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Abstract: The planning of the location service areas of smart parcel locker facilities became a critical
aspect of logistics last mile delivery. In e-commerce, the efficiency of delivering merchandise from
retailer warehouses to customers determines the competitiveness of retailers and delivery operators.
The considerable increases in e-commerce transactions and safety concerns under the COVID-19
(Coronavirus disease 2019) pandemic made home delivery services even more inefficient than before,
which resulted in the considerable increase in social costs. In numerous countries, smart parcel lockers
were adopted to increase delivery efficiency, decrease the risk of COVID-19 infection, and reduce
the burden on society. This study proposed a multiobjective optimization mathematical model for
investigating the planning of the location service areas of smart parcel locker facilities, and then the
optimization mathematical model was solved using a combination of the Taguchi method (TA) and
nondominant sorting genetic algorithm II (NSGA-II). Finally, this composite approach was applied to
a case study in producing favorable solutions for facility location service area planning.

Keywords: smart parcel locker; logistics last mile delivery; e-commerce; home delivery; nondominant
sorting genetic algorithm II

1. Introduction

The goods and services market was spreading rapidly in the form of e-commerce over
the past decade. An extremely wide range of commodities, from mid-to-low-end consumer
goods to high-end durable goods and Veblen goods, were transacted through e-commerce.
Global e-commerce transactions were valued at US $4.28 trillion in 2020 and are expected
to be valued at US $5.4 trillion in 2022 [1]. The unexpected COVID-19 (Coronavirus disease
2019) pandemic in 2020 forced many countries to implement movement control measures,
which inadvertently changed consumer behavior from shopping in physical stores to shop-
ping in online stores. Consequently, the e-commerce market experienced an explosive and
continuous growth, which considerably increased the quantity of merchandise delivered
and the interaction between consumers and couriers. Given that the consumer–courier
interaction can directly affect the efficiency and completion of merchandise delivery as
well as consumer satisfaction, merchandise delivery, which is the last part of logistics and
supply chain management, requires increased research attention.

The business volume of parcel delivery services is increasing worldwide, which aggra-
vated problems such as traffic congestion, noise, and pollution. Topics related to delivery
planning in each stage of logistics and supply chain management (e.g., loading, distribu-
tion, route planning, delivery volume planning, and transportation planning) attracted
considerable industrial and academic attention, and many concrete and practical delivery
solutions were identified. Parcel delivery, which involves the delivery of merchandise
from retailers to consumers, is the final stage of e-commerce. Merchandise purchased
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through e-commerce is typically delivered to the residence of consumers. The consumer
and merchandise delivery journeys in conventional transactions, which involve consumers
visiting retail stores to select and buy merchandise, are longer and shorter, respectively, than
those in e-commerce transactions. Increases in the distance of the merchandise delivery
journey result in increases in the mileage of delivery vehicles, which increases delivery and
environmental costs. Goodman [2] contended that delivering merchandise to consumers,
which is also referred to as logistics last mile delivery, is the costliest stage of e-commerce
because this stage is inefficient and involves substantial carbon emission. The aforemen-
tioned stage accounts for up to 28% of the total delivery costs. Gevaers et al. [3] suggested
that logistics last mile delivery is a problem primarily because of the following reasons:
(1) customers are not at home: delivery cannot be completed because consumers are not at
designated locations when delivery personnel arrive; (2) empty running: delivery vehicles
often conduct runs when they are partially loaded or unloaded; (3) security concerns: the
requirement for a signature upon delivery can pose security concerns to the recipients and
delivery personnel; (4) insufficient economies of scale: the low buying volume of most
individual consumers and the low delivery volume of certain areas can make it difficult
to achieve sufficient economies of scale; and (5) high carbon emission: the need to deliver
merchandise to the residences of consumers as well as the concerns associated with points
(1) and (2) compelled operators to field a large fleet of small vehicles, which increased their
logistics carbon footprint. Furthermore, Gevaers et al. [3] reported that the cost of logistics
last mile delivery accounts for 13–70% of the total cost of supply chains. Logistics last mile
delivery can critically affect consumers’ online shopping experience; however, problems
arising from inadequate service, such as failed first delivery attempt, package damage,
user-unfriendly return procedure, and misconduct of delivery personnel, hindered the
development of e-commerce [2]. Moreover, consumer–courier interactions can impede
the containment of the ongoing COVID-19 pandemic. All the aforementioned concerns
highlight the need for further research to improve the efficiency of merchandise delivery.

Researchers investigated various aspects of logistics last mile delivery. Caceres-
ruz et al. [4], Vidal et al. [5], Toth and Vigo [6], and Crainic and Laporte [7] investigated
the optimization of delivery route planning, particularly with regard to the presence or
absence of time windows in delivery routes. Anderluh et al. [8], Klumpp et al. [9], Chong
et al. [10], Perboli et al. [11], and Lee et al. [12] designed innovative delivery methods,
such as those involving the use of bicycles, electric vehicles, self-driving vehicles, and
drones. Brown and Guiffrida [13] and Edwards et al. [14] compared the levels of pollution
generated by in-store pickup and home delivery. Montreuil et al. [15] applied the concept of
the Physical Internet in the development of a connected logistics strategy that involves the
use of standardized lockers for storing delivered parcels and the transmission of relevant
information through the Internet. Fazili et al. [16] reported that the application of the
Physical Internet effectively decreases the mileage of delivery vehicles, greenhouse gas
emissions, and costs involved in driving delivery vehicles. Faugere and Montreuil [17]
introduced the concept of hyperconnected smart parcel lockers, which are essentially a
form of the Physical Internet that enables rapid and convenient business-to-consumer (B2C)
merchandise delivery and pickup. The aforementioned authors also compared four locker
systems. Lemke et al. [18] argued that the placement of lockers at certain locations (e.g., in
residential buildings, office buildings, train stations, and shopping malls) for consumers to
pick up their purchased merchandise can effectively shorten merchandise delivery jour-
neys. Cheng et al. [19] proposed that merchandise delivery routes should be designed such
that the closest possible proximity to the center of the area whereto merchandise is to be
delivered is achieved.

Energy shortage and environmental hazards caused considerable concern world-
wide. Effective merchandise delivery is a considerable concern for consumers. In various
countries, smart parcel lockers are set up to achieve effective merchandise delivery while
reducing energy consumption and environmental pollution. Moreover, the establishment of
such lockers eliminates the need for interpersonal contact and thus enables the containment
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of the COVID-19 pandemic. Smart parcel lockers were established by certain operators in
Taiwan; however, the locations of these lockers were decided mainly according to cost and
convenience considerations rather than considerations for consumer demand and needs
or location requirements. Consequently, the use of smart parcel lockers in Taiwan is far
from widespread. Therefore, this study developed a multiobjective optimization decision-
making model to solve the logistics last mile problem through the use of smart parcel
lockers. The TA (Taguchi method) and NSGA-II (non-dominant sorting genetic algorithm
II) were combined to determine optimal locker service areas that satisfied consumer needs
with limited resources.

The contributions of this study are described in the following text. First, this study
developed a novel multiobjective optimization model with three optimization objectives,
namely maximum facility coverage, minimum facility overlap, and minimum total idle
capacity, for planning the service areas of smart parcel lockers. Second, this study inte-
grated the TA and NSGA-II to develop the TA-NSGA-II approach for solving the developed
multiobjective optimization model. This approach requires a relatively small number of
experiments and enables the rapid determination of the optimal parameter combination.
Third, the present study used the TA-NSGA-II approach in a case study to verify the feasibil-
ity of this approach in planning said service areas and its contribution to the development
of operational strategies.

The remainder of this paper is structured as follows. Section 2 presents a review of the
literature on logistics planning and facility site selection. Section 3 introduces the research
assumptions and describes the developed multiobjective optimization model. Section 4
describes the TA-NSGA-II approach. Section 5 presents a discussion on a case study and the
obtained analytical results. Section 6 provides the conclusions of this study and suggestions
for future research.

2. Literature Review

Optimizing the service areas of smart parcel lockers, which is the objective of the
present study, involves the planning of logistic operations and the selection of facility sites.
Therefore, this section reviews the literature on last mile delivery in e-commerce supply
chain management, facility site selection, and NSGA-II.

Houlihan [20] was the first to propose the concept of supply chain management, which
involves the application of industrial dynamics in physical distribution. A supply chain
refers to a network comprising upstream, midstream, and downstream entities that are ded-
icated to various operations that aim to produce goods or services of value [21]. Changes in
the production environment, such as an increase in production costs, resource consumption
and shortage, shortened product lifespan, and global competition, resulted in the formation
of supply chains, which are constituted by the production planning and inventory control
process as well as the distribution and logistics process [22]. Ellram [23] defined supply
chain management as an integrated approach for handling material planning and control
in the different stages between the suppliers to the end users. Supply chain management is
conducted to ensure that the interests of all the members of a supply chain are preserved
and to achieve the optimal use of resources through the comanagement and consistent
plans of supply chain members while providing satisfactory services to customers. Supply
chain management is the integration of key business processes concerning related products,
services, and information between the raw material suppliers and ends users to maximize
the gain of customers and stakeholders. Lambert and Cooper [24] postulated that because
the ultimate goal of a supply chain is to maximize the value that it generates, supply chain
management refers to the integration and management of supply chain members’ material
flow, cash flow, business flow, and information flow to achieve maximum gain for the
supply chain.

The internet enables conventional physical stores to engage in e-commerce and convert
their business model into multichannel retailing [25]. Thus, the Internet changed the
mode of supply chain operations. The real-time exchange of information between supply
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chain members through the internet has enabled them to increase the efficiency of their
operations and decrease their operational costs. Kull et al. [26] maintained that in e-
commerce, which is based on the internet, a quicker and more effective access to information
allows consumers to consider more options. The Organization for Economic Co-operation
and Development defined e-commerce as goods or service transactions completed through
the reception or transmission of order specifications on a computer connected to the Internet.
According to Maulana et al. [27] and Turban et al. [28], e-commerce refers to merchandise
transactions that consumers complete through the Internet. Chiu et al. [29] suggested
that e-commerce transactions have the following attractions to consumers: (1) products
are available uninterruptedly throughout the year; (2) products can be home-delivered,
which eliminates the need to visit physical stores; (3) special offers can be easily compared;
(4) prices are attractive; (5) rare or specialized products can be accessed; (6) abundant
product-related information can be obtained; (7) more options are available compared with
in conventional stores; and (8) any purchased merchandise can be returned.

The operational model of e-commerce mainly comprises business recruitment, the use
of online marketplaces, and last mile delivery. Business recruitment involves identifying
suitable retailers or sellers capable of selling merchandise online. Online marketplaces
provide platforms for online transactions. Retailers or sellers list commodities and relevant
information on these platforms, and consumers use an information system to browse
through the listing and place orders. Last mile delivery refers to the process of retailers or
sellers sending ordered commodities to their customers. Shipping and warehousing are
critical to e-commerce. Retailers and sellers must closely monitor the quality and quantity
of their commodities during shipping and warehousing to ensure that the orders delivered
to their customers are accurate. Shipping and warehousing must also be performed at the
lowest possible cost and on schedule. Among the transaction modes of e-commerce, the
delivery of physical commodities from manufacturers to customers is usually the most
cost-intensive and most difficult to execute [30]. Home delivery is a key trait of e-commerce.
Edwards et al. [14] and Visser [31] observed that the transaction model of e-commerce
typically results in an increase in the volume of parcels but a decrease in their weight, which
compels delivery vehicles to conduct additional runs. Therefore, the growth of e-commerce
scale increases the number of delivery journeys by delivery operators. The prosperity of
e-commerce should not be achieved at the expense of the natural environment.

Last mile delivery refers to the last part of the B2C or consumer-to-consumer (C2C)
merchandise delivery process. The recipient must be present at a designated location
(e.g., their residence) to receive their orders. In practice, the delivery of e-commerce
merchandise involves repeated delivery journeys that produce little value and increase
the mileage of delivery vehicles. Consumers are usually not at home during normal office
hours, which results in the need to transport a parcel to an address two or more times before
it can be delivered. Boyer et al. [32] and de Souza et al. [33] reported that approximately
20–30% of parcels are repeatedly delivered. Gevaers et al. [3] identified logistics last mile
delivery as the most cost-intensive, most pollution-intensive, and least efficient part of the
merchandise logistics process. Moreover, they reported that the low efficiency of logistics
last mile delivery could result in it accounting for up to 75% of the total logistics costs
and that ineffective delivery may result in consumers assigning a low rating to the entire
merchandise purchase system.

E-commerce induced an explosive growth in parcel delivery. In addition to increases
in vehicle exhaust, noise, and traffic accidents, e-commerce has contributed to the deteri-
oration of urban environment. The conventional home delivery pattern of e-commerce
has drawbacks for both sellers and consumers. One solution to address this problem is
the establishment of parcel collection points. Specifically, this solution involves setting
up collection points in certain locations (e.g., in shops or booths) for parcels to be stored
and collected. This practice allows delivery operators to send a large shipment of parcels
to a collection point, which effectively reduces the mileage of their delivery vehicles. It
also allows consumers to pick up their parcels at a time of their choice, which eliminates
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the need of consumers to wait for delivery personnel and provides them flexibility in
time use [34].

A smart parcel locker is a type of parcel storage system that combines the delivery
and pickup aspects of parcel delivery. Such a locker contains a mobile terminal system
that automatically notifies recipients when parcels are shipped to a collection point and
stored in the locker. The recipients can then visit the locker at a convenient time and pick
up their parcels after passing identity verification. Throughout the entire process, delivery
personnel and parcel recipients need not contact with each other. Thus, from the consumer
perspective, the transaction process transitions from passive waiting to proactive picking.
The aforementioned strategy not only gives consumers autonomy over when to collect
their parcels but also addresses their need for privacy. Smart parcel lockers have become
common in Western countries since 2014. Notable smart parcel operators include La Poste
(France), Correos (Spain), UPS (US), Australia Post (Australia), and CTT (Portugal). In
Taiwan, numerous operators have launched smart parcel locker services, including Palm
Box, iPickup, and iBox. Palm Box, which was founded in 2016, mainly set up its collection
points in convenience stores and community centers. It currently owns approximately
1300 collection points, and the logistics operators it works with include SF Express, Pelican,
KTJ, and UPS. iBox, which was also founded in 2016, mainly set up its collection points in
post offices; however, it also set up some collection points at train stations and community
centers. Currently, iBox owns approximately 300 collection points, and it primarily works
with Chunghwa Post. iPickup was established by the Industrial Technology Research
Institute in 2016. It originally targeted school campuses but withdrew from schools in 2019.
Currently, iPickup is eagerly seeking cooperation with convenience stores. The logistics
operators that iPickup works with include Chunghwa Post, KTJ, HCT, Pelican, and T-Cat.

Smart parcel lockers, which can be regarded as temporary parcel storage spaces,
function as warehouses. However, warehouses only allow personnel from their operators
to perform sorting, storing, and pickup tasks in them; unrelated personnel are denied
access. By contrast, people are allowed to enter and pick up parcels from smart parcel
lockers. Therefore, in addition to storage space, the selection of parcel collection points
must consider customer convenience. Because the objective of this study was facility service
planning for smart parcel lockers, consumer needs had to be considered in this study when
searching for suitable service areas of locker sites to address the logistics last mile problem.
In 1909, Weber proposed that the location of a warehouse should be determined with the
aim of achieving the minimum total traveling distance, which is the sum of a candidate
site’s distance with each customer. Weber’s study can be regarded as the beginning of
site selection research. Hotelling [35] examined a scenario in which two rival companies
selected their facility sites in a competitive market. Following Hotelling’s study, studies
have made continual improvements to location theory. As the foundation of facility site
selection and service deployment decision-making research, location theory is applicable
in domains such as industrial production facility planning, spatial layout planning, and
service system site selection.

Facility site selection is critical to organizations because it can profoundly affect their
operation. Depending on the decision-making scenario an organization is in, common
facility location problems include single location problems, multiple location problems,
P-median problems, P-center problems, and covering problems. Owen and Daskin [36]
explored site selection problems and categorized them into four types: P-median problems,
P-center problems, covering problems, and other problems.

P-median problems involve the selection of P locations to set up facilities for demand
points. Decisions are made according to each demand point’s distances from facility
sites. The weighted values of demand and distance are calculated, and the sites with the
smallest total weighted values are selected. P-median problems were first described by
Hakimi [37], who presented a network diagram containing nodes and lines that represented
demand points and traffic routes, respectively. This diagram is based on the premise that
each demand point can also be a candidate facility site, and a set number (P) of sites
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must be selected from candidates with the shortest total travel distance. ReVelle and
Swain [38] developed an integer encoding model for solving P-median problems. This
model minimizes the total weighted distance and is expressed as follows:

min ∑i, j hidijxij,

subject to
∑j xij = 1 ∀i,

xij ≤ yj ∀i, ∀j,

∑j yj = p,

xij ∈ {0, 1} ∀i, ∀j,

yi ∈ {0, 1} ∀j,

where i is the demand point, j is the facility location, hi is the demand at point i, dij is the
distance between demand points i and j. xij is 1 if the demand point i is assigned to the
facility located at j and 0 otherwise, yj is 1 if the facility located at j and 0 otherwise, p is
the number of facilities. Ghoseiri and Ghannadpour [39] and Drezner et al. [40] solved
P-median problems by using genetic algorithms. Griffith and Paelinck [41] proposed the
use of spatial autocorrelation for solving P-median problems.

P-center problems involve determining the relative locations of facilities according
to the minimum coverage distance for a given number of facilities and under the premise
that demand was satisfied. The purpose of solving such problems is to minimize the
maximum facility–demand point distance. Each facility serves as a center point from which
the service perimeter expands as a circle until all the demand points were covered. The
facility with the highest service perimeter must have the smallest possible service perimeter
radius. Hakimi [37] was first to describe P-center problems in a network model. Daskin [42]
developed a mathematical model for solving P-center problems. This model minimizes the
maximum distance and is expressed as follows:

min z,

subject to
∑j xij = 1 ∀i,

∑j dijxij ≤ z ∀i,

∑j yj = p,

xij ≤ yj ∀i, ∀j,

yj ∈ {0, 1} ∀j,

xij ∈ {0, 1} ∀i, ∀j,

where z is defined as the largest distance between a demand point and its closest facility, i is
the demand point, j is the facility location, dij is the distance between demand points i and j.
xij is 1 if the demand point i is assigned to the facility located at j and 0 otherwise, yj is 1 if
the facility located at j and 0 otherwise, p is the number of facilities. Davidović et al. [43]
used bee colony optimization for solving a P-center problem. Martínez–Merino et al. [44]
planned services for potential customers by solving a probabilistic P-center problem.

Covering problems can be categorized into maximal covering location problems
(MCLPs) and location set covering problems (LSCPs). LSCPs were first proposed by
Toregas et al. [45]. These problems are mainly used and solved in the site selection of
emergency service facilities, which requires the satisfaction of all demand points with the
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least number of facilities. The model minimizes the number of facilities and is expressed
as follows:

min ∑j xj,

subject to
∑j xj ≥ 1 ∀i,

xj ∈ {0, 1} ∀i,

where xj is 1 if a facility is established at point j and 0 otherwise. Rajagopalan et al. [46]
developed a multiperiod LSCP model for the dynamic dispatch of ambulances. Ghaderi
and Jabalameli [47] employed heuristic algorithms to solve a budget-constrained dynamic
facility location planning problem.

MCLPs were first proposed by Church and ReVelle [48]. These problems are mainly
solved to determine optimal facility locations for covering the highest number of demand
points with a given number of facilities. The model maximizes the coverage of demand
points and is expressed as follows:

max ∑i hiyi,

subject to
s.t. ∑

j
xj ≥ yi ∀i,

∑j xj ≤ p,

xj ∈ {0, 1} ∀j,

yi ∈ {0, 1} ∀i,

where i is the demand point, j is the facility location, hi is the demand ate point i, dij is the
distance between demand points i and j. xj is 1 if the facility located at j and 0 otherwise,
yi is 1 if the point i is covered by one or more facilities within the expected distance and 0
otherwise, p is the number of facilities to be located. ReVelle et al. [49] applied a heuristic
approach to solve an MCLP. Table 1 presents a comparison of MCLP and LSCP.

Table 1. Comparison of maximal location covering problems (MCLP) and location set covering
problems (LSCP).

LSCP MCLP

Facility The number of facilities is not limited The number of facilities is limited

Demand point Each point must be covered by at least
one facility Not all points must be covered

Objective The number of facilities must be
minimized Service coverage must be maximized

This study aimed to achieve optimal service coverage and satisfy customer demand by
using limited resources. In addition to achieving maximum coverage, this study sought to
avoid excessive overlap between facilities. Therefore, the objective of this study can be seen
as an extension of MCLP. When the scale of a facility site selection problem is increased, the
quantity of data is increased and data processing requires a long time; thus, obtaining an
optimal solution in a short time becomes difficult. A review of the relevant literature reveals
that heuristic algorithms were widely used for solving facility site selection problems. For
example, Ghoseiri and Ghannadpour [39], ReVelle et al. [49], Davidović et al. [43], Ghaderi
and Jabalameli [47], and Drezner et al. [40] reported that heuristic algorithms provide
favorable results when they are used for solving the aforementioned problems. Because
the scenario considered in this study involved a high consumer demand for parcel delivery,
a heuristic algorithm was adopted.
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Holland [50] developed the genetic algorithm according to the law of natural selection,
which is based on the principle of the survival of the fittest. This algorithm determines
the optimal solution of a complex problem through mechanisms such as chromosome
representation, cloning, crossover, and mutation. Fonseca and Fleming [51] developed a
multiobjective genetic algorithm (MOGA) for solving multiobjective optimization problems.
Srinivas and Deb [52] introduced the concepts of nondominated and dominated solutions
into the MOGA to develop the nondominant sorting genetic algorithm (NSGA) for ad-
dressing the interobjective conflicts in multiobjective problems. Deb et al. [53] introduced
domination comparison operations and the crowded-comparison operator into the NSGA
to develop NSGA-II. They also verified that NSGA-II had a significantly higher problem-
solving efficiency than the NSGA did. In NSGA-II, the rankings of nondominated and
dominated solutions are sorted to retain the optimal solutions. Through this elitism strategy,
the stability of the offspring population is ensured; thus, NSGA-II is an effective algorithm
for multiobjective optimization [54,55]. NSGA-II was widely applied in various decision-
making problems, such as multipoint planning and dispatch [56], system reliability [57],
supply chain planning [58], logistics network design [59], oil platform site selection [60],
assembly line balancing [61], satellite data transmission scheduling [62], power system
fault diagnosis [63], electric vehicle charging station location planning [64], and nursing
home location and allocation [65]. Therefore, the present study employed NSGA-II to solve
the developed mathematical model to achieve multiobjective optimization.

3. Mathematical Model for Multiobjective Facility Service Area Optimization
3.1. Assumptions and Notations

This study investigated the facility service areas of smart parcel lockers to address
the logistics last mile problem pertaining to the merchandise delivery demand (B2C or
C2C) induced by e-commerce transactions. The service areas of smart parcel lockers were
determined according to geographic location; online transaction volume; and locker-related
information, including locker capacity, consumers’ desired delivery destinations, and
distances between desired delivery destinations and lockers. In addition, the optimization
of facility service areas can prevent the idling of resources, such as some facilities being
underused due to the personal preferences of delivery personnel. Maximum coverage,
minimum idle capacity, and minimum overlap were used as the bases of assessment for
the service area determination of smart parcel locker facilities in this study.

The following assumptions were made in this study:

1. The customer demand and locations are known;
2. The service cannot be shut down in any smart parcel locker;
3. Nonrecurring events (e.g., traffic accidents and parcels remaining unclaimed) can

be ignored;
4. The total demand for a location does not exceed the total capacity of lockers allocated

to the location.

The notations used in this study are listed in Table 2.

Table 2. Notations for mathematical model.

Notation Definition

Parameter
i Index of locker location
I Total number of locker locations
j Index of demand point
J Total number of demand points

Tcai Total capacity of locker location i
Tdej Total demand for demand point j
Disij Distance between locker location i and demand point j
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Table 2. Cont.

Notation Definition

Decision variable
Asqij Assigning quantity from demand point j to locker location i
Seci Service distance of locker location i
Asdij

{
1, assigning demand point j to locker location i

0, others

Codij


1, demand point j is covered by locker location i, which is within the

service distance of locker location i
0, others

Cotj

{
1, demand point j being covered by two or more lockers

0, others

3.2. Multiobjective Optimization Mathematical Model

Objectives:
Maximum coverage ( f1) refers to the maximum demand that can be satisfied by smart

parcel locker locations.

Max f1 =
∑I

i=1 ∑J
j=1 Codij Asdij Asqij

∑J
j=1 Tdej

, (1)

Minimum overlap ( f2) refers to the minimum number of demand points simultane-
ously covered by multiple smart parcel locker locations.

Min f2 =
∑J

j=1 Cotj

J
, (2)

Minimum total idle capacity ( f3) is the total remaining amount of capacity left in smart
parcel locker locations after assigned capacity were eliminated.

Min f3 = 1−∑I
i=1

∑J
j=1 Codij Asdij Asqij

Tcai

, (3)

Constraints:
One demand point must be assigned by at most one locker location.

∑I
i=1 Asdij ≤ 1 ∀j, (4)

When a demand point is covered by the facilities of a locker location, it must be within
the service distance of the locker location.

CodijDisij ≤ Seci ∀i, j, (5)

The number of assigning demand points to a locker location must not exceed the
number of covered demand points to the locker location.

∑J
j=1 Asdij ≤ ∑J

j=1 Codij ∀i, (6)

The service distance of a locker location must not be less than 1.

Seci ≥ 1 ∀i, (7)
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The total demand of the demand points assigned to a locker location must not exceed
the maximum capacity of the locker location.

∑J
j=1 Asdij Asqij ≤ Tcai ∀i, (8)

When a demand point is covered by at least one locker location.

Cotj =

{
1, ∑I

i=1 Codij > 1
0, ∑I

i=1 Codij ≤ 1
∀j, (9)

Stressing the 0–1 integer restriction for decision-making variables, as shown in Equa-
tion (10). Non-negative integers are as shown in Equation (11)

Asdij ∈ {0, 1} ∀i, j, (10)

Asqij ∈ N ∀i, j, (11)

4. The Proposed TA-NSGA-II Approach

This study proposes TA-NSGA-II, which is a combination of the TA and NSGA-II,
for solving the developed mathematical model for the multiobjective optimization of the
location service areas of smart parcel locker facilities. Considering that smart parcel locker
facilities have a limited capacity, capacity constraints must be applied for planning service
areas when performing iteration. The steps in the TA-NSGA-II approach are as follows:

Step 1 Performing solution encoding and generating the initial population

Each individual is expressed as a chromosome, which represents a group of feasible
solutions. A chromosome, which was encoded using integers in this study, consists of the
smart parcel locker facility to which a demand point is assigned and the service perimeter of
the smart parcel locker facility. First, the maximum service perimeter of each locker facility
is randomly generated. Then, each demand point is randomly assigned to a facility, with the
assignment conforming to the maximum capacity constraint of each facility Equation (8),
and the distance between the two is calculated. The chromosome structure includes four
segments: (A) arrangement of demand quantities from each point to each locker. (B) service
distance of each locker. (C) demand assignment from each point to each locker. (D) coverage
status for each locker. Figure 1 presents the structure of chromosome encoding. The initial
population is generated, with all constraints (Equations (4)–(11)) satisfied, with the primary
purpose of increasing the number of nondominated solutions for the initial search. The
infeasible chromosomes were deleted and replaced by a new group of chromosomes.

Step 2 Calculating the fitness value of each objective

Fitness is a parameter used to evaluate the adaptability of an individual and a bench-
mark for evaluating the evolution of an objective value. In this study, three objective
functions, namely coverage, overlap, and idle capacity Equations (1)–(3), were the fitness
functions used to calculate the fitness value of each individual.

Step 3 Establishing the performance assessment equation

In contrast to the results obtained when solving single-objective problems, those ob-
tained when solving multiobjective problems cannot be easily evaluated. This study
used maximum spread (MS) to evaluate the searching performance of the proposed
algorithm [66,67]. MS mainly reflects the distribution of a nondominated solution set.
A large MS value indicates a wide, extensive distribution. The higher the MS value, the
more diverse are an algorithm’s solutions. The objective functions were normalized and



Mathematics 2022, 10, 422 11 of 22

then substituted into Equation (12) to calculate MS. In Equation (12), S denotes the number
of objective functions and T denotes the number of nondominated solutions.

MS = [∑S
s=1

(
maxT

t=1 f t
s −minT

t=1 f t
s

)2
]1/2, (12)

Figure 1. Chromosome structure.

Step 4 Identifying factors and establishing the orthogonal array

This study used NSGA-II to solve multiobjective optimization problems. The parame-
ters that must be set in NSGA-II include the number of iterations, crossover rate, mutation
rate, and population size. These four parameters were identified as factors, and their factor
levels were determined. A TA orthogonal array was established using the number and level
of factors to obtain experimental parameter combinations. The orthogonal array offered a
systematical and efficient way to change factors, reducing the number of experiments and
simplifying the data processing process.

Step 5 Selecting the optimal parameter combination

The signal to noise ratio (SNR) can serve as a statistic indicating the quality of algorithm
solutions. A higher SNR denotes higher stability of quality. This study adopted MS for
evaluating algorithm performance. With the aim of maximizing the solution quality, this
study adopted Equation (13) to calculate the SNR. The levels of factors (i.e., number of
iterations, crossover rate, mutation rate, and population size) that had a high SNR value
were selected to form the optimal parameter combination for NSGA-II.

SNR = −10log

[
1
n

(
∑n

i=1
1
y2

i

)]
, (13)

Step 6 Ranking chromosomes

After obtaining the fitness values of all the chromosomes, the chromosomes must be
ranked to determine the quality of the solutions. Chromosomes in a population that are
not dominated by any solution are classified as rank 1 chromosomes and excluded in the
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next ranking cycle. This ranking step is repeated until all the chromosomes were ranked.
The solutions with the same rank are nondominated solutions.

Step 7 Calculating crowding distance

Equation (14) presents the formula for calculating chromosomes’ crowding distance,
which is the distance between chromosomes of the same rank. This distance also reflects
the density of chromosomes. A small crowding distance indicates a high density (because
chromosomes are close to each other), and a large crowding distance, a low density. In the
gene cloning stage, selecting chromosomes with a large crowding distance can ensure the
diversity of the solutions.

Crdh = ∑S
s=1 | f

h+1
s − f h−1

s |, h = 2, 3, . . . , H − 1, (14)

where Crdh represents the crowding distance of the hth chromosome; s represents the sth
objective function; H represents the number of chromosomes with a certain rank; and f h+1

s
and f h−1

s represent the values immediately before and after chromosome h in objective
function s, respectively. This study referenced the study of Deb et al. [53] and set the
crowding distances of the first and last chromosomes of a certain rank as infinity to ensure
that both ends of the Pareto front exhibited MS.

Step 8 Using the elitism strategy

The initial population is combined with the offspring generated by the proposed
algorithm. Nondominated solutions are ranked, and crowding distances are calculated,
after which the top 50% of the solutions are retained to be carried over to the next generation.
Among all the chromosomes, the ones with identical genes are eliminated.

Step 9 Gene cloning

Tournament selection is used for identifying the genes for cloning. Two chromosomes
are randomly selected and compared, and the one with a lower rank, or the one with a
larger crowding distance in the event that both chromosomes belong to the same rank, is
retained to be carried over to the next population. The aforementioned process is repeated
until the new population reaches the same size as the initial population.

Step 10 Crossover and mutation

Gene crossover must be performed after gene cloning. Specifically, it involves two
chromosomes contributing a part of their genes to form a new offspring. In this study,
uniform crossover was performed, and the crossover rate obtained in Step 5 was applied.
The uniform crossover method is adopted for the crossover of each segments. Chromo-
somes P1 and P2 are randomly selected from the population. The gene exchange points are
generated by the mask. The value of each mask, is randomly generated, is 0 or 1. When the
gene values derived from the mask value 1, the genes will be exchanged, then the two new
offspring are be produced. The crossover operator is shown in Figure 2. Gene mutation
is a mechanism designed to prevent an objective function from prematurely falling into
a local optimum solution and thus missing the global optimum solution. Gene mutation
is performed according to the mutation rate obtained in Step 5. For the mutation of each
segment, the single point mutation is employed. Randomly selected a chromosome from
the population, a mutation point is randomly selected in the chromosome for performing
mutation (Figure 3).

Crossover and mutation are repeatedly performed until a solution conforming to the
constraints expressed in Equations (4)–(11) are obtained. The infeasible chromosomes were
deleted and replaced by a new group of chromosomes. If the number of evolutions is lower
than the number of iterations obtained in Step 3, Step 2 must be repeated to form a new
generation. In this case, Steps 3–5 need not be repeated because the number of iterations,
crossover rate, mutation rate, and population size are already known.
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Figure 2. Crossover operator.

Figure 3. Mutation operator.

Step 11 Exporting the optimal solution when the termination condition is met

The proposed algorithm is terminated when the number of evolutions reaches the
number of iterations obtained in Step 5.

5. Case Study and Results
5.1. Case Description

To meet the demand for parcel delivery, an operator established 10 smart parcel locker
facilities in the main area it serves; in these facilities, delivery personnel can store parcels,
which can subsequently be collected by customers. For the case study, the locations of the
customers were set as demand points, and the objective was to plan the service areas of
the locker facilities according to the demand and locations of the customers as well as the
locations and capacities of the facilities. A demand point must be assigned to a facility
that is most suitable for it so that a parcel delivered to a facility need not be transferred to
another facility because the original one has reached full capacity, which would force the
recipient of the parcel to travel a longer distance than necessary.

5.2. Parameter Setting

This study referenced the studies of Farsangi et al. [68], Rojas et al. [69], and Su and
Chen [70] for setting the algorithm parameters. The population size (Ps) was set as 50, 100,
and 150; the crossover rate (Cr) was set as 0.9, 0.8, and 0.7; the mutation rate (Mr) was
set as 0.06, 0.1, and 0.2; and the number of iterations (In) was set as 100, 500, and 1000.
The optimal parameter combination was identified using a correlation analysis. Ghezavati
and Hosseinifar [71] and Rayat et al. [72] applied the TA for parameter adjustment in site
selection research; therefore, the present study also used the TA for this purpose. All the
factors and factor levels were defined as Table 3. The design of this experiment includes four
factors and three levels, and the target is to obtain as large the number of Pareto solutions



Mathematics 2022, 10, 422 14 of 22

as possible. Hence, the SNR for “Larger is Better” is computed for each experiment. The
mean SNR of the nine experimental combinations implemented 10 times was determined
in Figure 4. According to this SNR, the optimal population size, crossover rate, mutation
rate, and number of iterations were determined to be 150, 0.9, 0.06, and 1000, respectively.
The aforementioned optimal parameter combination was used in the case study to verify
the applicability of the proposed algorithm.

Table 3. Definitions of factors and factor levels.

Level Ps Cr Mr In

L1 150 0.9 0.1 100
L2 100 0.7 0.06 500
L3 50 0.8 0.2 1000

Figure 4. Main effects for signal to noise ratio (SNRs).

5.3. Results and Discussions

The optimal parameter combination determined using the TA was substituted into
NSGA-II to obtain solutions. The solutions obtained using NSGA-II were plotted as
three-dimensional coordinates to examine the distributions of the three objective functions.
Figure 5 displays the a Pareto optimal solution set obtained after one run of experiment,
which indicate that the proposed algorithm generated numerous nondominated solu-
tions for the multiobjective problem. Figure 6 presents the objective function values of
10 reference solutions obtained from the Pareto optimal solution set. The service perimeter
and idle capacity of each location corresponding to these 10 optimal solutions are shown in
Table 4, which shows that the service areas of every locker facility differ in the 10 feasible
solutions. Thus, when maximum coverage, minimum overlap, and minimum total idle
capacity are considered as objectives for service area planning, numerous feasible options
that cannot substitute for each other are obtained.

The service areas obtained when considering two of the three objectives, namely
maximum coverage and minimum overlap, were compared with those obtained when
considering all the three objectives-maximum coverage, minimum overlap, and minimum
idle capacity. When only two objectives were considered, overlap increased with cover-
age, and the overlap value at maximum coverage (1.00) was 0.15, which is equal to the
corresponding value obtained when considering three objectives. The fact that when the
coverage was the largest, only one optimal solution with an overlap of 0.150 can be obtained
in two objectives planning, but multiple reference optimal solutions with different overlaps
and idle capacities can be obtained in three objectives planning (Figure 7a). Likewise, when
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the coverage was 0.965, only one optimal solution with an overlap of 0.045 can be obtained
in two objectives planning, but multiple reference optimal solutions with different overlaps
and idle capacities can be obtained in three objectives planning (Figure 7b). Thus, the idle
capacity of facility affects service area planning results.

Table 4. Definitions of factors and factor levels.

Location

Solution
No. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

R1 5 * 5 8 2 1 5 7 4 2 2
0.025 ! 0.010 0.130 0.805 0.950 0.005 0.000 0.335 0.780 0.955

R2 7 1 7 1 1 5 7 2 1 2
0.000 0.970 0.270 1.000 0.950 0.000 0.000 0.750 0.895 0.955

R3 5 5 8 2 1 5 5 4 2 2
0.025 0.010 0.130 0.805 0.950 0.005 0.010 0.335 0.780 0.955

R4 7 1 8 1 1 6 7 4 2 3
0.005 0.970 0.025 1.000 0.950 0.000 0.000 0.410 0.780 0.755

R5 4 5 9 2 1 5 6 4 4 2
0.280 0.000 0.030 0.805 0.950 0.005 0.005 0.335 0.380 0.955

R6 6 5 7 2 1 5 8 2 2 1
0.015 0.000 0.325 0.805 0.950 0.000 0.000 0.750 0.780 1.000

R7 8 5 7 2 1 5 7 4 2 2
0.010 0.010 0.360 0.805 0.950 0.005 0.000 0.335 0.780 0.955

R8 7 1 7 1 1 6 7 2 1 3
0.000 0.970 0.270 1.000 0.950 0.000 0.000 0.750 0.895 0.755

R9 5 5 8 1 1 5 7 4 2 2
0.025 0.010 0.025 1.000 0.950 0.005 0.000 0.335 0.780 0.955

R10 3 5 9 1 1 5 6 4 4 2
0.485 0.010 0.000 1.000 0.950 0.005 0.005 0.335 0.320 0.955

* Service area; ! Idle capacity.

Figure 5. Pareto-optimal solutions.
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Figure 6. Objective function values of 10 reference solutions.

Thus, facility idle capacity affects planning results and should be considered when
determining suitable service areas for smart parcel lockers. The service areas obtained
when considering the minimum idle capacity and minimum overlap were compared with
those obtained when considering all the three objectives. When only two objectives were
considered, idle capacity increased with decrease in overlap, and the overlap value at mini-
mum idle capacity (0.25) was 0.67, which is close to the corresponding value 0.690 obtained
when considering three objectives. When the overlap value was 0.050, only one optimal
solution with an idle capacity of 0.4715 can be obtained with considering two objectives,
but five reference optimal solutions with different coverages and idle capacities can be
obtained when considering three objectives (Figure 8a). Similarly, when the overlap value
was 0.235, only one optimal solution with an idle capacity of 0.331 can be obtained with
considering two objectives, but five reference optimal solutions with different coverages
and idle capacities can be obtained when considering three objectives (Figure 8b). Thus,
facility coverage affects planning results.

Figure 7. Cont.
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Figure 7. Pareto-optimal solutions of two objectives (f 1 and f 2) and three objectives (f 1, f 2 and f 3)
with coverage = 1 (a) and coverage = 0.965 (b).

When only maximum coverage and minimum idle capacity were considered as ob-
jective functions, the optimal solutions were as follows: a maximum coverage of 1 and
a minimum idle capacity of 0.250. Thus, optimal idle capacity was obtained at optimal
coverage. However, when minimum overlap was considered as an objective function with
the aforementioned two objective functions, an increase in coverage did not necessarily
result in an decrease in idle capacity. By contrast, it resulted in a increase in idle capacity in
some cases (Figure 6). The aforementioned results suggest that facility coverage should not
be the only consideration when attempting to increase facility utilization. A more suitable
approach is to consider maximum coverage, minimum overlap, and minimum idle capacity
altogether as objectives for the aforementioned purpose.

Figure 8. Cont.
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Figure 8. Pareto-optimal solutions of two objectives (f 2 and f 3) and three objectives (f 1, f 2, and f 3)
with overlap = 0.050 (a) and overlap = 0.235 (b).

We further examined the operating status of each facility in situations in which the
values of one objective function were the same in two reference solutions, whereas those
of the other two objective function values were different in these solutions. As presented
in Table 5 and Figure 9, the first and second reference solutions (S1 and S2) have the same
coverage (0.9650); however, the overlap of S2 is lower by 0.0700 and the total idle capacity
of S2 is higher by 0.0095, respectively, than those of S1. This result is obtained mainly
because the service areas of F5 and F9 are smaller in S2, which contributes to the higher
idle capacity of F1 and F5 and lower idle capacity of F2 and F3. The fact that higher idle
capacity and lower overlap are in the S2 than in the S1 suggests that the two solutions do
not dominate each other. The first and third reference solutions (S1 and S3) have the same
overlap (0.3300); however, S3 has a higher coverage, by 0.0150, and higher idle capacity, by
0.0105, compared with S1. This result is obtained mainly because in S3, the service areas
of F9 and F10 are lower, whereas those of F1 and F2 are higher, which leads to the higher
idle capacity of F1, F3, and F10 and lower idle capacity of F2. The higher coverage and
higher idle capacity of S3 suggests that an increase in coverage may not necessarily result
in a decrease in idle capacity. The S1 and S3 do not dominate each other. The second and
third reference solutions (S2 and S3) have similar idle capacities; however, if S3 has a higher
coverage, by 0.0150, and higher overlap, by 0.0700, than does S2. This result is obtained
mainly because in S3, the service areas of F10 is smaller, whereas those of F1, F2, and F5 are
larger, which contributes to the higher idle capacity of F3 and F10 and lower idle capacity
of F1, F5, and F9. The fact that S3 has both higher coverage and higher overlap than does
S2 suggests that the S2 and S3 do not dominate each other. The S3 presented in Figure 8
indicate that F4, F5, and F10 have higher idle capacities mainly because their service areas
can be easily covered by other facilities. The idle capacity of F10 is 1.000 in S3, which
indicates that its service areas considerably overlap with those of the other facilities, which
causes it to be underused. In such a situation, the operator should shut down underused
facilities to reduce resource losses.
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Table 5. Reference solutions for examining operating status.

Reference Solution f1 f2 f3

S1 0.9650 0.3300 0.3135
S2 0.9650 0.2600 0.3230
S3 0.9800 0.3300 0.3240

Figure 9. Operating status of reference solutions.

6. Conclusions and Suggestions

Some studies investigated the use of smart parcel lockers in improving problems
related to logistics last mile delivery, such as excessive costs and low efficiency. The lo-
cations of smart parcel lockers are a key factor affecting logistics last mile delivery. To
facilitate rapid decision making related to locker service area, the present study considered
the location of smart parcel lockers as a multiobjective optimization problem with three
optimization objectives, namely maximum coverage, minimum overlap, and minimum
total idle capacity. A composite TA-NSGA-II approach is proposed for multiobjective
service area optimization with constraints on facility capacities. This approach can gener-
ate multiple combinations of near-optimal feasible solutions, and these solutions do not
dominate each other. Moreover, combinations of superior and relatively poor solutions
can be identified for a specific objective function. Thus, decision makers can plan their
facility service areas according to specific objectives. This study also compared the results
of planning based on two objectives with those of planning based on three objectives and
found that the inclusion of the aforementioned three objectives is reasonable and essential.
The proposed solving methodology helps effectively solve the problem of the location
service areas planning of smart parcel locker facilities. However, it may not be used to
solve the more complex problems of the location service areas planning. For instance,
the proposed methodology cannot figure out quality results in the location service areas
planning with taking into account the uncertain consumer demand, elastic weighted ob-
jectives, and damaged facilities. This study highlighted certain aspects that merit further
investigation. Accordingly, it proposes the suggestions described in the following text.



Mathematics 2022, 10, 422 20 of 22

First, decision makers can assign suitable weights to various objectives so that the results
of multiobjective service area optimization are more practical and the decision-making
process is more flexible. Second, a minimum utilization level should be established for each
facility to prevent resources from being underused.
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