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Abstract: Using a rare disaster risk database from almost the last one hundred years, we examine
the differences in the reaction of asset prices to rare disaster risk between commodity and financial
assets. We first employ time-varying parameter VAR (TVP-VAR) models to investigate the role of
rare disaster risk in the price dynamics of major asset markets. The results indicate that disaster risk
generally has a more intense and persistent impact on crude oil and stock markets when compared
to gold and bond markets. However, the role of rare disaster risk differs substantially between
commodity and financial assets, as well as between the short and long term. Moreover, when using a
nonparametric causality-in-quantiles method to detect causal relationships, we provide evidence of
the nonlinear causality effect of rare disaster risks on asset volatilities, and not their returns, except
for crude oil. In addition, we demonstrate that augmenting a diversified portfolio of stock or bonds
with gold can significantly increase its risk-adjusted performance. The findings have important
implications for investors as well as policymakers.

Keywords: rare disaster risk; asset price; nonparametric causality-in-quantiles; TVP-VAR model

1. Introduction

Rare disaster risks, such as economic depressions or international conflicts and wars,
constitute one of the main determinants of asset risk premium [1]. The probability of time-
varying rare disasters might provide explanations for equity premium and high-volatility
puzzles, and risk-free rate puzzles, as well as asset predictability [2], which is of great
importance in asset allocation and risk management. Therefore, more efforts have recently
been made to explore the effects of rare disaster risk on various financial assets in the
theoretical and empirical literature.

Since Rietz proposes a theoretical discussion on the role of a market crash in explaining
the equity risk premium puzzle [1], the theoretical modeling of the impact of rare disaster
risk on asset price dynamics has often been discussed for equity markets, such as the equity
premium puzzle [3,4], excess return predictability [3–6], and excess equity volatility [4,7],
etc. For example, Barro [3] shows that it is possible to account for the high-risk premium
on stock markets across the globe when using Rietz’s proposed model that incorporates
the probability of rare disaster risk. Moreover, some studies have attempted to model the
impact of rare disaster risk on other assets, including bonds [4,8], commodities [9], and
exchange rates [10], among others.

Motivated by the theoretical pricing models on rare disaster risk, a number of empirical
studies also seek to examine the relationship between rare disaster risk and asset prices.
There is growing evidence, indicating that rare disaster risk has a significant impact on asset
price dynamics, such as the excess returns and volatility in financial markets [6,11,12], the
dynamics of commodity markets [13,14], and the dynamics of exchange markets [15,16]. In
particular, due to the outbreak of the COVID-19 pandemic (epidemics of disease constitute
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one specific form of rare disasters [3]), some recent studies attempt to empirically investigate
the response of asset markets to it, suggesting that the COVID-19 pandemic has a significant
impact on the dynamics of asset prices [17–19].

Although previous work has documented a close link between rare disaster risk and
asset prices, the focus is on the impact of rare disaster risk on asset prices, rather than the
dynamic nature of their relationship. In addition, the existing literature has provided evi-
dence that rare disaster risk is characterized by left-tail realization and high skewness [7,20].
Motivated by previous work in the literature, we are particularly interested in the possible
nonlinear relationship between rare disaster risk and asset prices. Furthermore, to the best
of our knowledge, there is no study by which assets’ price fluctuations are more closely
related (or isolated) to the shocks of rare disasters, nor have any assessed the differences
in the role of rare disaster risks in the fluctuations across different assets. Our empirical
analysis complements the literature as we address the similarities as well as the differences
of the responses of asset prices to rare disaster risks across a group of major commodity
and financial assets, using a database collected over nearly a hundred years.

In this paper, we aim to investigate the impact of time-varying rare disaster risk on
the price dynamics of major commodity and financial assets from 1918–2015. We are more
interested in comparing the responses of prices to rare disaster risks across different assets.
First, we construct the crisis severity index as a proxy for time-varying rare disaster risk
by applying the approach proposed by Berkman et al. [6]. Next, we investigate the role
of rare disaster risk in the price dynamics of major asset markets. Moreover, the possibly
nonlinear causal effects of rare disaster risk on asset prices (i.e., returns and volatility) are
examined based on a nonparametric causality-in-quantiles method. We further compare
the differences in the effects of rare disaster risks between commodity and financial assets.

The paper contributes to the literature in the following ways. First, our paper adds
to the literature by comparing the role of rare disaster risk in the fluctuations across asset
markets. Different from previous studies, we are particularly interested in the differences
in the effects of rare disaster risk between commodity and financial assets. We attempt
to not only quantify and compare the differences in the effects of rare disaster risk on
asset price dynamics, but also to address the similarities and differences of nonlinear
causality between rare disaster risk and asset prices at different quantiles. Second, our
paper adopts a novel nonparametric causality-in-quantiles method developed by Balcilar
et al. [21] to detect possibly nonlinear causality in rare disasters on asset prices, relaxing
the restriction of normal distribution in the traditional models. Since rare disaster risk
is characterized by the left-tail realization [7,20], this method is advantageous in that it
enables us to investigate higher-order causality in quantiles, such as causality in the second
order (i.e., causality-in-variance) when compared to the traditional mean-based linear
Granger causality test. Third, we use historical data collected over nearly a hundred years
of potential international rare disaster crisis, which allows for subsuming a variety of crisis
events to uncover the long-term dynamic nature, as well as avoiding the small sample
problem in parameter calibration in theoretical models of rare disaster risk. Based on the
ICB data, we construct a crisis severity index by aggregating a set of crisis indicators to
measure rare disaster risks, which enables us to capture different aspects of the severity of
the crises. Previous work typically focuses on a few economic cycles or individual-specific
disasters, such as World War I, World War II, the global financial crisis in 2008, or the recent
COVID-19 pandemic. The use of long-term and diverse rare disaster data is vital not only
for an examination of the robustness and mitigation of data snooping biases, but also to
control the misspecification due to nonlinearity.

The remainder of the paper is organized as follows. Section 2 presents a brief review
of the related literature. Section 3 outlines the empirical methods. Section 4 describes the
data and offers a preliminary analysis of the data. Section 5 discusses the empirical results.
We conclude in Section 6.
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2. Literature Review

Our paper is related to several strands of literatures on the links between rare disaster
risk and asset prices. One strand of theoretical literature is motivated by rare disaster
risk and its implication for asset pricing puzzles of stocks. Within the Arrow–Debreu
asset pricing model, Rietz [1] first proposes that a market crash could be a way to explain
the equity risk premium puzzle. By introducing time-varying rare disaster probability,
Barro [3] extends Rietz’s model to calibrate disaster probabilities from major events in the
twentieth century, such as World War I, World War II, and the Great Depression. In addition
to resolving the puzzle of the high equity premium, the model established by Barro [3]
sheds light on other financial puzzles, including low risk-free rate and volatile stock
returns. Wachter [7] shows that high equity volatility and excess return predictability can
be attributed to the time-varying probability of consumption disasters. When incorporating
time-varying disaster intensity into the Rietz–Barro hypothesis, Gabaix [4] extends the time-
varying rare disaster framework to understand different asset pricing puzzles. Gourio [22]
introduces rare economic disaster risk into the real business cycle model, in which a higher
probability of disaster leads to a decline in investment and output, and thus lower stock
prices, as well as interest rates. When taking countries’ heterogeneous exposures to rare
disaster risk into consideration, Gourio et al. [23] propose a theoretical model and the
mechanism of how time-varying risks and heterogeneous exposures lead to worldwide
recessions, drops in stock prices, interest rates, and negative returns on arbitrage trades.
Moreover, Tsai and Wachter [24] incorporate rare booms and disasters into a multi-sector
endowment economy, which accounts for higher expected returns of value stocks, with
lower risk than that of growth stocks.

In addition to the stock market, the relationship between rare disaster risk and other
assets has recently attracted renewed interest. For example, when examining the expected
rate of return on gold within a Lucas-tree model that incorporates rare disasters related
to consumption, Barro and Misra [25] show that gold does not deliver high average real
returns during macroeconomic disasters. Barro and Liao [26] derive a new option-pricing
method to analyze out-of-the-money options when rare disasters become the dominant
force, allowing the impact of time-varying disaster risk to be taken into consideration when
it comes to options pricing. Seo and Watcher [8] also construct an alternative and more
general approach to modeling rare disaster risk to reconcile option prices with stochastic
disasters, thus resolving the fact that the average implied volatility of equity options exceeds
realized volatility. In terms of the relationship between rare disasters and exchange rates,
Farhi and Gabaix [10] propose a new disaster-based tractable model for exchange rates,
in which the probability of global disasters, as well as each country’s exposure to these
events, are time-varying. This framework accounts for a series of major classic puzzles in
exchange rates and the links between currency options, exchange rates, and interest rates.
However, previous theoretical studies on the modeling of rare disasters in the literature are
restricted to parameter estimation. The calibration and output of rare disaster models might
be sensitive to the probability and distribution of rare disasters. For example, regarding
worldwide political rare disasters, such as the World War I, the World War II, and the Cold
War over the past century, if rare economic crises and regional territories are taken into
consideration, the probability of rare disasters would differ greatly in the long run. In
addition, from the perspective of mechanism, Skoufias [27] provides a review of the overall
nature of economic crises and natural disasters, and then summarizes the mechanisms of
how they affect household welfare, economic development, and thus asset prices.

Given the overwhelming arguments on the theoretical linkage between rare disaster
risk and asset prices, an important question is to empirically examine to what extent
the fluctuations of asset prices are related to rare disaster risk. In some recent empirical
studies, for example, Berkman et al. [6] attempt to examine time-varying rare disaster risk
and stock returns by constructing a crisis severity index based on international political
crises from 1918–2006 from the ICB (International Crisis Behavior, hereafter) database.
Following Berkman’s method, Huang et al. [28] show that global political crises increase
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the market perceived uncertainty, and thus raise the cost of external financing. Subsequently,
using global political instability from the ICB database as a proxy for rare disaster risk,
Berkman et al. [11] find that rare disaster risk is positively related to expected excess stock
market returns, as well as valuation ratios (E/P and D/P). MengYun et al. [29] quantify
the impact of terrorism and political instability on the equity market and find that these
non-economic factors have a significant negative impact on the firm equity premium
in Pakistan. Gkillas et al. [30] apply a quantile dependence approach to investigate the
quantile dependencies between equity price discontinuities (jumps) and time-varying rare
disaster risks, providing evidence of an asymmetric relationship between jumps and rare
disaster risks. Meanwhile, a few recent studies further explore the role of rare disaster
risks on other financial asset dynamics. For example, when examining the impact of rare
disaster risks on bond market dynamics, Gupta et al. [31] demonstrate that rare disaster
risks affect only the volatility of government bonds, not their returns. Similarly, using the
HAR-RV model to determine the role of rare disaster risks (measured by ENSO cycle), van
Eyden et al. [32] demonstrate a positive and statistically significant effect of the ENSO cycle
on the volatility of Treasury securities of the US.

Moreover, some empirical studies have also tried to link the rare disaster risk to the
dynamics of commodity assets. For example, Demirer et al. [13] provide a novel perspective
on the ability of rare disaster risks to predict the oil market, showing that rare disaster-risks
strongly affect oil returns and volatility, along with the evidence of stronger predictability
observed at lower quantiles of the respective conditional distributions. Demirer et al. [33]
investigate the effect of rare disaster risks (i.e., the El Niño-Southern Oscillation (ENSO))
on crude oil prices, via a nonparametric causality-in-quantile framework, and show that
the ENSO cycle not only predicts real WTI oil returns, but also the volatility.

In particular, the outbreak of the current COVID-19 pandemic has substantially shifted
the global economy, as well as the financial markets. To understand the impact of the
current COVID-19, Adekoya and Oliyide [34] attempt to explore the role of the pandemic
in the connectedness among the globally traded commodity and financial markets, proving
that the pandemic is largely responsible for the risk transmission across various markets.
Similarly, using a sample of the G20 countries, Bissoondoyal-Bheenick et al. [35] examine
the impact of COVID-19 on stock return and volatility connectedness, and whether the
connectedness behaves differently for countries with SARS 2003 experience. They show
that connectedness increases across the phases of the COVID-19 pandemic. However,
the degree of connectedness is significantly lower in countries with SARS 2003 death
experience. Moreover, Mensi et al. [36] examine the impacts of COVID-19 on the asymmetric
multifractality of commodity prices based on upward (downward) trends, and document
that gold and oil markets have become more inefficient during the pandemic outbreak
compared to the pre-COVID-19 period. When studying the impacts of the COVID-19
pandemic, Harjoto et al. [37] show that equity markets react negatively to the pandemic,
while the impacts differ greatly between emerging and developed markets.

3. Econometric Methodology
3.1. Time-Varying Parameter VAR Model

We start by adopting the time-varying parameter VAR (TVP-VAR) model developed
by Primiceri [38] to explore the role of rare disaster risk in the fluctuations of asset mar-
kets. The TVP-VAR model with stochastic volatility is often used to capture the possible
heteroscedasticity of the shocks, as well as the simultaneous relations among the variables
of the system. Furthermore, by allowing the parameters to change over time, it leaves it
up to the data to determine whether the time variation of the linear structure results from
changes in the size of the shocks or from changes in the response. Therefore, this model
has been widely used to capture the possible features of the nonlinearities or time-varying
effects of structural shocks [39–41].
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The TVP-VAR model is derived from the basic VAR model, which is defined as follows:

yt = ct + B1,tyt−1 + · · ·+ Bk,tyt−k + ut t = 1, . . . , T (1)

where yt is an T × 1 vector of observed endogenous variables in the system; ct is an T × 1
vector of time-varying coefficients that multiply constant terms; Bi,t, i = 1, . . . , k, are T× T
matrices of time-varying coefficients; and ut are heteroscedastic unobservable shocks with
variance-covariance matrix Ωt. Without loss of generality, the triangular reduction of Ωt is
defined as follows:

AtΩt At
′ = ∑ t∑t

′ (2)

where At is the lower triangular matrix:

At =


1 0 · · · 0

α21,t 1
. . .

...
...

. . . . . . 0
αT1,t · · · αTT−1,t 1

 (3)

and ∑ t is the diagonal matrix:

∑ t =


σ1,t 0 · · · 0

0 σ2,t
. . .

...
...

. . . . . . 0
0 · · · 0 σT,t

 (4)

Thus, the model can be modified as follows:

yt = ct + B1,tyt−1 + · · ·+ Bk,tyt−k + A−1
t ∑t εt,

V(εt) = IT , εt ∼ N(0, IT)
(5)

Stacking all the R.H.S. coefficients in a vector of Bt, Equation (5) can be rewritten as
the following specification:

yt = X′tBt + A−1
t ∑ tεt

X′t = IT ⊗ [1, y′t−1, . . . , y′t−k]
(6)

where the symbol ⊗ denotes the Kronecker product.
In order to model the process for the time-varying parameters in Equation (6), we

follow Primiceri [38] to assume that the parameters follow a random walk process, and all
the innovations are jointly normally distributed as follows:

Bt = Bt−1 + ubt
at = at−1 + uat
ht = ht−1 + uht

,


εt

ubt
uat
uht

 ∼ N

 0 ,


I 0 0 0
0 Σb 0 0
0 0 Σa 0
0 0 0 Σh


 (7)

where Bs ∼ N(µB0, ΣB0)), as ∼ N(µa0, Σa0) and hs ∼ N(µh0, Σh0) for t = s, . . . , T; and
ht refers to the vector of the diagonal elements of the matrix with hjt = log σ2

jj,t,. This
assumption of random walk presents the advantages of focusing on permanent shifts and
reducing the number of parameters in the estimation procedure, since the sample period is
just a finite period of time, and not forever. The shocks to the innovations of time-varying
parameters are assumed to be uncorrelated among the parameters Bt, at, and ht. Further-
more, ΣB, Σa, and Σh are assumed to all be diagonal matrices. The drifting coefficients and
parameters are modeled to fully capture possible changes of the VAR structure over time.
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The dynamic specification is adequate to permit the parameters to vary, even if the shocks
in the processes driving the time-varying parameters are uncorrelated.

In the paper, we adopt a Bayesian approach using the MCMC method for a precise and
efficient estimation of the TVP regression model, which is widely used in the literature, and
has been proven to produce good results [42,43]. In the Bayesian procedure, it allows one to
estimate more general specifications for a non-trivial number of equations (For specification
and estimation of a time-varying VAR model, see Primiceri [38]. And for specification
and estimation of a time-varying SUR model, see Chib and Greenberg [44]). The prior
distributions are assigned to the hyperparameters (V) in the model and then are combined
with the information contained in the data (via the form of likelihood function). Together
with a set of initial conditions, the joint posterior distribution of the parameters can be
estimated through Bayesian methods. The Bayesian approach allows us to produce the
sample drawn from a posterior distribution of parameters, including the unobserved latent
variables suggested by Chib [45]. When using time-varying parameters in the model as
latent variables, the model can be formed as a state-space specification. Since the model has
the forms with a non-linear and non-Gaussian state space, we need to find some ways of
sampling. Therefore, we follow the method of the mixture sampler which has been widely
used in the financial and macroeconomics literature [38,46,47]. It consists of transforming a
nonlinear and non-Gaussian state space form into a linear and approximately Gaussian one,
which allows the use of standard simulation smoothers. Following these procedures, we
can obtain the estimates of both time-varying parameters and variance-covariance matrix
Ωt in the VAR Model.

3.2. Nonparametric Causality-in-Quantiles Method

Beyond exploring the role of rare disaster risk in the asset market fluctuations, we
further employ a nonparametric causality-in-quantiles method to investigate their possibly
nonlinear causal relationship between rare disaster risk and asset prices. This novel method-
ology for the detection of nonlinear causality has been proposed by Balcilar et al. [21], which
is based on the frameworks of Nishiyama et al. [42] and Jeong et al. [48]. In recent literature,
the approach has been widely used to examine the causal effect on asset price dynamics due
to the advantage of the framework for combining quantile regression with nonparametric
estimation [21,34,49].

In the model, we denote asset returns as yt and rare disaster risk as xt. We then follow
Jeong et al. [48] to define the quantile-based causality as follows: xt does not cause yt in the
θ-th quantile under the condition of

{
yt−1, . . . , yt−p, xt−1, . . . xt−p

}
if

Qθ

(
yt
∣∣yt−1, . . . , yt−p, xt−1, . . . xt−p

)
= Qθ

(
yt
∣∣yt−1, . . . , yt−p

)
(8)

and xt causes yt in the θ-th quantile under the condition of
{

yt−1, . . . , yt−p, xt−1, . . . xt−p
}

if

Qθ

(
yt
∣∣yt−1, . . . , yt−p, xt−1, . . . xt−p

)
6= Qθ

(
yt
∣∣yt−1, . . . , yt−p

)
(9)

where Qθ(yt|·) refers to θ-th quantile of yt at time t and 0 < θ < 1.
Based on the Equations of (8) and (9), we further test the hypothesis of causality-in-

quantiles as follows:

H0 : P
{

Fyt |Zt−1
{Qθ(Yt−1)|Zt−1} = θ

}
= 1 (10)

H1 : P
{

Fyt |Zt−1
{Qθ(Yt−1)|Zt−1} = θ

}
< 1 (11)

where Yt−1 ≡
(
yt−1, . . . , yt−p

)
, Xt−1 ≡

(
xt−1, . . . , xt−p

)
, Zt = (Xt, Yt), and

Qθ(Yt−1) ≡ Qθ(yt|Yt−1) . Here Fyt |Zt−1
(yt|Zt−1) refers to the conditional distribution of

yt under Zt−1. P{·} denotes the possibility. Therefore, xt is not the θ-th quantile cause of
yt with respect to the lag vector of

{
yt−1, . . . , yt−p, xt−1, . . . xt−p

}
if the null hypothesis is

not rejected.
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Based on the null hypothesis in Equation (8), the regression error is defined as (12).
The null hypothesis in Equation (10) is true if and only if Equation (12) or equivalently
E [1 {yt ≤ Qθ(Yt−1)}] = θ holds, where 1{·} is an indicator function:

1{yt ≤ Qθ(Yt−1)} = θ + εt (12)

Jeong et al. [48] utilize a distance measure J = {εtE(εt|Zt−1) fz(Zt−1)}, where εt is the
regression error and fz(Zt−1) refers to the marginal density function of Zt−1.

According to Jeong et al. [48], the test statistic function J is specified with a feasible
kernel-based analogue ĴT:

ĴT =
1

T(T − 1)h2p

T

∑
t=p+1

T

∑
s=p+1, s 6=t

K
(

Zt−1 − Zs−1

h

)
ε̂t ε̂s (13)

where K(·) denotes the kernel function with a sample size T, a bandwidth h, and a lag order
p. And ε̂t is the estimated unknown regression error based on the equation as follows:

1{yt ≤ Qθ(Yt−1)} = θ + ε̂t (14)

Employing the nonparametric kernel method, Q̂θ(Yt−1), the estimation of θ-th condi-
tional quantile of yt given Yt−1 is specified as

Q̂θ(Yt−1) = F̂−1
yt |Yt−1

(θ|Yt−1) (15)

We utilize the Nadarya–Watson kernel estimator to estimate F̂−1
yt |Yt−1

(θ
∣∣∣Yt−1) as:

F̂−1
yt |Yt−1

(yt|Yt−1) =
∑T

s=p+1, s 6=t L
(

Yt−1−Ys−1
h

)
1{ys ≤ yt}

∑T
s=p+1, s 6=t L

(
Yt−1−Ys−1

h

) (16)

with L(·) is the kernel function and h is the bandwidth.
This methodology also allows us to investigate higher order causality in quantile,

such as quantile causality in the second order, which is an attractive feature compared to
the traditional mean-based linear Granger causality test. Within this model, for example,
we can test the causality between rare disaster risk and the volatility of asset returns.
Balcilar et al. [21] extend the framework of Jeong et al. [48] and develop a higher order
causality-in-quantiles method based on the approaches in Nishiyama et al. [42]. In order to
illustrate the causality in higher-order moments, consider the following process for yt:

yt = g(Yt−1) + σ(Xt−1)εt (17)

where εt is a white noise process, g(·) and σ(·) are unknown functions that satisfy certain
conditions for stationarity. We re-formulate Equation (15) into a null and alternative
hypothesis for causality in variance as follows:

H0 : P
{

Fy2t |zt−1
{Qθ(Yt−1)|Zt−1} = θ

}
= 1 (18)

H1 : P
{

Fy2t |zt−1
{Qθ(Yt−1)|Zt−1} = θ

}
< 1 (19)

To obtain a feasible test statistic for testing the null hypothesis in Equation (15), we
replace yt in Equations (13)–(16) with y2

t . For higher-order causality, we interpret the
causality using the following model:

yt = g(Xt−1, Yt−1) + εt (20)
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Therefore, the hypotheses are re-organized as follows in k-th order:

H0 : P
{

Fyk
t |Zt−1

{Qθ(Yt−1)|Zt−1} = θ
}
= 1, for k = 1, 2, . . . , K (21)

H1 : P
{

Fyk
t |Zt−1

{Qθ(Yt−1)|Zt−1} = θ
}
< 1, for k = 1, 2, . . . , K (22)

Compared with Equations (10) and (11), the entire framework is re-established to
test whether xt Granger causes yt in θth quantile up to the kth moment via Equation (21),
and to formulate the test statistic in Equation (16) for k = 1, 2, . . . K. However, due to the
mutually correlated statistics proposed by Nishiyama et al. [42], it is difficult to integrate
different test statistics for each k = 1, 2, . . . K into one statistic for the joint null hypothesis in
Equation (21). Balcilar et al. [21] resolve this problem via proposing a modified sequential
testing method based on Nishiyama et al. [42]. The main steps are as follows. First, a
nonparametric causality-in-quantile for the first moment is tested. If the null hypothesis of
Equation (14) is rejected, it suggests that there is a strong indication of Granger quantile-
causality in mean. In contrast to the classical mean-based linear Granger test, failing to
reject the null hypothesis for the first order test does not necessarily lead to no causality in
the second or higher moment. Thus, tests for k = 2, . . . , K can be further constructed.

There are several important parameters in the models that need to be specified here:
the bandwidth (h), the lag order (p), and the kernel function for K(·) and L(·). First, the
bandwidth (h) is selected according to the leave-one-out least squares cross-validation
method for each quantile, and the lag order (p) is determined based on the Schwarz
Information Criterion (SIC). Second, Gaussian-type kernels are employed for K(·) and L(·)
in Equations (13) and (16), respectively.

4. Data and Preliminary Analysis
4.1. Measure of Rare Disaster Risk

To examine the relationship between rare disaster risk and asset prices, this paper
involves two major types of annual data: crisis severity index as a proxy for time-varying
rare disaster risk and price indices of a group of major asset classes including financial
asset (i.e., stock and bond) and commodity (i.e., crude oil and gold) from 1918–2015 (Data
on crisis index is only available for the period 1918–2015 in the ICB database. The sample
period is therefore set as 1918–2015 in the paper).

In the paper, we use the occurrence of international political crises as our proxy for
rare disaster risk. The crises data are obtained from the International Crisis Behavior (ICB)
database (the database, known as the International Crisis Behavior (ICB) project, has been
developed by the Center for International Development and Conflict Management since
1975. Detail explanation of the variables and extensive discussion of the system level
data can be found at https://sites.duke.edu/icbdata/ (accessed on 16 October 2018)), in
which 476 international crises and 1052 crisis actors are included from 1918 to 2015. We
exclude five crises from the analysis, since the database does not specify an explicit end
date. The resulting sample consists of 471 international political crises in the paper. The
ICB database documents international crises from a variety of aspects. There are 81 crisis
dimensions for every crisis, recording key information about the crisis, such as the gravity
of value threatened, regional or security organization involvement, and so on. One of the
attractive features of ICB database is its definition of crisis, which is in accordance with the
concept of rare disaster risk. In contrast with natural events, international political crises
are more likely to affect investor sentiment or risk preference. Moreover, according to the
ICB database’s documentation, rather than simply defining a crisis with an actual attack or
political action, a crisis is defined as a perceived change in the likelihood of a threat that can
cause the beginning or end of an international political disaster with the following three
characteristics: (1) a threat to more than one basic value, (2) a high likelihood of military
hostilities involvement, and (3) an awareness of a finite time for response to the value threat.
Therefore, this database loosens the restriction of a small sample problem, which allows us

https://sites.duke.edu/icbdata/
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to have a wider perspective rather than merely focusing on the impact of World War I and
World War II.

A large number of variables are contained in the ICB datasets related to different
aspects of international political crisis. Following Berkman et al. [6], we use six indicators to
characterize the severity dimensions of crises, including whether or not a crisis started with
violence, violence used during the crisis, full-scale wars, gravity of value threat, protracted
conflict, and major power (great power or superpower) involvement. Each of the six types
above has a matching dummy variable that is assumed to be a value of one if a crisis is in
that type, and zero otherwise. We follow Berkman et al. [6] to measure the crisis severity
index (CSI) by aggregating the indicators of six severity dimensions of political crises,
as follows:

CSIt =
N

∑
i=1

VBi,t +
N

∑
i=1

GTi,t +
N

∑
i=1

Wari,t +
N

∑
i=1

Vioi,t +
N

∑
i=1

MPi,t +
N

∑
i=1

PCi,t + 1 (23)

where CSIt is the crisis severity index; N is the number of the specific crisis at time t, and
the right-hand side of the equation includes six dummy variables: VBi,t is “Violence break”,
GTi,t is “Grave threat”, Wari,t is “Full-scale Wars”, Vioi,t is “Violence during Crisis”, MPi,t is
“Major power involved”, and PCi,t stands for “Protracted conflict”. N indicates the number
of the related types of events.

We construct a crisis severity index that summarizes the different aspects of crisis
severity into one measure by aggregating the six variables above and adding one (being a
specific type of crisis). We utilize the information of the duration date to capture the states
of crises. The detail of the definition of dummy variables included in the discussion can
be found in Table 1. The column of “Value” presents the code of the event, in which the
dummy variable equals 1 when the code appears in the disaster table.

Table 1. The definition of six dummy variables.

Variables Description Value

BREAK(
VBi,t ) Crisis that began with a violent act value 9: Violent act

VIOL(
Vioi,t ) Violence used during the crisis or full-scale wars value 3: Serious clashes;

value 4: Full-scale wars.

WAR(
Wari,t ) Full-scale wars value 4: Full-scale wars.

GRAVCR(
GTi,t ) Subset of “Gravity of value threat”—grave threat

value 3: Territorial threat;
value 5: Threat of grave damage;
value 6: Threat to existence.

PROTRAC(
PCi,t ) - value 3: Long power protracted conflict.

GPINV(
MPi,t )

Great power or Superpower is involved on both
sides of conflict

value 3: One or more powers high involvement;
value 4: One or two powers as crisis actors, the others low
or no involvement;
value 5: One or two powers as crisis actor, the others high,
low or no involvement;
value 6: More than two powers as crisis actors, the other low
or no involvement;
value 7: More than two powers as crisis actors, the other
high, low or no involvement

4.2. Data of Asset Prices

Our empirical analysis attempts to explore the effect of rare disaster risk on the
prices of major asset classes. The dataset of asset classes in this paper consists of price
indices of financial assets (i.e., the US stock (S&P500) and the US 10-year treasury bonds)
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and commodity (i.e., crude oil and gold) from 1918 to 2015. Annual data on stock price
indices and bond indices are taken from Robert Shiller’s publication Irrational Exuberance
(Shiller, Robert J. Irrational exuberance. Princeton university press, 2000. Online dataset:
http://www.econ.yale.edu/~shiller/data.htm (accessed on 16 October 2018)). We collect
annual oil prices in dollars from British Petroleum (The link of the annual oil prices can
be found as follows: https://www.quandl.com/ (accessed on 16 October 2018)) and the
historical gold prices in dollars from the National Mining Association (The link of the annual
gold prices can be found as follows: https://nma.org/wp-content/uploads/2016/09/
historic_gold_prices_1833_pres.pdf (accessed on 16 October 2018)). After acquiring all asset
prices from 1918–2015, we use first logarithmic difference rt = ln(yt)− ln(yt−1) to obtain
annual asset returns.

4.3. Preliminary Analysis

The annual number of international political crises and crisis severity index during
the period of 1918–2015 according to the ICB database is shown in Figure 1, along with the
result of summary statistics of crisis dimensions which consists of the crisis severity index
in Table 2. The six dummy variables provide a picture of some detailed characteristics
of international political crises over nearly a recent century in our sample. As shown in
Table 2, among all the crises, 194 crises began with a violent break, 211 crises involved
serious violence, and 83 crises were full-scale wars. There are 258 crises that involved
threats of the most basic values at some time during the crisis, in which 66 crises were
related to protracted conflicts, and major power was involved in 159 conflicts.
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Figure 1. Annual number of international crises and crisis severity index.

Table 2. Summary statistics of CSI subsets across categories.

Variables BREAK VIOL WAR GRAVCR MAJPOW PROTRAC

Total 194 211 83 258 159 66
Note: Here Total refers to the total number of crisis events (i.e., crisis categories) over the sample periods.

We take a first look at the difference and similarity of a variety of crisis variables and
asset markets. Table 3 reports descriptive statistics of the crisis variables and four different
assets in our sample. As shown in Table 3, there exists a significant variation in the returns
across different assets. In general, the annual returns of the bond market are relatively
stable in the sample period, followed by gold and stock markets, while the crude oil market
is the most volatile, in which the annual returns range from −64.7 percent to 125.8 percent.

http://www.econ.yale.edu/~shiller/data.htm
https://www.quandl.com/
https://nma.org/wp-content/uploads/2016/09/historic_gold_prices_1833_pres.pdf
https://nma.org/wp-content/uploads/2016/09/historic_gold_prices_1833_pres.pdf


Mathematics 2022, 10, 445 11 of 25

Table 3. Summary statistics.

Mean Median Max Min Std. Dev. Skewness Kurtosis

CSI 62.316 54.500 279.000 0.000 43.737 1.797 9.126
Returns

Stock 5.466 8.970 39.649 −65.508 18.775 −0.978 4.507
Bond −0.827 0.405 40.372 −54.280 16.400 −0.297 4.005
Oil 3.586 0.000 125.839 −64.706 26.118 0.774 8.191

Gold 4.197 0.048 69.804 −29.040 15.400 1.421 6.658

Notes: Crisis Severity Index (CSI) is constructed of six crisis dimensions, which are introduced above. The
annual returns on assets are defined as logarithmic a difference of asset prices (measured in percent), i.e.,
rt = ln(yt)− ln(yt−1)∗100%.

5. Empirical Results
5.1. Impact of Rare Disaster Risk on Asset Prices

In this section, we use basic VAR and TVP-VAR approaches to examine the responses of
various asset markets to the shock of rare disaster risk, as well as to quantify the proportion
of asset market volatility attributed to rare disaster risk. In this paper, we use MATLAB
software to estimate the TVP-VAR model.

5.1.1. Variance Decomposition Results

We first employ a standard VAR model to quantify the contribution of rare disaster
risk to the fluctuations in different asset markets. Before the VAR analysis, we need to
examine the stationarity of the variables in the system. The result of the ADF test indicates
that asset returns as well as rare disaster risk in the model are stationary. The variables
included in the VAR model are as follows: rare disaster risk, stock returns, bond returns,
oil returns, and gold returns. The lag length of the VAR is chosen based on the selection
criteria of AIC and SIC, leading to an optimal lag length of 5. Table 4 reports the result of
forecast errors variance decomposition (FEVD) in the asset volatility due to rare disaster
risk at several selected forecast lengths.

Table 4. Variance decomposition of asset returns due to rare disaster risk.

Period Stock Bond Oil Gold

1 0.39 0.00 3.23 0.36
2 0.40 2.19 3.14 1.49
3 8.08 2.01 2.74 2.57
4 10.09 2.58 2.69 4.15
5 10.02 2.46 7.34 3.93
10 13.17 2.79 9.70 4.55
15 13.04 2.93 9.83 4.85
20 13.07 2.97 9.85 4.85
25 13.07 2.97 9.85 4.85
30 13.07 2.97 9.85 4.85

Notes: The VAR system consists of rare disaster risk, stock, bond, oil, and gold. The table reports the estimation
results which are based on the Cholesky variance decompositions for different asset returns. The shares attributable
to rare disaster risk for different assets at different time durations are reported in the table, respectively.

As shown in Table 4, it is indicated that in the short-term, the fluctuation of crude oil
market among different assets in the VAR system is the most related to rare disaster risk.
For example, rare disaster risk explains about 3.23 percent of the variance of oil market
returns at one-period ahead, while it accounts for less than 1 percent of the volatility of
three other asset markets. For example, only about 0.36 percent and 0.39 percent of the
variances of gold and stock returns can be explained by the shocks of rare disaster risk. On
the other hand, in the long run, the impact of rare disaster risk accounts for a significant
proportion of the variance of asset returns. Interestingly, we find that the fluctuation of
the stock market is the most related to rare disaster risk long term, where rare disaster
risk explains about 13.07 percent of stock market volatility. It is followed by the crude oil
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market, in which about 9.85 percent of the volatility can be attributable to rare disaster risk.
In contrast, the proportions of the variance of gold and bond returns contributed by rare
disaster risk are about 4.85 percent and 2.97 percent, respectively. The result supports the
views of Berkman et al. [6] that the impact of disaster events generally resonates in major
financial markets.

Combing the empirical evidence above, we find some interesting phenomena among
these assets. First, rare disaster risk has greatly different impacts on the volatility of major
asset markets at various time durations. Second, the result of the VAR analysis shows that
the rare disaster risk has persistent and strong effects on the oil market volatility, both short
and long term. Moreover, the volatility of the stock market responds much more strongly to
the rare disaster risk long term rather than short term. However, compared to crude oil and
stock markets, rare disaster risk has relatively less explanation power for gold and bond
market volatilities. The finding, therefore, provides evidence that the gold and bond may
serve as hedging or safe-haven assets during periods of financial turmoil or crises [31,50].

5.1.2. Time-Varying Impulse Response Analysis

In this subsection, we further employ the TVP-VAR model to examine the dynamic
relationship between rare disaster risk and asset returns. Compared to the standard VAR
approach, the TVP-VAR model enables us to capture the pattern of the time-varying
effects of rare disaster risk. After checking the stability of the parameters in the VAR, we
employ the method of Markov chain Monte Carlo (i.e., MCMC) in the context of a Bayesian
inference to estimate the posterior of the parameters in this model. The MCMC algorithm
has been widely used for the numerical estimation of the posterior of parameters in the
literature. Regarding the time-varying parameters in our model as latent variables, we take
advantage of the Bayesian sampling procedure to construct a state space specification. The
estimation steps in detail can be found in Nakajima et al. [38].

Thus, following Nakajima et al. [38], we select the optimum lag length determined
by the estimated marginal likelihood, and the result supports the optimal selection of a
lag length of 2. For the initial state of the time-varying parameters, µβ0 = µα0 = µh0 and
∑ β0 = ∑ α0 = ∑ h0 . The priors for the i-th diagonals of the covariance matrices are assumed
to be: (∑ β)

−2
i ∼ Gamma(40, 0.02), (∑ α)

−2
i ∼ Gamma(4, 0.02), (∑ h)

−2
i ∼ Gamma(4, 0.02).

We draw 10,000 samples after the initial 1000 samples are discarded to allow for convergence.
The posterior estimates are presented in Table 5 and Figure 2, respectively.

Table 5. Estimates of TVP-VAR model.

Parameter Mean Std Dev. 95% U 95% L Geweke CD Inefficiency

(∑β)1 0.2305 0.0414 0.1575 0.32 0.734 14.13
(∑β)2 0.0023 0.0003 0.0018 0.0029 0.078 5.35
(∑α)1 0.0059 0.0017 0.0035 0.0102 0.243 40.69
(∑α)2 0.0087 0.0032 0.0043 0.0166 0.000 87.62
(∑h)1 0.0055 0.0015 0.0034 0.0094 0.812 27.09
(∑h)2 0.0056 0.0017 0.0034 0.0101 0.971 39.11

Notes: Here, 95% U and 95% L refer to the lower and upper bounds of 95% confidence intervals of the estimates
of the posterior distributions. Geweke CD is the convergence diagnostic (CD) statistics suggested by Geweke,
which can be used to examine the convergence in the Markov chain. Inefficiency represents the inefficiency factor
of the MCMC algorithm in replicating the posterior draws.

We performed the tests for the convergence and efficiency for the estimates of the
TVP-VAR model. Table 5 presents the posterior estimates for selected parameters of the
TVP-VAR model, including the posterior means, standard deviations, 95% confidence
intervals, Geweke convergence statistics, and inefficiency factors. As shown in the table, for
all parameters, their Geweke convergence statistics are less than the critical value under the
5% significant level (i.e., the corresponding Z-score 1.96; the convergence diagnostic (CD)
statistics of Geweke are basically a single-chain Z-test to compare means for the early and
latter parts of the Markov chain. Thus, the critical value under the 5% significance level is
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1.96), indicating that the null hypothesis of the convergence to the posterior distributions
cannot be rejected. Moreover, the low inefficiency factors (as shown in the column of ineffi-
ciency in Table 5) confirm the inefficiency sampling for the posterior draws of parameters
in the TVP-VAR model.
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Figure 2. Estimation results for selected parameters in the TVP–VAR model.

Figure 2 shows the sample autocorrelation function (top), the sample paths (middle)
and the posterior densities (bottom) for selected parameters, respectively. After discarding
the sample in the burn-in period, the path of the sample seems to be stable and the
autocorrelation of the sample gradually decreases, indicating that our sampling method
efficiently produces uncorrelated samples.

Furthermore, we estimate the responses of different asset returns from the variance–
covariance matrix of the TVP-VAR model. Figures 3–5 present plots of the evolution of the
responses of asset markets to a 1 percent change in rare disaster risk over the last 98 years.
Figure 3 represents the simultaneous response, and Figures 4 and 5, the responses after 3
and 5 years. Taken together, these results reported in the figures indicate some important
regularities among different asset markets.

First, gold asset, in general, is positively correlated with rare disaster risk, with some
exceptions in the past decade. As shown in Figure 3, the contemporaneous response of
gold market to rare disaster risk is strong and time-varying. In the short term, the positive
impact of rare disaster risk on gold prices increased from 1960s–1970s, reaching its highest
point in the early 1980s; then, it turned to decrease after that, which may be due to the
worst recession since World War II. In the presence of the subprime mortgage crises since
2007, the response of gold prices turned out to be negative. This may be due to the fact that
increasing investor’s negative sentiment outweighs the sentiment of risk aversion, and thus
the emergence of gold monetization in the market. In addition, the impact of rare disaster
risk on the gold market is stronger in the short term than in the long term. Overall, during
the period of rare disaster risk, gold can be used as a safe asset to some extent, which is
consistent with the result of the test of causality-in-quantiles in Section 4.2. This finding
provides detailed evidence on how the changes in gold prices are sensitive to the main
determinant of risk occurrence.
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Second, similar to the response of gold asset to rare disaster risk, crude oil is also
positively correlated with rare disaster risk, with some exceptions in the recent two decades.
However, compared to the gold market, the crude oil market has a stronger response to
the crisis shocks, while it converges more slowly. Interestingly, the response is remarkable
during the energy crisis from the 1970s to the early 1980s. This may be attributed to the
fact that “Superpower Involvement” and “Grave Threat” are the major components of
the crisis severity index during these periods. In general, the crude oil market appears
to respond much more strongly during the periods when a superpower is involved in
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both sides of the conflicts or when facing various threats. The findings confirm that the
predictive power of rare disaster risk over oil market dynamics is statistically significant
for both the conditional distributions of returns and volatility.
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Third, rare disaster risk, in general, has a negative impact on the stock and bond
markets, although the dynamic responses of these two financial assets behave quite dif-
ferently. International political crises increase the uncertainty and instability regarding
future economic activities worldwide, which thus significantly impacts the confidence of
global investors in financial assets. The analysis provides insight into the effect of rare
disaster shocks on different financial markets from a time-varying angle. In particular, the
simultaneous negative responses to rare disaster risk for the two financial assets are high,
suggesting that stocks as well as bonds are very sensitive to the type of risk. However, the
short-term reaction of the stock market to rare disaster risk is higher than that of the bond
market. This may be expected due to the difference of fundamental pricing between these
two financial assets [51]. Stock prices are determined by both uncertain cash flows and the
discount rate, while bond prices depend more on the discount rate. Rare disaster risk is
closely related to the future information affecting uncertain cash flow. Thus, the difference
between them may be reflected in the different reactions to rare disaster risks.

Fourth, as shown in Figure 4, the response of bond returns to the shock of disaster
risk faded over the medium term. Moreover, the bond returns have converged faster than
those of other assets in response to disaster risk shocks. Meanwhile, the effects of rare
disaster risk to stock and oil returns are greater than gold and bond returns in the medium
term. The impulse response has almost all converged in five years. This is expected, as the
information on the uncertainty obtained from the rare disaster shocks has been transferred
and been diversified by financial market investors, which results in a strong response of
asset prices in the short term, and then the impact gradually disappears in the long term.

Overall, rare disaster risk exerts a more intense and persistent influence on crude oil
and stock markets, when compared to gold and bond markets. This is not surprising, due
to the fact that energy and stock markets can be shaken by profound political crisis changes,
as well as the resulting friction and tension, or by episodes of major disasters. This result
confirms that the finding of variance decomposition in the subsection above indicates that
rare disaster risk accounts for a higher proportion of the volatility of oil and stock markets
than bond and gold markets. Furthermore, it also verifies that the assets of gold and bond
are favored by investors as hedge assets during crisis periods [31,50].

5.1.3. Impulse Response Analysis of Typical Episodes

In addition, we further investigate the impulse responses at a couple of specific dates
of the sample, which is a complement to the time-varying impulse response analysis in
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the TVP-VAR model. The years (episodes) chosen for the comparison are 1950, 1981, 1992,
and 2007. Due to the fact that the number of political crises reached their peak values in
these years, they are somewhat representative of the typical economic conditions and the
international political crisis background (The years with higher rare disaster risk appear
to be more representative of the typical political crisis background when examining the
impact of rare disaster risk on asset prices, which enables one to capture typical economic
conditions. For example, during the period of post-World War II in 1950, the crisis severity
index reached 81, in which 53% of the index is composed of the factor of “Superpower
Involvement”. Similarly, in 1981 and 1992, more than 50% of the number of political crises
are involved in the subset “Grave Threat”, including a territorial threat, a threat of grave
damage, or a threat to existence. In 2007, since the U.S. experienced the subprime mortgage
crisis which led to the most serious global recession since the Second World War, 96% of
the crisis severity index has been calculated by the subset “Superpower Involvement”).
Figure 6 reports the changes in the impulse response of asset markets to rare disaster risk
shock in the four selected years in the sample. Clearly, the dynamic responses of different
assets to the shocks of rare disasters behave quite differently. The empirical finding provides
further support for the time-varying effect of rare disaster risk on different asset prices.
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Figure 6. Impulse responses of assets return to disaster risk shocks in particular periods. Notes: The
figure presents the impulse responses of asset return to disaster risk shocks in (a) 1950, (b) 1981,
(c) 1992, and (d) 2007, respectively. The responses of asset return tend to be nearly zero after the sixth
period for the case of 1950, whereas they are nearly zero after the fourth period for the cases of 1981
and 1992, and nearly zero after the third period for the case of 2007.

As shown in Figure 6, the responses to disaster risk shocks differ greatly across
commodity and financial assets in the specific dates of the sample. Overall, the response
of oil and stock returns converges more slowly than gold and bond returns. In 2007, the
short-term response is negative, and the response intensity is greater than that of the other
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three disaster years. It can be explained that the outbreak of the financial crisis has a huge
impact on the financial market, and the whole market is in a liquidity squeeze.

Although the responses to disaster risk shocks still fluctuate very slightly after the
initial three or four periods for all assets in the sample years (except 1950), they gradually
approach zero thereafter. For the case of 1950, the response of all the assets begins to
converge until the sixth period, while for the other three selected years (i.e., 1981, 1992,
and 2007), it generally converges after the third or fourth period. This may be due to the
fact that the global economic activity was in the early stages of recovery after World War
II, and asset markets may be slow to recover from the new crisis shocks. Although the
impact of disaster risk on commodity assets is very mixed across different selected years,
the responses of the commodities are consistent in both 1992 and 2007, which may be due to
the increasing financialization of crude oil. Moreover, rare disaster risk has a greater impact
on the oil and stock markets compared to the gold and bond markets; this is consistent
with the empirical results of variance decomposition.

5.2. Causal Relationship between Rare Disaster Risk and Asset Prices

In the above section, we demonstrate the asymmetric role of rare disaster risk in the
fluctuations across asset markets over time via using VAR approaches. Furthermore, we
aim to investigate whether rare disaster risk has nonlinear causal effects on asset prices.
Using the crisis severity index as a proxy for rare disaster risk, we employ a nonparametric
causality-in-quantiles method to capture the possibility of the nonlinear causal relationship
between rare disaster risk and asset prices, including asset returns, as well as volatility. We
use R language programming to obtain the following empirical results.

Figure 7 presents the results of the causality-in-quantiles tests when we regress rare
disaster risk against the returns, as well as the volatility of four assets, respectively. In
addition, we report the detailed empirical results of each 5% quantile analysis based
on the nonparametric causality-in-quantiles test in Table 6, along with the summarized
results in Table 7. The mean and variance statistics for asset prices (including asset returns
or volatility), reported in both Figure 7 and Table 6, are the standardized test statistics
calculated on the basis of the causality-in-quantiles tests.

We first focus on the nonlinear causal effect of the time-varying rare disaster risk on
asset prices. As shown in Figure 7, the causal relationship between rare disaster risk and
asset returns is non-significant, except for crude oil. In general, there is no significant
evidence of nonlinear causality between rare disaster risk and asset returns at different
quantiles among three assets, including stock, bond, and gold. In particular, as reported in
both Figure 7 and Table 6, the asset mean values of test statistics of the causality-in-quantiles
tests for stocks and bonds are approximately zero as compared to commodities, indicating
that disaster risk has a negligible impact on financial assets. In contrast, the result shows
that the impact of disaster risk on crude oil returns is significant for quantile at about
0.35 to 0.45, while the causality-in-quantiles becomes non-significant for quantiles below
about 0.35 as well as above 0.45. The findings indicate that there is a significant role of
international political crises in the crude oil market, especially the impact of armed conflicts,
which has been documented in the literature. For example, in earlier studies, Lieber [52]
provides evidence of a surge in crude oil prices during the Gulf War, and Rigobon and
Sack [53] and Leigh et al. [54] demonstrate that the increased risk of wars in Iraq led to
crude oil price being much higher.
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Figure 7. Causality-in-quantiles of asset prices to rare disaster risk. Notes: Figure 7 presents the
results of causality-in-quantiles of asset prices to rare disaster risk for (a) stock, (b) bond, (c) oil,
and (d) gold, respectively. Horizontal axis refers to the quantiles; vertical axis refers to the test
statistics corresponding to the null hypothesis that rare disaster risk does not cause Granger asset
prices. The dark solid line represents the standardized test statistics of the results based on the
causality-in-quantiles tests for asset returns or volatility, respectively. The grey horizontal line is the
5% critical value, around 1.96 (if the dark solid line is above the grey horizontal line (denoting critical
value), indicating a significant causality effect of disaster risk on asset prices; otherwise, indicating
there is no significant causality effect).
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Table 6. Causality-in-quantiles result.

Quantiles Stock–
Mean

Stock–
Variance

Bond–
Mean

Bond–
Variance Oil–Mean Oil–

Variance
Gold–
Mean

Gold–
Variance

0.05 0.04 1.64 0.00 1.38 0.79 5.74 0.15 3.93
0.1 0.00 2.36 0.04 1.65 1.44 3.89 0.19 2.95
0.15 0.01 2.50 0.00 1.73 1.12 3.19 0.13 3.00
0.2 0.01 2.84 0.01 2.06 1.13 3.16 0.18 3.14
0.25 0.01 3.44 0.01 2.01 1.06 3.18 0.20 3.05
0.3 0.01 3.40 0.01 2.26 1.00 3.19 0.28 3.13
0.35 0.02 3.30 0.02 2.71 0.99 3.39 0.20 3.63
0.4 0.00 3.39 0.02 2.44 2.96 3.35 0.10 3.75
0.45 0.03 3.30 0.03 2.49 1.94 3.29 0.71 3.60
0.5 0.00 3.16 0.00 2.42 1.25 3.23 0.23 3.17
0.55 0.01 3.03 0.01 3.05 0.77 3.18 0.19 2.89
0.6 0.01 3.03 0.01 2.67 0.82 3.33 0.40 2.74
0.65 0.01 2.99 0.00 2.57 0.73 3.11 0.24 2.50
0.7 0.02 2.64 0.00 2.56 0.45 2.97 0.66 2.11
0.75 0.03 2.38 0.03 2.42 0.80 2.51 1.24 2.00
0.8 0.04 2.34 0.00 1.95 0.89 2.35 0.66 1.58
0.85 0.00 1.76 0.01 1.66 0.72 2.32 0.54 1.25
0.9 0.01 1.46 0.00 1.19 0.38 1.91 0.61 0.99
0.95 0.00 1.42 0.02 0.66 0.26 1.71 0.19 0.33

Table 7. Significant quantiles of asset returns in mean and variance.

Stock Bond Oil Gold

Mean - - 0.35–0.45 -

Variance 0.10–0.85 0.20–0.80 0–0.85 0–0.75

However, when turning the attention to the second order causal relationship (namely
causality-in-variance), we find that rare disaster risk has a significant causal impact on the
volatility of financial assets, with some exceptions in the extreme low or high quantiles
of its conditional distribution. Figure 7a provides visual evidence of the hump-shaped
pattern of the causality in variance across quantiles for the majority of the conditional
distributions of stock market volatility, with the exception of extreme ends. In terms of the
bond market, we find a very similar pattern of the causality in variance across quantiles.
As shown in Figure 7, the causal impact is significant in the majority of cases around
the median quantiles for the conditional distribution of bond returns, while not being
significant for the quantiles below about 0.20 and above 0.80. The empirical findings
indicate that the causality impact is not significant in either the upper or lower quantiles of
the conditional distribution of financial asset volatility. This further supports the theory of
market inefficiencies in the cases of extreme circumstances, which is consistent with the
finding of Urquhart [55].

By comparison, in terms of commodity market volatility (i.e., crude oil and gold)
in Figure 7c,d, the results of the causality-in-quantiles analysis indicate more differences
than similarities between commodity and financial assets as far as the patterns of causal
effects are concerned. In general, the result of the causality-in-variance provides evidence
of a similar pattern of causal effects of rare disaster risk between these two commodity
assets. Interestingly, the causal effects of rare disaster risk on the commodity market
volatility are asymmetric, as they are significant for different quantiles except for the upper
quantiles, i.e., with the causality only being insignificant in quantiles above about 0.85 for
crude oil and above 0.75 for gold. In contrast, the causal effects are not significant at both
extremely lower or higher quantiles for financial assets.

In addition, the result also indicates that rare disaster risk is more likely to affect
the volatility rather than the returns of different assets. When the volatility is extremely
low (i.e., the financial market is relatively calm), investors may rely more on fundamental
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factors, while other information would be subordinate. On the contrary, in the presence of
high volatility, other types of rare disaster risk such as economic and financial crises might
be the first concern for investors. Our findings above also demonstrate the role of interna-
tional political crises (as a proxy for rare disaster risk) in the volatility of asset markets.

5.3. Implications for Portfolio Diversification

Investors often choose some safe assets to hedge market risks and benefit from the
diversification in the presence of increasing market risk. The above empirical results show
that the gold and bond prices are less affected by rare disaster risk, and, in general, that
the disaster risk shock has a positive impact on gold, with a negative impact on bonds.
Taken together, we thus choose gold as a safe asset to build portfolios, including gold–stock,
gold–oil, and gold–bond. The optimal weights of the portfolios and hedging ratios are
determined based on the results of the variance–covariance matrix derived from our TVP-
VAR model. In the empirical work, the method proposed by Kroner and Ng [56] is often
used to determine the optimal weights over time. For example, Jebabli et al. [43] adopt this
approach to calculate the optimal weight and hedging ratio of oil–food portfolios.

The equation for calculating the weight of the portfolio is as follows:

wGold,Stock
t =

hGold
t −hGold,Stock

t
hStock

t −2hGold,Stock
t +hGold

t

wGold,Oil
t =

hGold
t −hGold,Oil

t
hOil

t −2hGold,Oil
t +hGold

t

wGold,Bond
t =

hGold
t −hGold,Bond

t
hBond

t −2hGold,Bond
t +hGold

t

(24)

Moreover:

wt =


0, wt < 0
wt, 0 ≤ wt ≤ 1
1, wt > 1

(25)

Here, hAsset
t is the conditional volatility of an asset (stock/bond/oil/gold) at time t

and hAsset1,Asset2
t represents the conditional covariance between asset 1 and asset 2 at time

t, which are both obtained according to the result of the TVP-VAR model. The weight of
stock/bond/oil in the portfolio is 1− wt. Following Kroner and Sultan [57], we further
calculate the hedge ratios with risk minimization for the portfolio as:

βGold,Stock
t =

hGold,Stock
t

hStock
t

, βGold,Oil
t =

hGold,Oil
t

hOil
t

, βGold,Bond
t =

hGold,Bond
t

hBond
t

(26)

In Table 8, we summarize the average of optimal portfolio weights and hedge ratios
over the sample period. The time-varying optimal hedging ratios are presented in Figure 8.

Table 8. Estimates of the weight of portfolios.

Portfolios wAsset1,Asset2
t wAsset2

t β

Gold–Stock 0.588 0.412 −0.009
Gold–Oil 0.652 0.348 0.099

Gold–Bond 0.727 0.273 −0.004
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Figure 8. Dynamic hedging ratio β. Notes: Figure 8 shows the results of dynamic hedge ratios
between (a) gold and stock, (b) gold and oil, and (c) gold and bond, respectively.

As shown in Table 8, the hedge ratios of portfolios are very close to zero, indicating the
hedging effectiveness of gold as a hedge asset in the portfolio. Thus, the inclusion of gold
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in a diversified portfolio of the other three assets increases the risk-adjusted performance of
the resulting portfolio. The negative hedging ratio reflects the fact that asset prices move in
opposite directions in the short term. The weight of the gold–stock portfolio means that in
a 1-unit portfolio of gold and stock, 58.8% should be invested in gold, with the remaining
41.2% should be invested in stocks. Similarly, for a 1-unit portfolio of gold and oil, 65.2% is
invested in gold, and 34.8% in oil. However, in a 1-unit portfolio of gold and bond, 72.7%
should be invested in gold and 27.3% in bonds, suggesting that investors prefer gold rather
than bonds during periods of financial turmoil. It is worth noting that during the periods of
rare disaster risks, investors are likely to invest more in gold than in the other three assets
in their portfolio.

As shown in Figure 8, the hedging ratios are relatively stable in most periods and
fluctuate around a value of zero, indicating that the constructed portfolio has good hedging
effectiveness. However, there are some large fluctuations in hedging ratios from 1970–1980,
suggesting that the role of gold in diversified portfolios is likely to change in the presence
of the large fluctuations in gold prices, which may be due to the collapse of the Bretton
Woods System and the cancellation of the dollar’s convertibility into gold during the
1970s. In periods of high hedging ratio, the hedgers are required to adjust their future
positions frequently.

Moreover, we use the method proposed by Ku et al. [58] to check the effectiveness of

portfolio diversification. The hedging errors (HE) are defined as: HE =
Varunhedged−Varhedged

Varunhedged
,

where Varhedged represents the variance of the returns on the gold–stock/bond/oil portfolio;
Varunhedged is the variance of the returns on the gold. A higher HE ratio indicates that
hedging is more effective in reducing the variance of the portfolio; namely, the portfolio
can be regarded as an effective hedging strategy.

Table 9 summarizes the results of hedging effectiveness. As shown in Table 9, the
portfolio consisting of gold and stock has the largest HE ratio of 44.3%. Therefore, the risk of
hedging gold is more effective on stock returns than on bond or oil returns, indicating that
the introduction of gold into the stock portfolio can significantly improve its risk–return
performance. As for oil, the HE of the portfolio is negative, which may be due to the higher
variance of its portfolio returns.

Table 9. Hedging errors.

Portfolios Gold–Stock Gold–Oil Gold–Bond

Variance 0.013 0.026 0.014
HE 0.443 −0.113 0.397

6. Conclusions

In this paper, we aim to provide a flexible framework for the estimation of the time
variation in rare disaster risk, and thus to further investigate the role of rare disaster
risk in the price dynamics of major commodity and financial assets. First, we apply
the approach proposed by Berkman et al. [6] to construct the crisis severity index by
aggregating the values of six crisis indicators. Next, we use VAR approaches to investigate
the responses of asset markets to the shock of rare disasters, as well as to quantify the
fraction of asset volatility attributed to rare disaster risk. Moreover, the possibly nonlinear
causal effects of rare disaster risk on asset returns and volatility are examined based on
a nonparametric causality-in-quantiles method. We further compare the differences in
the effects of rare disaster risks between commodity and financial assets. In addition,
the diversified portfolios and the time-varying hedging ratios are constructed to provide
the optimal risk hedging strategy for investors. All the findings provide insights into
uncovering the role of rare disaster risk in determining the dynamic nature of asset prices.

Our main empirical results are as follows: First, there exists a drastic time variation
in the movements of international political crises over the sample period of 1918–2015.
We also find substantial differences in the fluctuations of the asset returns, as well as the
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volatility across major assets in the nearly century-long history. Second, we find a different
pattern of the time-varying effects of rare disaster risk on asset markets. The evolution of
the impulse responses to rare disaster risk differs greatly between commodity and financial
assets over the sample period: the responses are generally positive for commodity except
in the recent two decades, whereas they are negative for financial assets. In addition,
disaster risk exerts a more intense and persistent influence on oil and stock markets, when
compared to gold and bond markets. Third, rare disaster risk is more likely to affect asset
market volatility rather than returns. There is no significant evidence of nonlinear causality
between rare disaster risk and asset returns at different quantiles, except for crude oil. In
contrast, rare disaster risk has a significant nonlinear causal impact on the volatility of
asset returns, with some exceptions for the extreme low or high quantiles. In general, we
demonstrate a large difference in the role of rare disaster risk between commodity and
financial assets.

Our findings have important policy implications. First, understanding the difference
of the reactions to rare disaster risk between financial and commodity assets may be of
particular interest to financial investors in terms of asset allocation and risk management
decisions. The empirical evidence sheds light on the fact that gold can be used as a hedge
against other assets during periods of economic turmoil or political crises. In particular, for
investment portfolios, the risk hedging of gold is more effective on stock returns than on
bonds and oil. Second, the empirical results indicate that close attention to the impact of
rare disaster risks should be paid by financial investors as well as policymakers. As rare
disaster risk has a strong impact on the fluctuations of commodity and financial markets,
it implies that it is necessary to take measures and stage interventions for policymakers
to stabilize asset markets, and thus the financial system. This might lead to raising good
public expectations and restoring market confidence, thereby reducing the impact of rare
disaster risk shocks. For financial investors, it is also crucial to give importance to assessing
the impact of disaster events on asset prices when aiming to minimize their investment
risk. Financial investors should be aware that rare disaster risks might lead to disruptive
fluctuations of asset markets, and furthermore, have a severe impact on their investments.

This study has several limitations and thus also offers some avenues for future re-
search. First, our paper uses low-frequency (i.e., annual) data to investigate the relationship
between rare disaster risk and asset prices from a long-term perspective. This is limited
to capturing the characteristics of the dynamic relationship; in particular, the short-term
responses of high-frequency asset prices to rare disaster shocks. One interesting direction
for future research is to explore the role of rare disaster risk in asset markets in both short-
and long-term perspectives simultaneously when using the mixed-frequency data model,
which allows one to incorporate higher frequency asset prices (such as daily data) with
low-frequency rare disaster risk (such as monthly, quarterly, or annual data). Second, the
outbreak of the current COVID-19 pandemic (as a special type of rare disaster risk) has a
substantial impact on the fluctuations as well as the connectedness among globally traded
commodity and financial markets. A natural extension of the research is to explore the
role of the COVID-19 pandemic in the fluctuations, as well as risk transmission across
commodities and financial assets markets. Third, due to the lack of long-term crisis data for
certain categories of crises, the constructed measure of crisis severity index is based on the
major representative crisis dimensions, rather than all crisis dimensions in the ICB’s crisis
database. One interesting direction is to further understand the role of disaster risk via
using all crisis dimensions of the ICB database to construct a more comprehensive proxy of
disaster risk in recent decades.
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