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Abstract: Accurate prediction of short-term rockburst has a significant role in improving the safety
of workers in mining and geotechnical projects. The rockburst occurrence is nonlinearly correlated
with its influencing factors that guarantee imprecise predicting results by employing the traditional
methods. In this study, three approaches including including t-distributed stochastic neighbor
embedding (t-SNE), K-means clustering, and extreme gradient boosting (XGBoost) were employed to
predict the short-term rockburst risk. A total of 93 rockburst patterns with six influential features
from micro seismic monitoring events of the Jinping-II hydropower project in China were used to
create the database. The original data were randomly split into training and testing sets with a 70/30
splitting ratio. The prediction practice was followed in three steps. Firstly, a state-of-the-art data
reduction mechanism t-SNE was employed to reduce the exaggeration of the rockburst database.
Secondly, an unsupervised machine learning, i.e., K-means clustering, was adopted to categorize
the t-SNE dataset into various clusters. Thirdly, a supervised gradient boosting machine learning
method i.e., XGBoost was utilized to predict various levels of short-term rockburst database. The
classification accuracy of XGBoost was checked using several performance indices. The results of the
proposed model serve as a great benchmark for future short-term rockburst levels prediction with
high accuracy.

Keywords: rock burst; t-SNE; unsupervised learning; supervised learning; XGBoost

1. Introduction

Rockburst is an abrupt and violent failure of the rock mass that results in personnel
injury and economic loss in underground rock excavations [1,2]. It is generally believed
that because of the sudden release of stored elastic energy, rockburst causes an adverse
phenomenon of ejecting, spalling, slabbing, and bursting at a high speed in a very short
time, which greatly endangers worker safety and also damages field equipment and
established structures [3,4]. Rockburst has been a serious threat to many engineering
projects (i.e., mining and geotechnical) around the globe. In China, with the extensive depth
of underground coal mines and underground rock excavations [5], the rockburst hazard is
becoming more severe and frequent for rock engineering [3,4]. Rockburst has been widely
reported in several countries around the globe. Likewise, in Canada, rockburst cases are
reported in more than 15 mines [6]. From 1936 to 1993, the United States documented more
than 172 rockburst cases in which more than 78 fatalities and 158 injuries occurred [6,7].
Despite reducing the mining activities, Germany still documented rockbursts from 1983 to
2007, and some serious injuries and deaths were delineated in more than 40 cases [8]. China,
as the current world’s largest coal producer, is facing a linear increase in rockburst cases with
the increase of coal production from underground mining. According to Zhang et al. [9],
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over 100 Chinese coal mines have recorded rockburst disasters. Despite the fact that many
prevention and control exertions have been undertaken, the rockburst disaster still remains
an unsolved universal issue for underground rock excavations.

A large amount of experimental research is now being undertaken with the goal of
better understanding the mechanical behavior of rock mass under various engineering situ-
ations [10–12] The rockburst mechanism, types, and some useful control measures are also
proposed following theoretical analysis, field studies, and laboratory tests [13]. In addition,
some updated monitoring methods including microgravity, microseismic and geological
radar are implemented for monitoring and forecasting the rockburst danger [14]. These
methods can monitor and forecast the rockburst danger before it occurs. Nevertheless,
the accurate determination of rockburst prediction is still a strenuous challenge because
it has several influencing factors including rock properties, geological conditions, stress
levels, and energy accumulation [9]. Rockburst prediction is classified into two categories:
short-term rockburst prediction and long-term prediction [8]. Short-term rockburst pre-
diction is usually followed by installing on-site monitoring systems, i.e., electromagnetic
radiation, microseismic, infrared radiations, and microgravity methods [6]. By analyzing
and monitoring the microseismic wave released during rock fracturing, some precursory
features of rockbursts were discovered that were helpful for the prediction of rockburst.
The microseismic indicators that are commonly used for rockburst prediction are the energy
indicator [15], the events number [16], the b value which is defined as the slope of the
commutative hit with respect to the amplitude [17], and apparent volume [18]. Conversely,
the long-term rockburst prediction can be estimated by following rockburst potential and
field conditions. Various predictive indicators are recommended by the researchers for
the prediction of rockburst potential, e.g., strain energy storage index (Wet) proposed
by [19], defined as the ratio of stored strain energy (Wsp) to dissipated strain energy (Wst).
Wattimena et al. [20] considered an elastic strain energy density as a measuring indicator
of rockburst potential. Altindag [21] introduced the rock brittleness coefficient as a burst
liability index that is defined as the ratio of uniaxial compressive stress (UCS) to tensile
stress (σt). According to Wang and Park. [22], the tangential stress criterion defined as the
ratio between tangential stress (σθ), and UCS of rock mass (σc) is another useful index to
quantify the risk of rockburst. The rockburst occurrence is generally influenced by many
factors that may include rock properties, stress domination, groundwater conditions, exca-
vation methods, etc. The rockburst intensity is nonlinearly correlated with the influencing
factors [23] that guarantee imprecise predicting results by employing the traditional meth-
ods [24]. Hence, soft computing methods have been recently implemented in monitoring
and predicting the dynamic disaster of rockburst.

With the growth in the use of computers in applied sciences over the past few
years, machine learning methods are adopted for predicting the rockburst risk more effec-
tively. Researchers have recommended several machine learning methods. For example,
Wojtecki et al. [25] applied a variety of algorithms, i.e., decision tree (DT), random forest
(RF), gradient boosting (GB), and artificial neural network (ANN), to evaluate the rock-
burst in the upper Silesian coal basin, Poland. A convolutional neural network (CNN)
based data-driven model was built by Zhao et al. [26] and the performance of the model
was then compared with the traditional neural network. Zhao et al. [1] recommended a
model for rockburst prediction by implementing a DT model on microseismic monitoring
data. Various classification models were adopted to predict the occurrence and intensity of
rockburst in the form of distinct data-driven classification problems [27]. Zhou et al. [28]
classified a long-term rockburst by adopting support vector machine (SVM) model and
their results were recommended for underground rocks excavation. A study was conducted
on predicting the rockburst intensity by applying an extreme learning machine (ELM).
Furthermore, a particle swarm optimization (PSO) model was implemented to optimize
the hidden layer bias and input weight matrix [29]. Li et al. [30] established a hybrid
model (KPCA-APSO-SVM), that was based on three different models including kernel
principal component analysis (KPCA), the adaptive-PSO, and SVM. Several influencing
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parameters, i.e., the ratio of tangential stress (σθ) to UCS (σc), the ratio of UCS (σc) to the
tensile stress (σt) and strain energy storage index (Wet) were taken as input parameters and
the results depicted that the KPCA-APSO-SVM model has strong reliability in rock burst
prediction. In order to predict and categorize the sensitivity of rockburst, multivariate adap-
tive regression splines (MARS) and deep forest algorithms were applied [31]. Additionally,
the dimensional reduction and visualization of input features were carried out by t-SNE.
Zhou et al. [32] studied and compared the forecasting outcomes of 12 different machine
learning algorithms in long-term rockburst prediction. A C5.0 DT algorithm has been used
as the main classifier for rockburst classification and evaluation [33]. A locally weighted
C4.5 DT algorithm has also been introduced for predicting the risk of rockburst in coal
mines [34]. Ahmad et al. [35] investigated the potential of J48 and random tree algorithms
to predict the rockburst classification levels. Wang et al. [36] developed a bagging and
boosting tree-based ensemble technique to predict rockburst disasters in hard rock mines.
Pu et al. [37] adopted SVM to evaluate the rockburst liability in Kimberlite diamond mine.
Pu et al. [24] studied the long-term rockburst predictivity using an unsupervised learning
method and SVM at Kimberlite diamond mine. Sun et al. [3] has proposed a RF and firefly
algorithm (FA) based ensemble classifier to attain an optimal rockburst prediction model.

So far, the above-mentioned literature revealed that rockburst risk is investigated
using different supervised and DT approaches. Almost all studies have been conducted on
long-term rockburst prediction and classification, whereas few among them have focused
on investigating short-term rockburst. Liang et al. [38] evaluated the predictability of short-
term rockburst using microseismic data obtained from the tunnels of Jinping-II hydropower
project in China. Several ensemble learning algorithms including RF, adaptive boosting
(AdaBoost), gradient boosting decision tree (GBDT), XGBoost, and light gradient boosting
machine (LightGBM) have been evaluated and, among them, the RF and GBDT have
shown good performance. Zhou et al. [39] considered the predictive performance of the
stochastic gradient boosting (SGB) approach in the prediction of rockburst. Feng et al. [40]
employed an optimized probabilistic neural network (PNN) on microseismic monitoring
data to forecast the rockburst risk. The model was modified by combining the mean impact
value algorithm (MIVA), the modified firefly algorithm (MFA), and PNN (MIVA-MFA-
PNN model). Ji et al. [41] developed a genetic algorithm (GA) and SVM based model
(GA-SVM) to analyze microseismic data to predict rockburst occurrence. Table 1 depicts
the traditional supervised machine learning approaches proposed by the researchers for
predicting rockburst. The traditional supervised classification algorithms have major
limitations in complex phenomena such as rockburst potential due to the difficulty of
obtaining a large number of good quality labeled samples. One interesting contender for
overcoming this issue is a combination with an unsupervised technique to enhance the
results of a classification algorithm.

Table 1. Traditional supervised machine learning approaches proposed by the researchers for pre-
dicting rockburst.

S.No References Machine Learning Models Dataset Size Year

1 Zhou et al. [32] KNN 246 2016
2 Li et al. [42] LR 135 2017
3 Afraei et al. [43] LR 188 2018
4 Faradonbeh et al. [44] DT 134 2019
5 Pu et al. [45] DT 132 2018
6 Ghasemi et al. [33] DT 174 2020
7 Faradonbeh et al. [44] ANN 134 2019
8 Adoko et al. [46] ANFIS 174 2013
9 Zhou et al. [32] SVM 246 2016
10 Guo et al. [31] MARS 344 2021

Note: KNN, k-nearest neighbors; LR, Logistic regression; DT, Decision tree; ANFIS, adaptive neuron fuzzy
inference system; ANN, Artificial neural network; SVM, Support vector machines; multivariate adaptive regres-
sion splines.
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2. Significance of the Study

In reality, the predictive characteristics of rockburst levels are not constant through-
out many geotechnical and geomechanical engineering domains. Despite the fact that
numerous diverse results are attained in the broad anatomies of rockburst prediction,
the underlying influence of each uncertainty level remains unknown. There is currently
no accurate method for anticipating the complex phenomena, i.e., short-term rockburst
intensity levels. This paper provides a three-step mechanism for predicting the intensity
level of short-term rockburst as follows:

(1) To begin, a cutting-edge data depletion process called t-distributed stochastic neigh-
bor embedding (t-SNE) was developed to lessen the magnification of original rock-
burst database;

(2) Second, an unsupervised machine learning, namely K-means clustering, was used to
classify the t-SNE dataset in order to reduce the inconsequential spectral dissimilarity
effect in homogeneous localities;

(3) Finally, XGBoost, a supervised gradient boosting machine learning algorithm, has
been developed to forecast various levels of short-term rockburst database. Figure 1
depicts a flowchart of this work.
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3. Material and Methods
3.1. Data Acquisition

In order to build the database of this work, a total of 93 short-term rockburst patterns
with six influential features were collected from genuine microseismic monitoring events
of the Jinping-II hydropower project in China [47]. The dataset used in this paper has been
taken from the work of Liang et al. [38] based on the dataset provided by Feng et al. [47].
The rockburst intensity has been classified into four levels, i.e., no rockburst level (0) depicts
that the rock specimens has no significant fracture on the free face, slight rockburst level (1)
elucidates small specimen with minor fragment displacement and kinetic energy release,
moderate rockburst level (2) shows the block spalling of the rock mass in the diverticulum
and roadway wall whereas violent rockburst level (3) represent massive rock mass spalling,
promptly distorting the surrounding rock mass. Figure 2 shows the distribution of various
rockburst levels in this study.
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From Table 2, it is clear that six influential features are designated in this study. In
order to make the execution more appropriate, the values of X3, X4, X5 and X6 are selected
in logarithmic scale. The main aim of the log function is to respond to the skewness toward
large values in rockburst database.

Table 2. Statistical description of rockburst database.

Descriptive
Statistics

Cumulative
Number of
Events X1

(Unit)

Event Rate X2
(Unit/Day)

Logarithm of the
Cumulative

Release Energy
X3 (J)

Logarithm of
the Energy

Rate X4
(J/Day)

Logarithm of the
Cumulative

Apparent Volume
X5 (m3)

Logarithm of
the Apparent
Volume Rate
X6 (m3/Day)

Mean 13.011 1.735 4.389 3.562 4.150 3.334
Standard
deviation 13.690 1.738 1.441 1.332 0.660 0.558

Minimum 1 0.111 0.780 0.178 2.511 1.666
Maximum 70 12.250 7.094 5.890 5.168 4.393

The box plot of each feature for the four rockburst levels is shown in Figure 3. From
Figure 3, it is depicted that the rockburst is positively correlated with each feature. The
larger values of features indicate the higher level of rockburst. Moreover, some outliers
are present in the entire features of short-term rockburst dataset under each correspond-
ing rockburst level, which shows the complexity of rockburst phenomenon. Hence, the
effect of all the features is incorporated in this study to enhance the overall accuracy of
rockburst database.
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3.2. SNE Based t-SNE Algorithm

Hinton and Roweis [48] developed an enhanced stochastic neighbor embedding (SNE)
based t-SNE algorithm.

The SNE operates in the following two steps: (1) Firstly, the SNE permutes the dis-
tance between points (data points) to a conditional probability in high-dimensional space
attributing their resemblance. (2) Lastly, the SNE matches that conditional probability
(probability of points in high-dimensional space) to the conditional probability of other
points (map points) in low-dimensional space [49].

3.3. K-Means Clustering

Clustering analysis has been the best choice to avoid artificial division and supervision.
In clustering, a dataset is generally grouped by a similar number and keeps the higher
similarity in each group. The division of the dataset has happened according to the distance
between the data points. Furthermore, the similarity and dissimilarity criteria also have an
important role in the data division process. An unsupervised machine learning approach
called K-means clustering [50,51] has wide and significant applications in dividing n
observations into K clusters. Each observation in K-means clustering is related to the
cluster with the nearby mean. The working principle of the algorithm consists of two
dispersed phases. The first phase selects the K centers randomly with an already selected
value of K, while the second phase collects each data object in the vicinity of the nearest
center [52]. The most widely employed clustering criterion is known as the sum of the
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squared Euclidean distances. The main focus of this criterion is to measure the distance
between each data point and cluster center [53].

3.4. Extreme Gradient Boosting (XGBoost)

XGBoost is abbreviated as extreme gradient boosting, which is an ensemble learn-
ing algorithm of machine learning techniques [54]. It includes simple classification and
regression trees (CARTs) by integrating statistical boosting methods. Boosting improves
the estimation precision of the model by constructing multiple trees as an alternative
to constructing a single tree, and then combining them to build a consensus prediction
framework [55]. XGBoost generates the tree by consecutively employing the residuals
of past trees as contributions to the resultant tree. As such, the resulted tree develops
the overall prediction by showing the errors of the past trees. At the point when the loss
function is minimal, this consecutive model structure interaction can be articulated as a
kind of gradient descent that advances the prediction by emerging another tree at each
stage to ultimately decrease the fall [56]. The expansion of the new tree halts when the
pre-determined most extreme number of trees is reached, or when the training error cannot
be raised to a pre-indicated number of consecutive trees. Both the estimation precision
and execution promptness of gradient boosting can be greatly enhanced by including
random sampling; this comprehensive approach is designated probabilistic boosting [57].
In particular, for each tree in alignment, an irregular subsample of the training data is
taken from the complete set of training data, excluding substitution. This irregularly spec-
ified subsample is then applied instead of the complete sample to appropriate the tree
and determine the update of the model. XGBoost is an upgraded decentralized gradient
boosting that can accomplish state-of-the-art prediction exhibitions [54]. XGBoost employs
second-order estimation of the loss function, which is faster to combine than conventional
GBMs. XGBoost has been effectively applied to mine gene articulation data [58]. The
general architecture of XGBoost is depicted in Figure 4.
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3.5. Hyperparameter Tunning

The hyperparameter in the machine learning algorithms need to be optimized. These
hyperparameters should be calibrated contingent on the data in reference to defining it
manually. As the short-term rock burst dataset is limited, we employed the cross-validation
method based on normalizing data. Several cross-validation methods are applied by the
researchers to optimize the hyperparameter.

Choubineh et al. [59] proposed the splitting of data into training, validation, and
testing datasets to authenticate the machine learning algorithm. The validation dataset is
employed to optimize the hyperparameters, whereas training on test datasets and training
datasets are applied to evaluate the final performance of the model [59]. Nevertheless, a
single contingent splitting of the data on various subsets is inadequate for ideal model
evaluation because of the non-linearity of the datasets. If other contingent splitting is
employed, it will compute the other values for performance indicators. The single splitting
of data is only logical in large data set circumstances.

Among the hyperparameter tunning methods, the other most common method is the
k-fold technique. In the k-fold method, the whole data is divided into k segments, then
the first segment is employed for testing the execution of machine learning algorithms
following training the data on the supplementary k-1 segment. Afterward, the second
segment is taken for testing and the remaining data is employed as a training dataset. In the
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last different values of performance metrics are computed for all the k-fold. Hence cross-
validation assists in attaining the average and standard deviation values of the metrics.

The random permutation method is also employed as hyperparameter optimization.
This method involves irregular splitting of the data into training and testing datasets,
after which the data is reorganized, and a new splitting of training and testing datasets
is attained. This technique is repeated for n number of times and at every turn metrics
are computed. Correspondingly, in the last, the average and standard deviation values
of the metrics are calculated. Hence cross-validation not only computes the performance
criteria for the testing dataset but accomplishes it multiple times by employing autonomous
data to divide it into training and testing datasets. As in our case, the data is limited, so
cross-validation was employed multiple times. The algorithm of 5-folds cross validation is
shown in Algorithm 1. The grid search CV has been used to build the model, evaluate its
performance, and make the short-term rockburst prediction level.

Algorithm 1: 5-folds XGBoost cross validation

Input

I(t), I(t1) ∈ I(t): Initial Dataset
Extreme Gradient Boosting (XGBoost): Decision Algorithm
L: Loss Function
5: Fold Number

Step 1
U1 ⊕ U2 ⊕ . . . .. T
U1 + U2 + . . . .. T
⇔ Ui ∩ . . . ..

Step 2 for I from 1 to 10 do
Step 3 Fi = XGBoost(T/Ui)
Step 4 for S(Ai) in Ui do
Step 5 ej = L(Fi, S(Ai)
Step 6 End for
Step 7 End for
Step 8 Returne

3.6. Grid Search CV

A comprehensive grid search was followed for hyperparameter tunning [60]. This
method authorizes search within specified hyperparameters range and describes the best
value which results in the optimum value of evaluation criterion. GridSearchCV() has been
implemented in scikit-learn python programing language in order to compute this method.
This technique purely computes the cross validation (CV) score for all hyperparameter
combinations in a specific range. The flowchart of algorithm’s parameters optimization
using grid search is shown in Figure 5. GridSearchCV() not only permits calculation of the
optimal hyperparameter but also estimates the metric to its best value. In our case, all the
other parameters of the python programing language were used as a default in order to
implement Grid Search CV.
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4. Result and Discussion
4.1. Rockburst Database Reduction Using t-SNE

Consider that the data points rp and rq in rockburst dataset select their corresponding
neighbors based on conditional probability, shown as Sq|p in Equation (1) [49,61]. The
Gaussian kernel is used to define conditional probability.

Sq|p =


exp(−||rp−rq||2/2σp

2)

∑k 6=p exp−
∣∣∣∣∣∣rp−rk

∣∣∣∣∣∣2/(2σp)
2

0 p = q

whereas p 6= q (1)
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whereas
∣∣∣∣rq − rp

∣∣∣∣ represents the Euclidean distance between data points rp and rq while
σp shows the Gaussian distribution variance choosing rp as the center position, which is
established by binary search by employing the mechanism of perplexity. The perplexity is
given in Equation (2).

Perp
(
Sp
)
= 2E(Sp) (2)

where E(Sp) is the Shannon entropy of Sp computed in bits and Sp induces a probability
distribution for any value of σp. The E(Sp) is given in Equation (3).

E
(
Sp
)
= −∑ Sq|p log2 Sq|p (3)

Assume that bp and bq are allocated in a low dimension that are resembled to rp and rq
in the high dimension. It is possible to compute a similar conditional probability (Tq|p) for
the map points bp and bq in low-dimensional (corresponding to the datapoints rp and rq in
high-dimensional space). In this case, the Gaussian distribution is stated as 1√

2
. Succeeding

the resemblance of Sq|p of rq to rp is given in Equation (4).

Tq|p =


exp(−||bp−bq||2)

∑k 6=p exp(−||bp−bk||2)

0 p = q

p 6= q (4)

If dimensionality depletion outcome is satisfactory, then the resemblance in high
dimensionality space is assumed to be identical to that in low dimensionality in Sq|p=
Tq|p. When the conditional uncertainty between rp and all other points are examined, the
conditional uncertainty distribution Sq can be established. Correspondingly, the identical
uncertainty distribution Tq is established as Sq low dimensionality space. To measure the
resemblance between two points, the Kullback–Leibler divergence is employed. Hence, a
cost function J is established as shown in Equation (5).

J = ∑
p

KL
(
Sp
∣∣∣∣Tp

)
= ∑

p
∑
q

Sq|p log
Sq|p
Tq|p

(5)

In Equation (5), the distribution of conditional probabilities of data point rp and map
point bp over other data points, and map points are represented as Sp and Tp, respectively.
The SNE is amended to t-SNE with the addition of two major improvements [62]. Firstly, for
pairwise estimation of likenesses in both low and high-dimensional spaces, the symmetric
version of SNE is introduced. The improved t-SNE for data points rp and rq is depicted in
Equation (6).

Spq =
Sq|p + Sp|q

2n
(6)

By employing the symmetric property (Spq = Sqp), the data point rp will have the
probability to pick the data point rq as its neighbor, where n shows total data points.
Secondly, the Gaussian kernel is replaced by the t-distribution to evaluate the likeliness
between the map points. More precisely, the t-SNE uses a heavy-tailed t-distribution for bp
and bq (map points) in low-dimensional space. This process takes place with 1 degree of
freedom, then the Tpq can be obtained by using Equation (7):

Tpq =
1 + (

∣∣∣∣rp − rq
∣∣∣∣2)−1

∑k 6=l (1+||rk − rl||2)−1 (7)

To make it more precise, the comprehensive mechanism of t-SNE is given as:

Stage 1: Get data S = S1, S2, S3, . . . , Sn in high dimension region, and give the dimensionality
reduction consequences as B(T) = T1, T2, T3, . . . , Tn;
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Stage 2: Compute perplexity, and assign iteration times T, momentum of α(t) and learning
rate η;
Stage 3: Calculate Sp|q as given in Equation (1);
Stage 4: Estimate Spq as depicted in Equation (7);
Stage 5: Arbitrarily choose Y with N;
Stage 6: Compute Tpq as stated in Equation (7), estimate the gradient as stated in Equation (9);
Stage 7: Finally repeat the stage 6 so that the iteration number is remarkable than T.

The Jupyter notebook has been utilized using Scikit-learn module in order to accom-
plish the t-SNE. In the first stage, the rockburst database is visualized from high-resolution
amplitude to low-resolution amplitude. The initial rockburst dataset is tabulated into four
clusters. In this study, the event related features, i.e., the cumulative number of events
X1 (unit) and event rate X2 (unit/day) are considered in the first group (Dimension 1).
The energy associated features including the logarithm of the cumulative release energy
X3 (J) and the logarithm of the energy rate X4 (J/day) are categorized in the second group
(Dimension 2). The apparent volume related features, i.e., the logarithm of the cumulative
apparent volume X5 (m3) and the logarithm of the apparent volume rate X6 (m3/day) are
collected in the third group (Dimension 3). In order to reflect the initial rockburst dataset,
the learning rate = 100 is executed with the Matplotlib in the Python programming language
(all the other parameters are kept as a default). Following the rockburst data dimensionality
reduction technique, the feature established amplitude was formed in such a way that the
initial rockburst database may keep the originality to high scalability. The rockburst dataset
after the dimensionality reduction is depicted in Figure 6. After the adoption of the t-SNE
mechanism, the actual rockburst dataset (93 × 6 matrix) is renovated to a (93 × 3) matrix,
as revealed in Table 3. Figure 6 demonstrates a low-resolution amplitude visualization of
the rockburst dataset following the t-SNE data reduction mechanism.
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Table 3. Rockburst database after low-resolution amplitude with t-SNE.

Samples Dimension 1 Dimension 2 Dimension 3

1 −9.1895 1.876923 3.533078
2 −5.25797 1.386265 2.998773
3 −6.33402 0.83398 −0.95647
4 −6.6661 1.667999 1.523691
5 −3.36939 0.296317 1.838995

. . . .. . . . .. . . . ..
88 −8.27044 1.192174 2.389334
89 −8.87826 1.073105 −2.3535
91 −2.44182 −0.94443 1.698488
92 −5.97327 1.043975 −4.14844
93 −0.7725 −1.40264 1.910676

4.2. K-Means Clustering on t-SNE Based Rockburst Database

In K-means clustering, the completion of early rockburst level grouping occurs when
all the data objects are appended in some clusters and the average of the primitive clusters
is then recalculated. This iteration happens many times until the criterion function is
reduced to its minimum. Based on the target object r and average of cluster Ji that is ri, the
criterion function can be obtained using an Equation (8) [63]:

C =
k

∑
i=1

k

∑
r∈Ji

|r− ri|2 (8)

where C indicates the sum of squared error of all objects in the database. In this study,
to compute the adjacent distance between data points and cluster center, the Euclidean
distance is considered as a criterion function. The Euclidean distance between one vector
r = (r1, r2, rn) and another vector s = (s1, s2, . . . sn), the Euclidean distance D(ri, si) can be
obtained by the following Equation (9):

D(r, s) =

[
n

∑
i=1

(ri − si)

]1/2

(9)

The Jupyter notebook has been utilized using Scikit-learn module in order to accom-
plish the K-means clustering. Rousseeuw [64] have established the generalization of the
cluster monitoring. Silhouette mechanism is contingent on balancing the objects tightness
and separation. The silhouette coefficient can show that the t-SNE data is grouped in a
good manner reflecting that the objects are organized into the groups that they match. This
is an index to evaluate that the authentication of the clustering to be used for selecting
the optimal k in the cluster. Based on the four different rockburst levels, we assume the
number of clusters = 4 for K-means clustering. Several iterations stages were computed in
this study as shown in Figure 7. Various studies have shown that a silhouette coefficient
of more than 0.5 is an acceptable model for K-means clustering [65–68]. The silhouette
coefficient of 0.53 shows that the clusters was reliable following 10th iteration in the t-SNE
obtained short-term rockburst dataset.
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4.3. Extreme Gradient Boosting (XGBoost) Prediction Model

Consider vm as the forecasted rockburst prediction level result of the nth number of
data for which the characteristics vector is Un; P denotes the number of estimators, with
qs (s ranging from 1 to P) corresponding to individual tree anatomy; and v0

n denotes the
preliminary assumption that is the average of the measured characteristics in the learning
information. To forecast the results, Equation (10) uses a variety of expansion functions.

vm = v0
n + γ

P

∑
s=1

qs(Un) (10)

whereas γ is the learning rate, which is included to better model implementation, execute
rhythmically while connecting the most recent tree, and avoid overfitting.

In Equation (9), a character Sth is linked to the model at the Sth state, and the Sth

forecasted value v−s
n is implemented from the preceding state forecasted value v−(s−1)

n , and
the augmented qs of the character of the attached Sth character is illustrated in Equation (11).

v−s
n = v−(s−1)

n + γ qs (11)
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whereas qs represents the weight of leaves created by decreasing the objective function of
the Sth tree

obj = ηK +
K

∑
α=1

[Tαβα +
1
2
(Lα + µ)β2

α] (12)

wherein K indicates the leaves of the Sth tree and βα represents the weight of the leaves
from 1 to K, η and µ are the uniformity characteristics that are used to apply the coherence to
the anatomy in order to avoid the model overfitting. The parameters Lα and Tα represent
the sum of all data associated with a leaf of the previous and subsequent loss function
gradients, respectively.

A single leaf is divided into distinct numeration leaves in order to form the Sth tree. The
anatomy of using the gain settings is seen in Equation (13). Consider the interdependent
right leaf RC and BC and the interdependent left leaf RW and BW achieving the divergence.
The diverging benchmark is generally assumed when the gain parameter is close to zero.
The uniformity characteristics and are periphrastically susceptible on the gain attribute,
i.e., a greater regularization parameter will result in a lower gain parameter, which will
prevent the slope of the leaf from converging. However, it will reduce the framework’s
capacity to adapt to the rockburst training dataset.

gain =
1
2

[
R2

W
BW + µ

+
R2

C
BC + µ

+
(RW + RC)

2

BW + BC + µ

]
(13)

In order to forecast the rockburst intensity level, a gradient boosting machine learning
algorithm has been applied on the k-means clustering dataset. It was noted that employing
an entire dataset to train the XGBoost model may arise the over-fitting issues. More specifi-
cally, the framework may adjust magnificently in addition to the dataset that employed
for the training stage, but it is unable to predict new data. For the avoidance of doubt, the
rockburst dataset is split into training and testing sets with the relative size of 7:3, meaning
that 70% of the entire data is chosen for training and 30% of the entire data is selected
for testing the trained framework. The samples order in the dataset must be randomly
adjusted before the splitting to overcome the localization of the training set.

The XGBoost model was employed to predict the rockburst intensity level. For the
XGBoost model, the online Jupyter platform was executed in python. The python program
language 3.6.6 that was accessible on the Jupyter program was executed to accomplish the
XGBoost. A standard XGBoost model with default attributes that are developed in XGBoost
module: M = 100 estimators, the regularization attribute of γ = 0, λ = 1, a learning rate of
η = 0.3 was implemented in this study. We assumed a repeated 5-fold cross-validation setup
and ensured that the argument from the same essay is not distributed over the training
and testing datasets as shown in Figure 8. The cross-validation was repeated 3 times on
standard scalar normalized data, which yielded a total of 15 folds. For other parameters,
the default values of the XGBoost model are implemented in this study.

The classification accuracy of XGBoost was checked using precision, recall, and f1-
score measures. Precision can properly predict the datasets; recall interpret the capability of
accurately predicting the actual features to the maximum level, and f1-score demonstrates
a universal metric that implements the performance of both recall and precision. Therefore,
the aforementioned performance indicators are implemented in this study to estimate the
performance of the model. Assume the confusion matrix is defined by Equation (14). A
confusion matrix is usually implemented as a standard to demonstrate the performance of
a classification model on a testing dataset for which the true values are already defined.
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S =


s11 s12 · · · s1t
s21 s22 · · · s2t
...

...
. . . · · ·

st1 st2 · · · stt

 (14)

where t represents the number of rockburst levels, s11 is the number of features accurately
predicted for the class m, and Smn denotes the number of features of class that is categorized
to class n.

On the basis of the confusion matrix, the precision, recall, and f1-score measure for
each rockburst level are determined by Equations (15)–(17), respectively.

Pr =
smm

∑t
m=1 smn

(15)

Re =
smm

∑t
n=1 smn

(16)

f1 − score =
2∗Pr ∗ Re
Pr + Re

(17)

To further analyses the accuracy of XGboost, the accuracy is given by Equation (18)

Accuracy =
1

∑k
m=1 ∑k

n=1 Stt

k

∑
m=1

Smm (18)

macro− Pr =(
t

∑
n=1

Smm

∑E
n=1 Smn

)/E (19)

macro− Re =(
t

∑
n=1

smm

∑E
n=1 smn

)/E (20)

macro− f1 =
2∗macro− Pr∗macro− Re
macro− Pr + macro− Re

(21)

The prediction results of XGBoost algorithms were acquired on the testing dataset. In
order to forecast the results of the proposed XGBoost algorithm combined with t-SNE and
K-means clustering, three different performance indices have been employed in this study.
The classification report for the testing dataset was computed using python programing
language. The classification report gives a perspective of the proposed framework perfor-
mance on the rockburst dataset as shown in Table 4. The precision values were calculated
using Equation (15). The precision value for no rockburst level achieved better outcomes as
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compared to slight rockburst level, moderate rockburst level and violent rockburst level.
The precision value for no rockburst, slight rockburst, moderate rockburst and violent
rockburst were 100%, 60%, 100% and 88%, respectively. Equation (16) was employed
to measure the recall value for each rockburst level. The recall value of slight rockburst
performed better as compared to no rockburst level, moderate rockburst level and violent
rockburst level. No rockburst, modest rockburst, moderate rockburst, and strong rockburst
have recall values of 86 percent, 100%, 83%, and 88%, respectively. To measure f1-score for
each corresponding rockburst level, Equation (17) was employed in this study. The f1-score
for no rockburst level outperformed slight rockburst level, moderate rockburst level and
violent rockburst level. The f1-score for no rockburst, slight rockburst, moderate rockburst
and violent rockburst were 92%, 75%, 91% and 88%, respectively. In order to measure the
overall accuracy of the framework on the testing dataset, Equation (18) was utilized in
this study. The accuracy for the overall testing dataset was 88 percent, indicating that the
XGBoost combined with t-SNE and K-means clustering performed well in this study.

Table 4. Classification report of XGBoost algorithm.

Class
XGBoost Model

Precision
%

Recall
%

f1-Score
%

No rockburst 100 86 92
Slight rockburst 60 100 75

Moderate rockburst 100 83 91
Violent rockburst 88 88 88

Accuracy 88
macro avg 87 89 66

Weighted avg 91 88 88

The model’s accuracy is measured as a whole, while recall and precision are calculated
for each class separately. For the rockburst phenomenon, we employ macro average of
precision, recall, f1-score for our model as shown by Equations (19)–(21). The macro-average
scores are the simple mean of scores of all rockburst levels. Hence, macro- average precision
is the mean of the precision of four different levels of rockburst. The macro- average recall
depicts the mean of the recall of four different levels of rockburst. Whereas macro- average
f1-score represents the mean of the f1-score of four different levels of rockburst. So, the
mean of precision, recall and f1-score were 87, 89 and 66, respectively. The weighted
average scores are the sum of the scores of all levels after multiplying their respective levels
proportions. Hence, the weighted average of precision, recall and f1-score were 91, 88 and
88, respectively.

In addition, a confusion matrix of the XGBoost algorithm was established, as shown
in Figure 9. The values on the main diagonal show the samples number correctly predicted
by the XGBoost. It can be seen that most rockburst samples were accurately classified
using the XGBoost. Based on the confusion matrix (see Figure 9) only two rockburst levels
have been mis-predicted in the entire short-term rockburst dataset. More precisely, one
moderate rockburst (2) level is misclassified as violent rockburt (3) level, whereas one
violent rockburst (3) level is misclassified as slight rockburst (2) level. According to the
results, the XGBoost algorithm showed good performances in predicting the rockburst
intensity level.
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5. Conclusions

This research work developed t-SNE+K-means clustering+XGBoost to predict the pre-
dict rockburst levels efficiently and accurately. The robustness of the obtained framework
was authenticated by analyzing the outcomes for the proposed framework using different
performance indices. As for predicting the rockburst level, three methods including t-SNE,
K-means clustering, and XGBoost model, which are broadly employed in geotechnical
engineering, were applied during the study. More precisely, the data employed in this
research work were obtained from genuine microseismic events. The short-term rockburst
level is evaluated by the statistical performance to approximate the robust framework
for the best effective model in connection with data prediction. The results of t-SNE+K-
means clustering+XGBoost model shows that it can estimate the return rockburst level
with high accuracy.

Hence, the t-SNE+K-means clustering+XGBoost model acquired in this study is rec-
ommended as an accurate and efficient model for the prediction of rockburst intensity
levels. It can be employed as a rockburst prevention and warning system, owing to the
fact that the proposed model will have reliable prediction performance in different rock
conditions. Therefore, the model can be generalized by maintaining some additional rock
mechanics data and geological information. This model can be merged into the initiation of
the rockburst level of the microseismical events that are continuously disseminated.

The range and number of trainings should be taken into consideration, which is has a
consequential effect on the logical reasoning of the data-driven models. The current research
will be further extended by establishing some cutting-edge machine learning algorithms
and comparing the outcome of those models with the outcome of the model acquired in
this research work. The state-of-the-art machine learning technique can comprise hybrid,
metaheuristic, and ensemble machine learning models.
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