the building geometry is not uniform enough to apply elevation masking in urban areas,
and the strength of the signals reflected by the glass or metal parts of the buildings are
often stronger than direct ones [18,19]. Three-dimensional (3D) maps [20,21] have recently
been used to predict whether a satellite signal is a reflected signal, or if range correction is
required to use reflected signals for positioning [22]. Shadow matching uses 3D city models
to match each GNSS signal, making them directly visible in some areas and blocked in
others [23]. It is designed to improve the cross-street accuracy [22], but it often causes an
increase in computational load and positional inaccuracy [19] because it generates a large
number of position candidates. On the other hand, a ray-tracing algorithm simulates the
LOS and NLOS signal travel distance between each satellite and a receiver [24–26], and
then calculates the multipath correction. As with shadow matching, a roughly known
candidate position makes an alternate computation of the iterated position and NLOS
corrections until converging with large uncertainties, which introduces multiple candidates
and eventually increases the processing load [19,20,22].

To break through the chronic difficulties of GNSS, research using machine learning
techniques has recently been conducted to enhance the robust and accurate performance
of GNSS in the urban canyon. Since machine learning techniques are tolerant to data
that are imprecise, partially incorrect, or uncertain [27], it can be a powerful tool for
handling reflected signals with complex and nonlinear behavior in urban canyons. There
are three ways in which machine learning can be used to enhance urban GNSS positioning:
multipath/NLOS classification, reflected signal detection and mitigation, and reflected
signal corrections.

First, the signal classification method separates the LOS multipath from NLOS signals
using actually observed signal characteristics. A Support Vector Machine (SVM)-based
algorithm has been able to classify with approximately 75% accuracy, when trained by
measurement residuals, code and Doppler measures, and C/N0 [28]. When a left-handed
circularly polarized (LHCP) antenna was added to a conventional right-handed circularly
polarized (RHCP) antenna, various machine learning methods can be utilized for the signal
classifier training of the information provided by the RHCP and LHCP antennas [29,30]. The
features of the shape of the correlation function can be also used for the NLOS classification,
and neural networks (NN) had a slightly better classification performance than SVM of
97.7% [31]. These methods focus only on classification itself, or employ NLOS measurement
exclusion, and thus they often do not contribute significantly to improving accuracy or
even reducing availability.

Second, the reflected signal detection and mitigation technique uses machine learning-
based classifiers to detect reflected signals and then mitigate their effects in positioning. A
multi-feature SVM signal classifier provided a weighting scheme based on the probability of
the reflected signal that is superior to the traditional weighting in urban environments [32].
The change in the shape of the correlation values of NLOS signals can be trained by
convolutional neural networks, and its reflected signal discrimination probability was
98%, with the positional accuracy improved by 30 m [33]. However, this method does not
ultimately eliminate the reflected signal errors, but rather unweights them, so it could not
be a solution to the extremely large multipath errors of hundreds of meters.

Last, the reflected signal error correction method, using machine learning, directly
predicts and corrects the delay path of the reflected signal, and then uses the corrected
signals for positioning. A study has been conducted to directly correct multipaths by
applying the iterative properties of satellite orbits to machine learning [34]. This study
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shows that, by training a multipath estimation model using the multipath characteristics
according to the repetitive satellite orbits of each satellite, the positioning accuracy is
improved when compared to the general smoothing technique in an open sky environment.
In this paper, a multipath is modeled using only the elevation and azimuth of the satellite;
however, a multipath in an open sky environment is modeled, rather than an urban
multipath with complex and nonlinear characteristics. The GNSS multipath modelling
techniques using machine learning are summarized in Table 1.

Table 1. Classification of the GNSS Multipath Modelling Techniques using Machine Learning.

Approach Techniques Features of Techniques Accuracy References

Classification SVM Doppler shift used as key feature in the
signal classifier 75% [28]

Classification Decision Tree, SVM, KNN Fusion of information provided by RHCP and
LHCP antennas is used for signal classifier

99%
(KNN) [29]

Classification SVM, NN GNSS signal correlation output is used to detect
NLOS signal

98%
(NN) [31]

Mitigation SVM Weight scheme based on probability of the signal
being NLOS or LOS 86% [32]

Mitigation CNN NLOS probability of CNN-based discriminator is
used for position calculation 98% [33]

Correction SVR Multipath is directly estimated using iterative
properties of satellites orbit N/A [34]

In this paper, we introduce an SVM-based nonlinear NLOS/multipath prediction
model using only the relative position information of the user and the satellite. It belongs
to the third category of the machine learning-based multipath error research. It is very
suitable for urban area positioning because it can directly remove the multipath error so as
to be used for positioning without causing damage to availability. Moreover, the suggested
nonlinear prediction model also does not require additional information, such as a 3D map
or hardware modification, e.g., an LHCP antenna. As a result, it can be easily applied to
most commercial receivers, even if map information is not connected. In addition, the
distinction between the direct signal, multipath, and NLOS signal is not necessary for
this model, so it can be generally applicable to all constellations and satellites. Since the
distinction between multipath and NLOS error is meaningless for the suggested method,
we collectively refer to both errors induced by these two reflected signals, i.e., LOS and
NLOS signals, as multipaths in this paper.

The remainder of this paper is organized as follows. In Section 2, a mathematical model
of GNSS observables and multipath errors is described that considers leveling the clock
offset between different constellations. Section 3 explains the nonlinear regression-based
multipath map construction methodology and discusses the map’s validity for multipath
corrections. A field test was conducted in Teheran-ro, Seoul, Korea, and the results are
examined in Section 4. The discussion and conclusions are presented in Section 5.

2. Mathematic Models of GNSS Observables and Multipath Error
2.1. GNSS Observables and Multipath Error

The GNSS code measurements are the ranges obtained by multiplying the traveling
time of the signal when it propagates from the satellite to the receiver at the speed of
light [35]. The pseudorange code measurement of the i-th satellite at time t can be modeled
as (1):

ρi(t) = di(t) +
(

B(t)− bi(t)
)
+ Ii(t) + Ti(t) + Mi + εi

ρ (1)

where d is the distance between the receiver and satellite, and B and b are the receiver
and satellite clock errors, respectively. I and T denote the ionospheric and tropospheric
errors, respectively. The measurement noise values of the pseudorange and multipath of
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both NLOS and LOS cases are represented by ερ and M. Superscript i refers to the satellite
PRN number.

If a rover’s position at time t has been computed exactly, the multipath error that
corrupts the pseudorange code observable can be calculated as shown in (2). For this
computation, the distance (d̂i) from the rover’s calculated position to each satellite and the
estimated clock biases of the receiver (B̂(t)) and each satellite (b̂i) should be used. Pseudor-
ange correction (PRC, prc) is helpful for mitigating the atmosphere- and satellite-related
errors. Reference station-free PRC corrections are effective and convenient considering the
wide mobility of vehicles, and corrections from SBAS (prcSBAS) were used in this study.

Mi(t) ≈ ρi(t)− d̂i(t)−
(

B̂(t)− b̂i(t)
)
− prci

SBAS (2)

2.2. Multipath Error Extraction from GNSS Observables

If a rover’s position were calculated exactly, the distance (d̂i) and the clock biases of
the receiver (B̂(t)) could also be computed accurately, and consequently the multipath
error could be estimated closely to reality by Equation (2). In other words, the validity
of Equation (2) is highly dependent on the positional accuracy, and it is very difficult
to extract the multipath error from the GNSS observables in a seriously severe reflected
signal reception environment. The distance d̂i can be relatively computed using an external
reference device, whereas the clock bias B̂(t) cannot be accurate because it is a value
coupled with the real-time position of the receiver. The mostly intuitive method is to apply
the clock bias, B̂ls(t), obtained with the position computed by the least-squares method.
As described in (3), the estimation error of the clock bias, δB̂ls(t), is included in the actual
multipath, and the combined term is extracted:

Mi(t) + δB̂ls(t) ≈ ρi(t)− di(t)−
(

B̂ls(t)− bi(t)
)
− prci

SBAS (3)

Since B̂ls is calculated by the least-squares method for all the observed satellites, no
matter how small the error of the i-th satellite is, the extracted multipath inevitably includes
the error δB̂ls(t) due to the other satellites with large errors. The least-squares method of
clock bias estimation, therefore, may degrade the multipath error extraction performance
in urban area environments with severe multipaths. The core technology that extracts the
pure multipath depends on how accurately the clock bias is estimated, and the estimation
performance is also dependent on the multipath effect. The multipath and clock bias
estimation mutually influence each other; thus, estimating clock bias using high-elevation
satellites with little risk of severe multipath errors is suggested in this study.

The Quasi-Zenith Satellite System (QZSS), a dedicated regional Japanese satellite
system, is a good option for reliably estimating clock bias with little anxiety of the multipath
effect. It was designed to complement the visibility and performance of GPS in urban
canyons. Eccentricity and inclination are designed so that users in the Asia–Pacific region
are able to receive the signal from at least one of the satellites near the zenith direction
with an elevation angle above 70◦ [36]. In addition, to effectively improve the satellite
availability for the GPS + QZSS combined system [37], the QZSS clock is synchronized to
GPS time, which enables us to use the clock bias estimated by the QZSS observables for
the GPS multipath estimation. Since the measurements of high-elevation QZSS satellites
can be reasonably assumed to be unaffected by multipath errors, receiver clock bias can be
calculated as in (4):

B̂∗(t) ≈ ρ∗(t)− d∗(t) + b∗(t)− prc∗SBAS (4)

where superscript * means a high-elevation QZSS satellite.
Now, replacing B̂ls in (3) with B̂∗ obtained by (4) enables to extract only the pure

multipath without including δB̂ls, as described in (5):

Mi(t) ≈ ρi(t)− di(t)−
(

B̂∗(t)− bi(t)
)
− prci

SBAS (5)
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Figure 1a shows the GNSS signal reception environment during one hour on 1 September 2020
in Teheran-ro, Seoul, Korea. The receiver clock variation calculated by the least-squares
method is described with the observed GNSS satellite geometry in Figure 1b. Since the
multipath for each measurement is different, the clock bias estimated by the least square of
the residuals entirely depends on which satellites are used for the estimation. As shown in
Figure 1c, the receiver clock bias results estimated by the GPS least-squares method was
unstable and noisy when the satellite combination was frequently changed due to signal
blocking and the signal quality degradation caused by the multipath error in the urban area.
On the other hand, when the receiver clock bias was calculated by measurements from a
QZSS satellite located in the zenith direction, the estimate was computed very precisely.
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To estimate the multipath error of GNSS satellites other than GPS/QZSS, the clock
bias of each constellation should be removed instead of the QZSS clock term, B̂∗, in (5). It is
necessary to compensate for the clock difference between other GNSS and GPS/QZSS in
order to take advantage of the stability and reliability of the clock bias estimated by the
high elevation of the QZSS satellite. A nearby reference station is able to compute the time
difference between the two system, TOGNSS|QZSS, as described in (6). Then, the multipath
errors of other GNSS can be extracted by (7) using the GPS clock bias obtained from the
QZSS observation and the clock difference estimated from the reference station.

TOGNSS|QZSS = BGNSS − B∗ (6)

Mi
GNSS(t) ≈ ρi(t)− di(t)−

(
B̂∗(t) + TOGNSS|QZSS − bi(t)

)
− prci

SBAS (7)

3. Nonlinear Regression-Based Multipath Error Map Construction
3.1. Multipath Modeling

Signal characteristics, i.e., frequency and signal strength, are all different for each
GNSS constellation and satellite; however, signals transmitted from the same transmission
point travel the same straight-line path regardless of the signal type. Accordingly, signals
transmitted from satellites in the same direction have the same reflected path as features
near the user’s position, which is similarly assumed in the ray-tracing technique. Thus, if
the line-of-sight vectors of two satellites from a user’s position are the same, both signals are
highly likely to be placed in the same category among direct signals, LOS-type multipaths,
and NLOS-only-type multipaths. Moreover, their multipath error amounts would be
similar regardless of the multipath and signal types. Eventually, the multipath value is
determined by the relative position of the satellite at a user’s position. Therefore, the
multipath error (Mi

GNSS) can be expressed as a function of the elevation (Eli) and azimuth
(Azii) angle of the i-th satellites as in (8):

Mi
GNSS = f

(
Eli, Azii

)
(8)
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3.2. Nonlinear Regression

The multipath prediction model is trained based on Support Vector Regression. SVR
has been widely used for various engineering problems [38–42]. The Support Vector Regres-
sion (SVR) algorithm is a regression technique based on the Support Vector Machine (SVM).
The SVM solves binary classification problems by formulating them as convex optimization
problems, which entails finding the maximum margin separating the hyperplane, while
correctly classifying as many training points as possible [43]. SVM generalization to SVR is
accomplished by introducing an ε-insensitive region around the function, called the ε-tube.
This tube reformulates the optimization problem to find the tube that best approximates the
continuous-valued function, while balancing model complexity and prediction error [44].
Training data were set as {(x1, y1), . . . , (xn, yn)} ∈ R2 × R, where the input data in x
form a set comprising elevation and azimuth angle data, and y is the multipath extracted
by (5) and (7). For the linear case, the multipath estimation model is represented by (9):

f (x) = 〈w, x〉+ b (9)

where 〈a, b〉 is the dot product between a and b, w ∈ R2 is the weighting vector, and b ∈ R
is the bias vector.

SVR formulates this function approximation problem as an optimization problem that
attempts to find the narrowest tube centered around the surface while minimizing the
prediction error, which is the distance between the predicted and the desired outputs [43].
More specifically, our goal is to find a function f (x) that has at most ε deviation from the
actually obtained targets yi for all the training data. At the same time, it should be as flat
as possible [43], which means a small w. The multipath estimation model can be obtained
from the optimization problems expressed in (10):

minimize
1
2
‖w‖2s.t.

{
yi − 〈w, xi〉 − b ≤ ε

〈w, xi〉+ b− yi ≤ ε
(10)

A key assumption in this formulation is that there exists a function f (x) that can
approximate all input pairs (xi, yi) with ε precision; however, this may not be the case,
or perhaps some error allowance is desired [45]. Thus, slack variables ξi and ξ∗i can be
incorporated into the optimization problem to yield the following formulation (11):

minimize
1
2
‖w‖2 + C

N

∑
i=1

(ξi + ξ∗)s.t.


yi − 〈w, xi〉 − b ≤ ε + ξi
〈w, xi〉+ b− yi ≤ ε + ξ∗i

ξ, ξ∗ ≥ 0
(11)

where constant C > 0 determines the tradeoff between flatness (a small w) and the degree
to which deviations larger than ξ are tolerated, and N is the number of samples. The
ε-insensitive loss function is descried by (12):

|ξ|ε :=

{
0 i f |ξ| ≤ ε

|ξ| − ε otherwise.
(12)

In nonlinear cases, nonlinear function approximation can be achieved by replacing the
dot product of the input vector with a nonlinear transformation of the input vectors [37].
This transformation is referred to as a kernel function and is represented by K

(
xi, xj

)
, where

xi and xj are each input vectors. In this study, the Gaussian kernel given by (13) is chosen
due to its ability to handle nonlinearity [46]:

K
(
xi, xj

)
= exp (−

‖xi − xj‖2

2σ2 ) (13)
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By solving the optimization problem [45], the regression model is finally expressed
as (14):

f (x) =
N

∑
i=1

wiK(xi, x) + b (14)

3.3. Multipath Map Construction

The multipath prediction model constructed by the above-described SVM-based
methodology is basically based on the assumption that the reflected signal error is de-
pendent only on the signal path. The signal path is created by the geometry of three
components: a user position, the location and orientation of buildings around the user, and
the signal transmission point of each observed satellite. While two components among
them, the user position and building geometry, are time-invariant terms, only the signal
transmission point is time variant. Even though the signal transmission point of the satel-
lite is continuously moving, the ray from the satellite to the user is unique and constant
independently of time because temporal variation of the atmospheric delay is mitigated
by the fed PRC. Therefore, the signal ray from a transmission point to a user is always
constant for a specific satellite and user position.

Similarly, the degree of multipath error is the same only if the line-of-sight vector to a
satellite is at the user’s position because the degree of the error is the difference between the
reflected signal and the direct one. The travel distances of the direct signal and the reflected
signal before being reflected by the building are the same, and the path after the reflection
is determined by the incidence angle of each signal. If the incidence angle even for the
signal from a different satellite or constellation is the same, the total number of multipath
errors observed at the user is also the same. As long as the elevation and azimuth angle
are the same, the signals received from satellites of different pseudo-random noise (PRN)
numbers or different constellations can be used as identical output data corresponding to
input data. Therefore, the multipath can be modelled by only the geometrical direction of
the satellite with respect to the user’s position, regardless of the type or constellation of the
satellite, which enables the construction of a multipath map similar to a satellite skyplot.
Considering the geographical location of the Asia–Pacific region as a GNSS satellite hotspot,
where more than 35 satellites are observed at the same time, the ability to generate an
output model for an input from multiple constellations and satellite signals is an advantage
that can enhance the reliability of the model.

The advantage that the multipath model can be created and reinforced from various
signal sources contributes greatly to reliable map construction when considering the actual
radio reception environment in crowded urban areas. Although buildings are the main
cause of the multipath errors, multipaths are also caused by vehicles and pedestrians in
urban areas to a non-negligible degree. Unlike the location and influence of buildings,
they are time variants and, moreover, appear almost randomly over time, which makes
modeling them over time almost impossible. The reinforcement from various signals
enables us to exclude time-varying results as outliers and model only time-fixed properties
properly; therefore, it is possible to construct a map that appropriately models only the
effects of buildings on the multipaths.

3.4. User Utilization of the Multipath Map

Once the multipath map function MSVR is properly constructed, the error-mitigated
pseudorange measurements (ρ̃i) can be obtained by feeding the PRC with the predicted
multipath by the i-th satellite elevation and azimuth angle as shown in (15):

ρ̃i(t) = ρi(t)− prci
SBAS(t)−MSVR

(
Eli(t), Azii(t)

)
(15)

In the ideal case, the pseudorange measurement with the mitigated error should
include only measurement noise and modelling error; however, additional multipath errors
due to vehicles and pedestrians passing by is likely to cause harm to the user position
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accuracy. In order to monitor whether an unmodelled error is included in the observation,
a comparison with the Doppler measurements used in a previous study [47] is conducted.
Since Doppler (dppl) is relatively less affected by the multipaths [48,49], the Doppler and
time difference (∆) of ρ̃ should theoretically have the same value. If the user detects that
the current observable includes an unmodelled multipath with (16), the user excludes it
from the available satellite set for the urban area positioning:∣∣∣∆ρ̃i(t)− dppl(t)

∣∣∣ > Threshold (16)

4. Field Test
4.1. Test Construction

All our numerical experiments were carried out on a PC with an Intel i9-10980HK
CPU at 2.40 GHz and with 32 GB of physical memory. The PC runs MATLAB R2020a
on a Windows 10 Pro 54-bit operating system, and the SVR models were trained using
the default setting of MATLAB. A static field test was conducted in front of the Hyundai
Department Store in Teheran-ro, Seoul, Korea, which is one of the areas with the poorest
GNSS visibility and signal reception globally. According to the 3D building information
provided by VWorld Data Center [50], operated by the Ministry of Land, Infrastructure,
and Transport of South of Korea, it is surrounded by buildings with a height of about 80
m along a road 25 m away around the static test point, as shown in Figure 2. The average
static position error RMS in this was reported to be 55.6 m due to the severe effect of
reflected signals [51].
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Training data and test data were assigned to 1 h of data collected on different days, as
described in Table 2. During the training data collection period, Sejong university Reference
Station (RS) data were also logged to calculate the clock difference between GNSS and
QZSS in the training data. Ublox-F9P receivers were used for both rover and RS multi-
constellation GNSS data, i.e., GPS, GLONASS, BeiDou, GALILEO, and QZSS, as shown in
Figure 3. The true position of the rover was computed by the post-processing results of the
Trimble Business Center.

Table 2. Training and Test Data Set.

Data Set Data Collecting Period (UTC)

Training Data 1 20 July 2108 05:20:00~20 July 2018 06:20:00
Training Data 2 1 September 2020 01:00:00~1 September 2020 02:00:00
Training Data 3 5 November 2020 06:40:00~5 November 2020 07:40:00

Test Data 20 November 2018 12:00:00~20 November 2018
13:00:00
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The left skyplot of Figure 4 shows the satellite tracks observed in the training data.
The trajectories observed in each training data set are different from each other, but some
points intersect or overlap each other, which was expected to increase reliability. The high
elevation angle of a QZSS satellite that was observed to be an average of 72 degrees enabled
us to estimate the stable clock bias and extract the exact multipath without changing
the reference satellite. The right skyplot shows the multipaths extracted from all the
training data and leveled to the high-elevation QZSS clock bias. Although the training data
were collected from various satellites and constellations at different dates and times, the
multipath estimates from similar line-of-sight satellites show similar values regardless of
which satellite and constellation transmitted the signals and when they were broadcast.
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4.2. Multipath Map Construction Results

After matching the extracted multipaths to each elevation and azimuth angle in
Figure 4, they were trained by the SVM, as described in Section 3.2. The nonlinear regression
results can be expressed in the form of a heat map on a skyplot, as shown in Figure 5, right
plot. For comparison with the existing method used for weighting the matrix generation,
the linear regression results are expressed in the same way as shown in the left plot of
Figure 5. Blue means that there was little multipath effect on the observables, and the color
close to red indicates a large effect.

The linear model could find the pattern for the elevation, but did not solve a model
of the azimuth angle. On the other hand, the Support Vector Regression-based nonlinear
model enabled us to model multipaths more flexibly for the azimuth angle. It predicted
the multipath effect to be small for the satellites observed from the northwest direction in
quadrant 2 and the northeast to southwest direction across the map, whereas the multipath
on the edge of the south and west were predicted to be large. The correlation between
the patterns found from the map and the actual influence will be explained in the next
paragraph. Besides, while the maximum multipath was predicted to be 140 m for the
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nonlinear model, the maximum of 70 m was predicted by the linear model based on the
least-squares method. The reason seems to be that the actual large error was regarded as
an excessive error in order to minimize the errors at all points due to the original attributes
of the least-squares method.
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Figure 5. Comparison of the Multipath Maps Constructed by Linear (a) and Nonlinear (b) Regression,
and Horizontal Static Test Results of Nonlinear Regression (c).

In order to intuitively show the appropriateness of the constructed multipath map, a
sky view obtained by adjusting the viewpoint on Google Street View [52] was used with the
satellite view image provided by Google Earth [53]. The static test site was located at the
three-way intersection as shown in the left satellite image in Figure 6. The satellite image
makes it easy to predict that the multipath effect on the signals broadcast from the road
direction would be small. Even though this study did not use the building geometry as prior
information, the geographical tendency of the multipath effect can be easily inferred from
the map in Figure 5, which verifies that the map was constructed appropriately. Figure 5c
clearly shows that nonlinear regression was effective enough to reduce the horizontal
position bias by applying the constructed multipath map.
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Figure 6. Satellite Image of the Static Test Spot (left) and Multipath Map Overlapped with Sky View (right).

The sky view overlapped on the constructed multipath map supports the validity in
more detail. The points where the multipath effects were predicted, which are painted with
colors other than blue, were exactly the same as where the building is viewed from the
ground. In particular, a slightly concave map in the southern part was formed, not flat in
the road direction, which coincides with the building geometry, with the two buildings
that were lower than those on both sides obstructing the satellite visibility less. In addition,
the validity of the map is supported by the results showing that the multipath error
was estimated to be larger in the direction of the lower floors than at the boundary of
the buildings.

4.3. Test Data Application Results

After constructing the multipath map with the training data, the multipath predic-
tion value (MSVR) was used like other correction data in (8) to mitigate the errors in the
observed pseudorange measurements. Multipath errors caused by obstacles other than
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buildings were considered to be outliers and excluded from model generation; however, it
is impossible to distinguish whether an unmodelled multipath was additionally included in
the current measurement at the user side. Equation (16) was used as a metric to determine
if there was an unmodelled multipath for each satellite. Figure 7 shows the predicted
multipath values (MSVR) of the GNSS satellites and the user unmodelled error monitor-
ing results using Doppler. In an ideal case, Doppler (dppl) and the time difference (∆) of
the error-mitigated pseudorange measurement (ρ̃i) should theoretically have the same
value unless an unmodelled multipath error caused by moving obstacles is included. The
error-mitigated pseudorange variations of GPS PRN 26 and Galileo PRN 1 were similar to
their Doppler measurements, which means the constructed model was able to mitigate the
multipath error of the satellites, whereas the Beidou PRN 10 satellite was excluded from the
calculating position at the end of the session, despite its high elevation angle of 50◦, because
the difference between the pseudorange variations and Doppler measurements (∆ρ̃− dppl)
were up to several meters. Series of severe unmodelled multipaths were detected on GPS
PRN 14, where a difference of more than 10 m between the Doppler and pseudorange
time difference existed. Since its elevation angle was about 60 degrees, if it had used
the conventional elevation angle-based weighted algorithm, its weight would have been
set high.

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 7. Examples of Predicted Multipath (𝑴𝑴𝑺𝑺𝑺𝑺𝑺𝑺) and Unmodelled Multipath Metrics (∆𝝆𝝆 −
𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅) Variation in Time. 

Figures 8 and 9 show the comparison of the static test results for positioning mode: 
original positioning, weighted positioning by linear regression, multipath-mitigated po-
sitioning by SVR, and multipath-mitigated positioning by SVR + Doppler check. Since 
high-rise buildings were located along the road from the northeast to the southwest, the 
original position results are biased to the southwest and down direction, even though all 
the constellations and satellites were employed for the positioning. The horizontal and 
vertical root mean square error (RMSE) were about 50 and 100 m, respectively, and the 
vertical error 95 percentile error was up to 142 m, as shown in Table 3. A conventionally 
used linear regression elevation-based weighting method was effective in reducing the 
vertical error by 67%, but it did not contribute to improving horizontal accuracy, whereas 
the SVR-based nonlinear model effectively reduced both horizontal and vertical errors. 
The overall accuracy statistics were improved by 53% horizontally and 69% vertically, and 
the bias error mostly disappeared. However, it was not effective to bind the excessive 
error in the east and down direction from 511 to 1203 epochs. Based on the fact that the 
nonlinear multipath map did not completely mitigate the measurement error in this ses-
sion, it seems that the unmodelled multipath errors were included in it. After applying 
the unmodelled multipath detecting method in (16), both horizontal and vertical excessive 
errors were reduced to the level of other sessions. An accuracy of 20 m was achieved hor-
izontally and vertically, which was an improvement of 58.4% horizontally and 77.7% ver-
tically on the multi-GNSS positioning results. 

 
Figure 8. Horizontal (left) and Vertical (right) Static Test Results. 

-100 -50 0 50 100

East[m]

-100

-50

0

50

100

N
or

th
[m

]

500 1000 1500 2000 2500 3000 3500

Epoch[s]

-300

-200

-100

0

100

200

300

U
p[

m
]

Original

Linear

SVR

SVR(+doppler check)

Figure 7. Examples of Predicted Multipath (MSVR) and Unmodelled Multipath Metrics (∆ρ− dppl)
Variation in Time.

Figures 8 and 9 show the comparison of the static test results for positioning mode:
original positioning, weighted positioning by linear regression, multipath-mitigated po-
sitioning by SVR, and multipath-mitigated positioning by SVR + Doppler check. Since
high-rise buildings were located along the road from the northeast to the southwest, the
original position results are biased to the southwest and down direction, even though all
the constellations and satellites were employed for the positioning. The horizontal and
vertical root mean square error (RMSE) were about 50 and 100 m, respectively, and the
vertical error 95 percentile error was up to 142 m, as shown in Table 3. A conventionally
used linear regression elevation-based weighting method was effective in reducing the
vertical error by 67%, but it did not contribute to improving horizontal accuracy, whereas
the SVR-based nonlinear model effectively reduced both horizontal and vertical errors. The
overall accuracy statistics were improved by 53% horizontally and 69% vertically, and the
bias error mostly disappeared. However, it was not effective to bind the excessive error in
the east and down direction from 511 to 1203 epochs. Based on the fact that the nonlinear
multipath map did not completely mitigate the measurement error in this session, it seems
that the unmodelled multipath errors were included in it. After applying the unmodelled
multipath detecting method in (16), both horizontal and vertical excessive errors were
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reduced to the level of other sessions. An accuracy of 20 m was achieved horizontally and
vertically, which was an improvement of 58.4% horizontally and 77.7% vertically on the
multi-GNSS positioning results.
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Table 3. Statistical Results Comparison of Positioning Modes.

Statistical Results RMS (m) 95% (m) Improvement

Original Horizontal 48.8 72.0 -
Vertical 93.5 142.2 -

Linear Regression Horizontal 35.3 59.2 27.7%
Vertical 30.9 86.5 67.0%

Nonlinear Regression Horizontal 22.8 44.2 53.3%
Vertical 29.1 82.8 68.9%

Nonlinear Regression
(+Doppler Check)

Horizontal 20.3 41.1 58.4%
Vertical 20.7 55.0 77.7%

5. Conclusions, Limitations and Future Works

This paper introduced a nonlinear multipath prediction model to remove the multipath
errors, regardless of constellation or satellite PRN, in deep urban areas. Since this SVM-
based nonlinear model only uses the relative direction of the satellite from a user, all kinds
of signals and receivers can commonly use this model without any classification of signal
or reflection types. Without any help from the prior building information, the multipath
map modelled by the nonlinear regression method reflected exactly where the building is
viewed from the ground.

To validate the suggested algorithm and demonstrate its performance in urban
canyons, we applied the generated model to a static test in Teheran-ro, which is known for
its low visibility of satellites. The model trained by 3 h of static data enabled us to improve
the original position accuracy by 58.4% horizontally and 77.7% vertically, which enabled us
to achieve 20 m accuracy for both directions in a street known globally for the low visibility
of the navigation satellites, Teheran-ro, Seoul, Korea.
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Since this model only requires a data-driven process without additional equipment
or information other than GNSS observables, a similar performance is expected in other
cities, as well as other spots in Seoul, with sufficient data. Moreover, it can directly remove
multipath errors, meaning that it can be used for positioning without availability damage,
and thus it is very suitable for urban area positioning. The fact that it can be trained and
modelled by only GNSS data without additional information from a 3D map or receiver
antenna modification, and that the user calculation load is not large, can increase the value
of the suggested model in various fields in the future.

Based on the algorithm of the multipath construction at a single static site in this paper,
our future work should include realistic scenarios for dynamic users in urban environments.
Even though the azimuth and elevation angle of the satellites at the positions of users
over areas of several kilometers are almost same, the direction of each nearby building
varies significantly depending on the location of the users. As a result, multipath effects
caused by the buildings are significantly different depending on the user position and,
accordingly, dynamic multipath maps should be applied to a user. Therefore, our future
work is on the construction of a dynamic multipath map and its application to the dynamic
user. Since the multipath effect is significantly different depending on the user position,
several multipath maps should be constructed at multiple points in order to be applied to
dynamic users. Further, to identify the optimal option among multiple error maps, user
position uncertainty needs to be resolved in deep areas with excessive outliers.
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