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Robertas Damaševičius 5,* and Tomas Krilavičius 5
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Abstract: This survey is an effort to provide a research repository and a useful reference for researchers
to guide them when planning to develop new Nature-inspired Algorithms tailored to solve Feature
Selection problems (NIAs-FS). We identified and performed a thorough literature review in three
main streams of research lines: Feature selection problem, optimization algorithms, particularly,
meta-heuristic algorithms, and modifications applied to NIAs to tackle the FS problem. We provide
a detailed overview of 156 different articles about NIAs modifications for tackling FS. We support
our discussions by analytical views, visualized statistics, applied examples, open-source software
systems, and discuss open issues related to FS and NIAs. Finally, the survey summarizes the main
foundations of NIAs-FS with approximately 34 different operators investigated. The most popular
operator is chaotic maps. Hybridization is the most widely used modification technique. There are
three types of hybridization: Integrating NIA with another NIA, integrating NIA with a classifier,
and integrating NIA with a classifier. The most widely used hybridization is the one that integrates a
classifier with the NIA. Microarray and medical applications are the dominated applications where
most of the NIA-FS are modified and used. Despite the popularity of the NIAs-FS, there are still
many areas that need further investigation.

Keywords: feature selection; evolutionary algorithms; nature inspired algorithms; meta-heuristic
optimization; computational intelligence; soft computing

1. Introduction

As data accumulate rapidly in databases and data warehouses, a dimensionality
problem becomes the main challenge for machine learning tasks (e.g., classification or
clustering) [1]. Many negative effects may result from scaling up the dimensionality of
a data set. These include the existence of irrelevant and redundant features that may
adversely affect the learning algorithm or cause data over-fit [2]. Thus, the development
of effective data mining techniques becomes an urgent necessity in various fields such
as medicine [3], bioinformatics [4], text mining [5], image processing [6], design of smart
infrastructures and smart homes [7], financial estimation [8,9], coastal engineering [10], and
sustainability [11]. Their significance depends on their ability to turn huge amounts of data
into an acceptable form. This will simplify knowledge discovery and make huge data sets
more understandable, analyzable, and predictable.

Feature Selection (FS) is a pre-processing data mining technique for dimensionality
reduction [12]. In recent years, research in FS has been rapidly developed in line with the
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era of big data and huge data sets. This subject has attracted the attention of researchers
who have become more interested in developing novel FS techniques and improving
current technologies [13]. FS manages the dimensionality problem by finding the most
representative feature subset. The essence of FS is to choose features that are highly
correlated to the class concept (relevant features) and weakly correlated with each other
(complementary features/not redundant) [14]. Removing irrelevant and redundant features
from a data set will cause improvements in different directions. For the modeling process,
it will promote the generalization process. This will improve the quality of the generated
model, so it becomes less complicated and more understandable. As a result, the inductive
learner will be more efficient. FS is categorized based on the evaluation strategy into filters
and wrappers [15]. The main difference between them depends on integrating a learning
algorithm in the evaluation stage. Wrappers use learning algorithms to evaluate the selected
feature subset. Hence, wrappers are more accurate and more expensive. In contrast, filters
do not rely on learning algorithms, but use some data proprieties for evaluation. Examples
of filters include univariate and multivariate filters. The main difference between them is
that univariate filters rank a single feature to evaluate its performance, while multivariate
filters evaluate the entire feature subset, which includes a set of feature as a combination.
The generation of a feature subset in multivariate filters depends on the search strategy
and the staring point of generation such as: Forward selection, backward elimination,
bidirectional selection, and heuristic feature subset selection. Forward selection starts with
an empty feature subset and then adds features, backward selection starts with the whole
feature subset and eliminates one or more features from the set, and bidirectional search
starts from both sides from an empty feature subset and from the whole feature subset at
the same time [16], F-statistic [17], and information gain [18].

FS is not only a variable shrinkage process, and the target is not just to perform
arbitrary cardinality reduction for a data set. FS is a multi-objective optimization problem
which searches for the (near) optimal subset of features in terms of certain evaluation
criteria. The main target of the FS problem is to find trade-offs between various conflicting
objectives [19]. FS tries to achieve the minimum number of selected features with maximum
performance [20]. Relative to search space, FS is considered a combinatorial nondeterministic
polynomial-time-hard (NP-hard) problem. The reason being that it has a large search space
that needs exponential running time to traverse exhaustively all the generated subsets of
features [12]. The 2N run time complexity will grow exponentially with increasing the
value of N which represents the number of dimensions (features/variables) in a data set.
This means that the traditional brute force methods are too impractical to be applied and
other advanced search methods should be used.

Meta-heuristic search techniques are promising alternative solutions. They observed
superior performance in various optimization scenarios. Potentially, they have a great
opportunity to be suitable solutions for the FS problem. Meta-heuristics includes Nature
Inspired Algorithms (NIAs), which are further divided into two main subcategories, namely
Swarm Intelligence (SI) and Evolutionary Algorithms (EA) [21]. Both categories simulate
the public behavior and biological evolution of agents in nature, respectively. Examples on
EAs are: Genetic Algorithms (GA) [22] and Differential Evolution (DE) [23]. The SI category
includes other types of algorithms such as Particle Swarm Optimization (PSO) [24], Ant
Colony Optimization (ACO) [25], the Artificial Bee Colony (ABC) algorithm [26], memetic
algorithms [27], artificial ecosystem-based optimization [28], marine predators algorithm [29],
polar bear optimization [30], and red fox optimization [31].

Despite the effectiveness of nature-inspired Algorithms (NIAs) in solving the FS
problem, finding the optimal solution is still not guaranteed. The main challenges that
affect meta-heuristic optimization are stagnation in local minima, premature convergence,
parameter tuning, exploitation and exploration imbalance, the diversity problem, dynamicity,
multi-objectivity, constraints, and uncertainty [32].

Several kinds of modifications were proposed in the literature to enhance the performance
of NIAs in optimization. Examples of these modification techniques include a new operator,
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hybridization [33], updated mechanism, new initialization strategy, new fitness function, new
encoding schemes, modified population structure, multi-objectives, state flipping [34,35], and
parallelism [36]. Each modification addresses the weakness of the NIA algorithm in some
issues without harming the essence of the algorithm and its logic. The research field of
NIA-FS has witnessed considerable development. To show the expansion of the NIAs-FS
models in the literature, Figure 1 illustrates the correspondence between the year and
number of publications that combine modified NIAs with FS. In the first years, research
was volatile, and there were also years of research disruptions. Since 2006, the number of
publications has remarkably increased to reach its peak in 2018. Furthermore, the research
in this area has become very effective in the last five years. An intensive search for surveys
in this area found that there are very limited NIAs-FS surveys [20]. Some FS surveys did
not refer to meta-heuristics at all, but focused on other issues such as data perspectives [19],
supervised/unsupervised FS approaches [15], and other FS surveys were tailored to specific
applications or limited to certain domains [37]. The analysis of FS surveys showed that
either they briefly refer to the meta-heuristic FS or they do not refer to them at all. To our
knowledge, there is no survey about a modified NIAs-FS. This finding was one of the main
motivations for this work. Unlike the previous FS surveys, FS will not be discussed in
isolation from other related issues. The main objective is to bridge the gap in FS surveys by
providing a review of the important aspects and design issues of NIAs-based FS approaches.
The main modification strategies that have been adopted to enhance NIA for solving FS
problem are categorized and discussed.

Figure 1. Development of research field regarding Nature Inspired Algorithms (NIA) modifications
for tackling Feature Selection (FS).

In this review, a set of research questions will be asked and answered:

1. What is the current status of modified NIAs-FS research?
2. What are the important aspects and design issues regarding building NIA for tackling

FS?
3. What are the modifications that were applied on NIA for tackling FS and in what

domains were they applied?
4. Are there current open-source software systems that apply a modified NIA-FS?

Based on the aforementioned research questions, we have constructed this review
based on three primary issues:

• Theoretical aspects of modified NIAs-FS provide detailed coverage for three main
subjects: Meta-heuristic optimization, the FS problem, and modifications on meta-
heuristic to enhance meta-heuristics for FS;

• Applied aspects of modified NIAs-FS presents different applications of modified NIAs-FS;
• Technical aspects of modified NIAs-FS presents a new developed FS tool, named Evolopy-FS.

The review will refer to various well-regarded publishers such as ACM, Elsevier,
Springer, IEEE, World scientific, Hindawi, and others. Figure 2a shows the number of
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publications for each NIA in main publishers regarding modifications for tackling FS.
Figure 2b shows the number of citations for popular NIAs articles in the main publishers
regarding modifications for tackling FS.

(a) (b)

Figure 2. Statistics of the number of publications and citations for papers on NIAs modifications
for FS. (a) Statistics of publications on modified NIAs-FS; (b) Statistics of citations for papers about
modified NIAs-FS.

A description of meta-heuristic optimization is presented in Section 3. Section 4
discusses the problem of feature space symmetry in datasets and the need for feature
selection as a disentanglement of symmetry. Section 4 discusses the feature selection
problem and its related issues. A review of different NIAs-FS modification techniques is
presented in Section 5. Section 6 highlights the main applications on modified NIAs-FS.
An assessment of NIA-FS is provided in Section 7. Finally, in Section 8, the outlook for the
NIA-FS research field and possible future directions are discussed.

2. Feature Selection as a Task of Disentangling the Symmetry of Feature Space

The aim of supervised machine learning is to estimate a function f that fits well with
the features of training data and allows to predict the outputs on previously unseen inputs.
The number of samples required for training grows exponentially with the dimension of
a feature space, which is known as the “curse of dimensionality” [38]. To approximate a
Lipschitz-continuous function composed of Gaussian kernels placed in the quadrants of a
d-dimensional unit hypercube (blue) with error ε, one requires O(1/εd) samples [39].

Intuitively, a symmetry of an object is a transformation that leaves certain properties
of the object invariant. For example, translation and rotation are symmetries of objects,
which do not change their representations [40]. The geometric structure of the feature space
imposes the structure on the class of functions f that we are trying to learn. One can have
invariant functions that are unaffected by the action of the group, i.e., f (ρ(g)x) = f (x) for
any g ∈ G and x, here G is the symmetry group, g is the symmetrical transformation in
the feature space, ρ(g) is the group representation, and x is an input in the space of input
signals G(Ω) that acts as a point in the feature space. Such symmetrical transformations
(e.g., translation, rotation, shifting) are commonly used for data (image) augmentation to
increase the number of data instances for effective training of machine learning models.

The goal of feature selection is to eliminate uninformative and/or redundant features
from the feature space, leaving only relevant (i.e., predictive) features [41]. Feature selection
seeks to decrease M to M′ and M′ << M for a dataset with N samples and M dimensions
(or features). In other words, feature selection produces a disentangled representation [40]
with respect to a particular decomposition of a feature space with some symmetry group,
which may be useful for subsequent tasks, such as reduced complexity of training a machine
learning classifier. Such disentanglement, in fact, is performed by a neural network as a
part of the classification process by learning the weights of a network nodes [42], which
produce asymmetric activations for separation of classes.

The redundant features are characterized by a high level of inter-correlation. Such
correlated features result in the symmetrical distribution of instances in feature space.
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Feature selection aims to reduce feature dimensionality by reducing the symmetry in feature
space. The resulting distribution of classes in the lower-dimensional feature space should
be as asymmetrical as possible to allow for easy separability of classes [43]. Furthermore,
a strong correlation in features might result in numerous near-optimal feature subsets,
making traditional feature selection approaches unstable and lowering the trust in selected
features [44]. As many different feature space decompositions are possible, the problem of
finding an optimal feature subspace in a high-dimensional feature space is known to be
NP-hard [45]. In this paper, the nature-inspired meta-heuristic optimization algorithms are
studied for solving the feature selection problem.

3. Meta-Heuristic Optimization

Meta-heuristic algorithms are characterized by flexibility, simplicity, low cost in
computations, and they are derivation-free methods. The principle of meta-heuristics
is reasonability vs completeness. In other words, it gives up completeness for providing
approximated solutions for complex unsolved problems. Meta-heuristics are further
categorized based on the number of candidate solutions encountered during the optimization
process into the trajectory and population.

3.1. Trajectory-Based Optimization

A trajectory algorithm begins with one random solution and it tries to optimize
the solution until a stop condition is satisfied. The computation overhead is reduced
significantly because only one solution is being improved and evaluated during the
optimization process. Equation (1) expresses the number of function evaluations needed in
trajectory algorithms where T is the number of iterations:

#Evaluations(in trajectory based) = 1× T. (1)

Trajectory algorithms are local search techniques. They depend on making a few
changes in the components of the current solution to find a better one. A potential solution
is picked, and its neighboring solutions are checked if they are better. Local search implies
searching within a limited region (exploitation). This process suffers from a potential
entrapment in local minima because of the diversity weakness and a lack of information
exchange. Examples of trajectory algorithms are Simulated Annealing (SA) [46] and Tabu
search (TS) [47].

3.2. Population-Based Optimization

A population algorithm begins with a set of randomly generated solutions and tries
to enhance them during the optimization process. Each candidate solution fluctuates
outward or converges toward the best solution following a certain mathematical framework.
The predominance of these algorithms is because of their simplicity and flexibility. Simplicity
means that they are built upon simple methodologies and are evolved from simple concepts.
They can be adopted to deal with real-world problems without structural modifications.
All that is required is an accurate representation of the problem and the structure of
the optimizer is left untouched. Population algorithms are more efficient in mitigating
local minima compared with trajectory algorithms because more individuals and more
information are shared between them. However, multiplicity in solutions increases the
computation burden because more evaluations are required. The number of calls for
a fitness function is driven by the number of individuals and the number of iterations.
Equation (2) identifies the number of function evaluations in population algorithms where
N is the number of individuals and T is the number of iterations:

#Evaluations(in population based) = N × T. (2)

A population algorithm begins with the initialization step where a set of candidate
solutions are generated. The solution is a candidate or possible solution if it satisfies the
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constraints of the problem. The next step is the evaluation of individuals. The evaluation
is carried out using a specified fitness function and in terms of predefined evaluation
criteria. The fitness function is called for each individual so that each individual gets a
fitness value. After evaluating the individuals, the update process refines and improves
current solutions. This requires updating the positions of individuals in the search space.
This iterative process of evaluating and updating individuals continues until a predefined
criterion is satisfied and the global optimal solution is best approximated.

Population-based algorithms compromise of NIAs that are the result of the union of
nature with different scientific fields including physics, biology, mathematics, and engineering.
Computer science utilized these relations between science and nature and turned it into a
well-defined discipline for optimizing different challenging problems. NIAs are categorized
based on the source of inspiration into EA- and SI-based algorithms [21].

3.2.1. Evolution-Based Optimization (EA)

This category includes different computational systems that share in their emulation
for the biological evolution. EAs model the natural cellular processes such as reproduction,
mutation, recombination, and selection.

EAs typically designed by generating a population of possible solutions
−→
I1 ,
−→
I2 ,
−→
I3 . . .
−−→
In−1,

−→
In called chromosomes. Each chromosome is split into smaller units called genes. The length of
the chromosome (#genes) determines the dimensionality of a problem. The relation between
gene, chromosome, and population can be expressed as gene ⊂ chromosome ⊂ population.
Most of the current evolutionary frameworks implement the chromosome and population
as 1-d array (vector) and 2-d array, respectively. Equation (3) identifies the individual Ii
with a length d and Equation (4) identifies a population P where each individual represents
a row in a matrix. Each solution is evaluated by a certain object function

−→
O1,
−→
O2,
−→
O3 . . .

−−→
On−1,

−→
On to determine its quality and decide if it is fitted or unfitted. The highest evaluated
solution (best individual) is preserved at each iteration. The unfitted solutions (worst
individuals) are candidates to be replaced by newly-generated offsprings. This allows the
average fitness value to increase dramatically throughout iterations. Common EA examples
are GA [22] and DE [23]. GA undoubtedly is the most widespread and typical example
of EAs:

Ii =
[

x1
i x2

i x3
i · · · xd−1

i xd
i

]
(3)

P =


x1

1 x2
1 x3

1 · · · xd−1
1 xd

1
x1

2 x2
2 x3

2 · · · xd−1
2 xd

2
...

...
...

. . .
...

...
x1

n x2
n x3

n · · · xd−1
n xd

n

. (4)

3.2.2. Swarm-Based Optimization (SI)

SI algorithms have a common behavior that is very similar to the social behavior of
creators. The Swarm system comprises an abundant number of agents that are distributed
in the environment to achieve a global target. Intelligence can be seen in the actions of agents
to coexist. The main characteristics of swarm systems are adaptability, self-organization,
distributed control, scalability, and flexibility [20]. The most common SI examples are
Particle Swarm Optimization (PSO) [24] and Ant Colony Optimization (ACO) [25]. A PSO
source of inspiration are flocks of birds that search for food. The search procedure is guided
by two main factors: Pbest and gbest. Pbest represents the best experience that was gained
by the previous particle itself. Gbest represents the best individual in the whole swarm.
Particles also have a position and velocity that are both updated in each iteration.

3.3. Challenges of Meta-Heuristic Optimization

Despite the efficiency of meta-heuristics in tackling challenging optimization problems,
some obstacles impact their performance. These include dynamicity, multi-objectivity,
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constraint, and uncertainty. For multi-objectivity, there are multiple conflicting objectives
to be optimized until trade-offs (Pareto optimal set) are achieved. The search space is
quite more complex. The optimization problem becomes highly challenging when the
number of objectives becomes larger than four [48]. Many objective fields have emerged
to deal with these cases. Constraints of real problems create gaps in the search space by
dividing it into feasible and infeasible regions. Feasible regions satisfy the constraints while
infeasible regions violate these constraints [49]. Accordingly, the optimization algorithm
should follow certain mechanisms to become closer to the promising region and avoid the
infeasible region until an optimal solution is found. The other main issue of meta-heuristic
optimization is uncertainties. For example, the global solution frequently changes its
position in the search space, which requires more attention from the optimization algorithm.
Some operators are used for registering the history and memorizing the locations of the
global optima all the time. Other severe challenges are related to the problem search
space, such as the existence of many holes or valleys that lead to stagnation in local minima,
discontinuities in a search space, the location of global optima that comes onto the boundary
of a search space (the boundary of constraints), and the isolation of global optima [32].

Population algorithms are characterized by two conflicting milestones that are called
exploration (diversification) and exploitation (intensification) [32]. In exploration, the candidate
solutions churn and change violently, which leads one to examine more regions and to find
diverse solutions. Exploitation changes gently and causes a less sudden stir for the candidate
solutions. GA realizes these processes through crossover and mutation operators. Crossover
intermixes a combination of solutions while mutation squeezes certain regions and searches
locally. PSO configures the inertia weight operator by large values for more explorations and
selects small values for more exploitation.

The main challenges of exploration and exploitation include: Firstly, since they
have conflicting purposes, increasing any of the causes decreasing the other. Secondly,
a transition between these two milestones is not defined because the search spaces of the
optimization problems are usually unknown. Thirdly, performing pure exploration causes
less accuracy in approximating an optimal solution because different regions are being
explored without a focus on a certain promising region. Performing pure exploitation gives
rise to entrap in local optima. Fulfilling a balance between exploration and exploitation
may produce better results and increases the chance of being close to the optimal solution.
Recently, this idea has become an active research problem. Several types of research have
tried to attain balance by integrating several random and adaptive operators in the structure
of the algorithms.

4. Feature Selection

This section introduces FS in two parts: The dimensionality problem and the FS system
based on the NIA search strategies.

4.1. Dimensionality Problem

Due to the incremental growth of information and the abundance of data, data sets
have increased in both data samples (number of instances) and dimensions (number of
features). As a result of the increased dimensionality, different negative effects were
embedded in data mining tasks. One of these problems is called the curse of dimensionality,
which describes the status of data as it becomes sparser in large dimensionality space [12].
This raises the need for more instances for the training of the classifier, which increases the
learning time. Learning algorithms were designed to build their models based on rules
inferred from a small number of dimensions. Learning algorithms cannot generalize well in
a large dimensionality space. High dimensionality implies the existence of noisy features,
such as redundant and irrelevant features that mask the informative features and mislead
the classifier and cause data to overfit. An overfitting [2] problem occurs when a classifier
overtrained on the data and learned all examples, including outliers. Considering that
noise and random fluctuations as related concepts will cause building complex models;
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logically, learning from relevant features allows the classifier to be more accurate. Another
negative effect of increasing dimensions is the increased demand for specialized devices
such as large memory storage and high-speed processors, which increases cost.

4.2. FS Preliminaries

Features are defined as measurable properties of the observation under study. The complexity
of the problem is determined by its features. In real-world applications, the discovery of relevant
features is a big challenge. In 1997, the first papers about relevance and feature selection were
published [14]. Feature relevance can be formalized as follows. Let 1 ≤ i ≤ n, Ei be the domain
of feature xi, X = x1, x2, · · · xn be the set of all features. E = E1 × E2 · · · × En is the instance
space from which instances derive their values. Each instance can be represented as a point in
space and the distribution of these data points has a probability P. If we consider the class (label)
space to be T, then we can define an objective function c as a relation that maps an instance S
to a specified label/class in labels space T as: c: E → T. Arguably, a data set with |S| number
of instances is the result of sampling |S| times from E with a probability P and get label from T.
An xi in X is a relevant feature with respect to class concept if there exist two instances (A and B)
in E, which only differ in their assignment to xi (all their feature values are the same except those
for feature xi) and c(A) 6= c(B). In contrast, a variable with no correlation or weak correlation
with the target concept is called an irrelevant feature. Other types of noisy features are redundant
features. These are features that are highly related and connected with other features and add
nothing new regarding the classification decision.

In the literature, FS was defined in different ways, which are all close in meaning and
intuition [15]. FS is a searching process that tries to find the subset of features which is
the best one to describe the data. According to relevance discovery, FS aims to determine
the most meaningful subset of features, which has the largest relevance and minimum
redundancy. Even though those features are fewer than the original features, but they carry
the maximum discriminate information. Classically, FS selects a subset of M features from
a set of N features where M < N and the value of an evaluation function is optimized
over all subsets of size M. The essence of FS is to select or discard features intelligibly in
such a way, the resulting class distribution is as close to the class distribution with the
complete set of features. In another meaning, FS is not a technique for only reducing data
set cardinality, but it should find a trade-off and a balance between different conflicting
objectives. As a multi-objective optimization problem, there are two primary objectives to
be optimized. These objectives are the performance and the number of selected features.
These are conflicting objectives because the optimization algorithms require getting the
maximum performance and the minimum number of selected features.

Typically, the standard process of FS consists of four primary stages of subset generation,
subset evaluation, stopping criterion, and results validation [15].

Regarding the subset generation and search procedure, FS is considered an NP-hard
problem. When the number of features equals n, the search space comprises 2n subsets of
features. Using brute search methods such as a huge search space needs an exponential
running time to traverse all the candidate subsets of features.

Concerning subset evaluation, there are different methods to assess the goodness of
a feature subset such as filters and wrappers. A stop criterion is a condition that halts
the FS process and prevents the infinite loop. For example, the search completion (all
feature subsets have been examined), the learning performance reached its highest limit,
the subset of features with a specified size is obtained, the pre-defined number of iterations
is reached, the occurrence of conversion situation in which results become stable, and no
further enhancement is achieved. A direct way to validate the obtained results is based
on prior knowledge from a domain. Unfortunately, this features knowledge is usually
unavailable so other methods have to be used instead. FS could be validated by comparing
the system performance using the whole subset of features with its performance using
the selected features. FS has many advantages that positively affect the data mining task,
including improving the quality of the generated model, speeding the learning time of
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the classifier, enhancing the ease of reading the data set, and reducing the need for more
hardware resources.

4.3. NIAs for Feature Selection

Two important points should be focused on: The representation of a solution and the
evaluation for it. Normally, a feature subset is represented by a binary vector. The dimensionality
of the problem is equal to the number of features in the data set. If the gene value is set to 1,
this indicates that the feature is selected, otherwise, it is not selected. The quality of a feature
subset is evaluated based on two contradictory objectives: The classification accuracy (minimum
error rate) and the minimal number of selected features simultaneously. These two criteria are
represented in one fitness function that is shown in Equation (5), where αγR(D) is the error rate
of the classification produced by a classifier, |R| is the number of selected features in the reduced
data set, and |C| is the number of features in the original data set, and α ∈ [0, 1], β = (1− α)
are two parameters for representing the significance of classification and length of feature subset
according to recommendations:

Fitness = αγR(D) + β
|R|
|C| . (5)

5. NIAs FS Modifications

This section highlights the main modification techniques applied in the literature to
enhance the NIAs as wrappers FS. By referring to 156 articles in the domain of modified
NIAs-FS, it can be noticed that the modification techniques can be classified into nine
categories as depicted in Figure 3: New operators, hybridization, update mechanism,
modified population structure, different encoding scheme, new initialization, new fitness
function, multi-objective, and parallelism.

Figure 3. NIAs FS modifications categories

5.1. New Operators

This modification depends on integrating a new operator in the original NIA structure
to achieve certain targets, such as improving the algorithm performance, increasing the
diversity among the population, enhancing the exploitation and exploration processes,
facilitating the sharing of information between population’s individuals, repositioning of
the worst individuals in the population, and performing a search along various vectors in
search space [36]. In literature, several operators have been used to enhance NIAs wrappers.
Some of these operators are discussed next.

5.1.1. Chaotic Maps

The denotation of chaos means a state of disorder. In mathematics, it is a formula that
describes a dynamic system with time dependence. The chaotic system has a high level
sensitivity to its initial conditions. This behavior implies that even a simple modification in
the initial conditions will lead to big changes in the outcomes. Although the chaotic system
is deterministic and does not incorporate any randomness but the results are not always
predictable [50].

Chuang in [51] used two kinds of chaotic maps and integrated them with Binary
Particle Optimization (BPSO), namely logistic maps and tent maps. Equation (6) describes
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how the logistic map is written in mathematics (general formula), where Xn is a number
between 0 and 1 which represents the ratio of the current population size to the maximum
population size and µ is a constant value between 0 and 4. Equation (7) describes how
Chuang exploited Equation (6) to modify the inertia weight value where w is the inertia
value between (0,1) and t is the number of iteration. The same thing was followed to
apply the tent map chaotic map. Equation (8) is the general mathematical formula and
Equation (9) is the modified version of inertia weight using a tent map. Using large values
for inertia weight facilitates more exploration while selecting small values facilitates more
exploitation. Hence, chaos theory could be used for balancing the two types of search
in the search space. Besides, the study contributed that Chaos Binary Particle Swarm
Optimization (CBPSO) with a tent map achieved a higher classification accuracy than
CBPSO with a logistic map:

Xn+1 = µ Xn(1− Xn) (6)

w(t + 1) = 4.0 ∗ w(t)(1− w(t)) (7)

f (x) = Xn+1 =

{
µ Xn, if Xn < 0.5
1− µ Xn, otherwise

(8)

w(t + 1) =

{
w(t)/0.7, if w(t) < 0.7
10/3w(t)(1− w(t)), otherwise.

(9)

In the same year, Chuang presented another model for FS [52]. The proposed model
was a filter-wrapper approach based on using a correlation-based filter (CFS) and Taguchi
chaotic BPSO (TCBPSO). In [53], chaotic was applied with BPSO for FS in text clustering.
Ahmad in [54] used chaotic maps as modifications for the SSA algorithm. He replaced the
C3 random parameter with chaotic sequences, namely logistic map, piecewise map, and
tent map. It was clear the impact of chaotic maps in improving the SSA. In the same year,
the influence of chaotic operators on SSA was investigated in [55]. The experiments proved
that the logistic map achieved a better performance for the SSA algorithm over nine chaotic
maps. The chaotic multiverse optimization (MVO) FS model was proposed in [56] to cope
with some limitations of MVO. Tent, logistic, singer, sinusoidal, and piecewise chaotic
maps were used. The results showed that the logistic chaotic maps were the best, which
increased the MVO performance more than other maps. Sayed in [57] developed a new
wrapper FS approach based on the Whale Optimization Algorithm (WOA) and chaotic
theory named CWOA. He used 10 chaotic maps namely chebyshev, circle, guass/mouse,
iterative, logistic, piecewise, sine, singer, sinusoidal, and tent. The results showed that a
circle chaotic maps was the best among other chaotic. In [3], a model based on chaotic Moth
Flame Optimization (CMFO) and Kernel Extreme Learning Machine (KELM) was proposed.
In [58], Sayed developed a new FS system composed of the Crow Search Algorithm (CSA)
algorithm and chaos theory to enhance the performance and convergence speed of CSA.
Lately in [59], a Binary Black Hole optimization Algorithm (BBHA) has been modified
by embedding new chaotic maps embedded with the movement of stars in the BBHA.
This model was called CBBA and uses 10 chaotic maps. The results of three chemical data
sets demonstrated that CBBA outperformed the BBHA in terms of the number of selected
features, classification performance, and computational time.

5.1.2. Rough Set

Rough Set (RS) was first described by Zdzislaw Pawlak at the beginning of the
1980s [60]. This is a mathematical concept related to topological operations. In mathematics,
RS is a theory that tries to find two approximate sets for the original conventional set
(crisp set). The first RS gives the lower approximation for the crisp set which compromises
the elements that surely belong to the target subset. The second RS gives the upper
approximation of the crisp set which compromises the elements that possibly belong
to the target subset. The pair of rough sets are themselves either crisp sets or fuzzy
sets. Rather than belonging or not belonging in relation to the elements as in crisp sets,
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the fuzzy sets depend on the membership function for gradual assessments of the elements.
Unlike the fuzzy sets, RSs depend on finding the positive region, not the membership
function for dealing with uncertainties and vagueness. The RS has many advantages,
including the approximation of concepts, reduction of spaces, discovering the equivalence
relations, and finding the minimal sets of data in vague and uncertain domains. In FS,
the RS tries to define the attribute dependency. Zainal in [61] proposed the RS-PSO
model for a better representation of data. Another RS-PSO-FS model was proposed in [62]
based on Relative Reduct (PSO-RR) and PSO-based Quick Reduct (PSO-QR). Both tools
depend on the dependency measure for comparing sets of attributes. In [63], the authors
proposed a model for FS in nominal data sets based on BCS and Rough Sets. Another CS
model was introduced in [64] by incorporating the RS with different classifiers. In [65],
a new model was developed based on two incremental techniques (QuickReduct and
CEBARKCC). Quick reduct and CEBARKCC are two filtering methods where the former
one is a rough set-based filter that simulates the forward generation method and the latter
is a conditional entropy-based method. These two methods were integrated with the
Ant Lion Optimization (ALO) algorithm to improve the initial population quality. The
RS-FA model was developed in [66]. Hassanien in [67] developed a new system based on
rough set and MFO. Lately, in [68], a hybrid model called BPSOFPA composed of Flower
Pollination Algorithm (FPA) and PSO was also developed. BPSOFPA was integrated with
the RS approach for the FS problem. Ropiak in [69] integrate RSs with deep learning as
rough mereological granular computing.

5.1.3. Selection Operators

Inspired from Darwin’s theory [70], which explained the evolution and changes
in species through the natural selection mechanism, the genetic algorithm incorporated
selection operators to select some individuals from the population for later breeding.
A conventional strategy to implement the selection is using the fitness values of the
solutions. In other methods, these fitness values are normalized by finding the summation
of them then divide the fitness of each individual by this summation. Another method
sorts all individuals in the population according to their fitness values in descending
order. The selection mechanism was applied in other studies by finding the accumulated
fitness for each individual so that the final individual fitness value is one [71]. All such
methods become computationally expensive and may negatively impact the performance
of GA when the population becomes larger. Other methods of selection which are widely
implemented with GA are Tournament Selection (TS) and Roulette Wheel Selection (RWS).
The stochastic nature of these methods makes them simpler in implementation and better
in performance than the aforementioned methods. TS is the most applied selection operator
with GA because of its simplicity. It selects randomly a set of solutions from the population
then the best one is used for breeding the successive generation. In RWS, the mechanism
differs in that no agent in the population is discarded. The RWS strategy depends on
creating something like a roulette where all fitness scores of the individuals are represented
as areas or sectors on this roulette. The individual with a large fitness value well reserve
a large sector on the roulette, which shows a larger probability for selection. Individuals
with small fitness scores will reserve small areas on the roulette. In RWS, the final selection
for the agent is done by rotating the roulette and the selected individual is the one where
the point stayed when the roulette had stopped. Mafarja in [46] developed a new model
that combines TS with the WOA optimizer to enhance the exploration of the search. One
year later, Mafarja presented in [72] an FS model based on the Grasshopper Optimisation
Algorithm (GOA) algorithm with RWS and TS. Mafarja in the same year developed a new
wrapper FS model based on WOA along with studying the effect of TS and RWS [73].
In [26], the selection operators were incorporated to improve the ABC optimizer. In [74],
the method compromised of a DE optimizer and RWS structure for the selection of the
Wavelet Packet Transform.
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5.1.4. Sigmoidal Function

A sigmoid function is a mathematical function that falls under the S-shaped family
and is considered a special case of a more general function called a logistic function, which
has the mathematical formula defined by Equation (10), where e is the natural logarithm
base (Euler’s number), x0 is the sigmoid’s midpoint, L is the sigmoid’s maximum value,
and k is the logistic growth rate of the curve [75]. The sigmoid function formula is defined
by Equation (11):

f (x) = L/(1 + exp−k(x−x0)) (10)

S(x) = 1/(1 + exp(−x)) = exp(x)/(exp(x) + 1). (11)

The sigmoid function has some special characteristics including the monotonic behavior,
which means that the function is defined on all real numbers but the output of the function
is increasing either from 0 to 1 or from −1 to 1. Moreover, the sigmoid function is
differentiable and has a bell-shaped first derivative where the derivative at each point
is a non negative value. There are several variations of the sigmoid function such as
hyperbolic tangent, arctangent function, and algebraic functions which are respectively
defined by Equations (12)–(14). The sigmoid function is widely applied as the activation
function of a Neural Network (NN). Other useful usage of the sigmoid function is that it is
used as a discretization method to convert a continuous space into a binary one, such an
application is a feature selection application:

f (x) = tanh(x) = (ex − e−x)/(ex + e−x) (12)

f (x) = arctan(x) (13)

f (x) = x/
√
(1 + x2). (14)

For solving the FS problem, Aneesh developed a modified BPSO called Accelerated
BPSO (ABPSO). The strategy for accelerating the particles was using a new velocity update
function based on a sigmoidal function [76]. In [6], the sigmoidal function was used with
BGWO in solving FS. In [77], different transfer functions that map continuous solutions to
binary ones were applied in combination with the CS algorithm. The CS-sigmoid and CS-
hyperbolic tangent was performed on five data sets. In [78], the effect of different transfer
functions on the Bat optimization (BA) algorithm was studied. Sigmoid and hyperbolic
tangent functions were used to analyze their influence on FS. The results proved that the
sigmoid function was better than the hyperbolic function in feature reduction for almost
all data sets. Mafarja, in [79], presented new versions of the Grasshopper Optimization
Algorithm (GOA) based on sigmoid and V-shaped TFs in the context of FS.

5.1.5. Transfer Functions

Transfer functions (TFs) are mathematical formulas that play a significant role in
mapping a continuous search space to discrete search space. The discrete search space
could be viewed as a hyper-cube in which solutions move in different directions within
its boundaries by flipping their bit values. TFs are one of the most efficient ways that
could be utilized to covert continuous meta-heuristic algorithms into their corresponding
binary versions [80]. The mathematical formulations of these TFs can be found in [80].
The update procedure in a binary meta-heuristic algorithm is switching solutions elements
between 0 and 1 based on certain mapping formula TFs that links the original continuous
update procedure with a new binary update procedure. TFs in a close meaning define the
probability of updating each element (gene/feature) in a solution to be either selected 1 or
not selected 0.

Equations (15) and (16) define the general update formulas of a solution using S-TFs
and V-TFs, respectively, where Xd

i (t + 1) represents the ith element (gene/feature value) in
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the X solution (feature subset) at dimension d (feature number/index) in iteration t + 1,
rand ∈ [0, 1], which was generated using a random probability distribution:

Xd
i (t + 1) =

{
0, if rand < S_TF(Xd

i (t + 1))
1, if rand > S_TF(Xd

i (t + 1))
(15)

Xt+1 =

{
Xt, if rand < V_TF(Xt+1)

¬Xt, if rand > V_TF(Xt+1).
(16)

These can be reformulated to preserve the concepts of searching using any specific
meta-heuristic algorithm. As an example, PSO was converted by Kennedy and Eberhart [81]
from a real algorithm to a binary algorithm. The PSO binary conversion started by
employing a sigmoid function to convert the velocity values into probability values
bounded in the interval [0,1] as in Equation (17), where T(vd

i (t)) indicates the velocity of
particle i at dimension d in iteration t. In the next step, the computed probabilities are
used to update the position vector using Equation (18). To preserve the PSO continuous
searching method and keep the concepts of pbest/gbest, the TF gives a high probability for
switching gene values for those genes having high-velocity values since they are far away
from the best solution. Small probability is given for genes having small velocity values
since they are considered close to the best solution [80]:

T(vd
i (t)) = 1/(1 + e−vd

i (t)) (17)

Xd
i (t + 1) =

{
0, if rand < TF(vd

i (t + 1))
1, if rand > TF(vd

i (t + 1)).
(18)

In the literature, there were several studies that adopted TFs operators with FS problem.
Mirjalili in [80] improved the performance of BPSO by using TFs, S-shaped, and V-shaped
transfer. The results of V-TFs improved the performance of BPSO more than S-TFs. In [82],
a new wrapper was developed by modifying the Salp Swarm Algorithm (SSA) using TFs.
The proposed approach achieved significant superiority over other competitive approaches
in 90% of the data sets. Mafarja in [83] presented a new wrapper FS method based on
a modified Dragonfly Algorithm (DA) using time-varying S-shaped and V-shaped TFs.
Recently, in the context of Internet of Things (IoT) attack, a new wrapper-based approach
using the WOA was developed. The augmented WOA used both V-shaped and S-shaped
transfer functions.

5.1.6. Crossover

In living things, the chromosomal crossover is a recombination process that occurs
between non-sister chromatids to exchange the genetic material during recombination
(sexual reproduction). This process ends in the production of new recombinant chromosomes.
Faraway from the biological chromosomal crossover in the genetic algorithm and evolutionary
computation, this process was inspired to exchange information between solutions in the
population and generating new offsprings in the next generation. In the genetic algorithm,
recombination (crossover) is defined as a stochastic operator that enforces the diversity in the
population by exchanging (swapping) the bits after a random cutting point (crossover point)
between the parents’ vectors (selected individuals) to produce new children (offsprings).
Equation (19) shows how a crossover operator is used to combine solutions where 1 is an
operator that performs the crossover scheme on the two binary solutions Xi and Xi−1. In a
binary space, the crossover can be realized by exchanging the binary bits of two solutions
to obtain an intermediate solution. Equation (20) shows that the crossover mechanism
switches between two input vector with the same probability, where Xd is the value of the
dth dimension in the yielded vector after applying the crossover operator on Xi and Xi−1:

Xt+1
i = 1(Xi, Xi−1) (19)
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Xd =

{
Xd

1 , if rand > .5
Xd

2 , otherwise.
(20)

In [84], a crossover operator was applied in combination with the sigmoid function to
modify a Binary Grey Wolf Optimizer (BGWO). The BGWO1 approach was used to convert
the Continuous version of GWO (CGWO) into the binary version. The first steps toward
the three best solutions are converted into binary, then a random crossover is applied
among them to find the updated position. The results of the approach positively affected
the performance of GWO. In [82], the crossover operator was applied to improve the Salp
Swarm Algorithm (SSA) optimizer in solving the FS problem. The crossover job was to
increase the diversity of the model and improve the exploration process of the search
space. In [73], the study incorporated many modifications strategies with WOA. Solving
the limitations of the WOA represented by local minima and slow convergence was the
priority. The crossover was used for achieving this target. Mafarja in [79] applied multiple
operators with GOA. The combination operator together with the mutation was applied in
his approach to BGOA-M for achieving more exploration.

5.1.7. Mutation

In the organism, the mutation is an error that occurs during DNA replication (meiosis).
The error specifically results from a permanent deletion, insertion, or alternation on the
DNA segment (nucleotide sequence of the genome). Even though this is a small genome
error, it causes abnormal changes in the characteristics of an organism. Evolutionary and
genetic algorithms inspired the same idea to make changes and increase the diversity in
the population. The advantages of mutation come from preventing solutions becoming
similar and thus ensuring the evolution does not stop. Mutation operators alter one or
more gene values (a bit in chromosome vector) which causes the solution to be changed
from its previous state. Besides diversity, the mutation could contribute to mitigating the
local minima problem. Equation (21) identifies the mutation process where Xi(t + 1)d is
the ith element at the dth dimension in the Xi solution,

Xd
i (t + 1) =

{
0, if rand > .5
1, otherwise.

(21)

In [85], a Particle Swarm Optimization (PSO) applied mutation to a solution was
conducted after it was updated. A probability commonly 1/n indicates one bit of the
solution will be muted (flipped). The model proved the effectiveness of the suggested
modified PSO-FS model. In [53], the authors developed a hybrid intelligent algorithm that
combined mutation with the BPSO and other operators to solve FS in the text clustering.
The model attained a higher clustering accuracy and improved the convergence speed of
BPSO. In [79], the mutation operator was applied with the GOA optimizer. The BGOA-M
approach achieved superiority in comparison with other approaches compared. In [86],
an Improved Harris Hawks Optimization (IHHO) was proposed based on elite opposite-
based learning, mutation neighborhood search, and rollback strategies to increase the
search performance.

5.1.8. Levy Flight

Levy flight has its source from chaos theory. It describes a random walk that follows
a heavy-tailed probability distribution. This probability distribution represents the step-
lengths that take place either on a discrete grid or continuous space. In mathematics,
according to a central limit theorem, the steps from the original point of a random walk
follow a stable distribution which could be modeled using equations of Levy flights.
Investigators in nature found that Levy flights can describe the animals hunting patterns
especially when the prey is sparsely distributed and not easily detected as opposed to
Brownian motion, which can only approximate the prey place when the hunting is near
an abundant and predictable prey [87]. In [64], a novel Cuckoo Search (CS) algorithm was
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developed using the Levy flight with the rough sets. He applied his idea by integrating the
Levy flight random probability distribution in the equation that generates new solutions as
shown in Equation (22) where ⊕ denotes the entry-wise multiplication, α is the step size,
α > 0, and Levy(λ) is the Lévy distribution which is described in Equation (23). In [88],
Levy flight was used in combination with transfer functions to enhance the performance of
the MFO algorithm and increase diversity:

Xt+1
i = Xt

i + α ⊕ Levy(λ) (22)

Levy ∼ u = t−λ 0 < λ < 3. (23)

5.1.9. Other Operators

A local search operator was incorporated with GA to mitigate the weakness of standard
GA in fine-tuning near the local minima [89]. In [90], local search was used to improve
the BPSO. A new local search and gbest resetting strategy called PSO-LSRG was proposed
in [24] to facilitate the exploitation. A Uniform Combination (UC) operator was used
in [80] to improve the performance of BPSO. Later, UC was adopted in [91] to balance
the exploitation and exploration of bones PSO. The DE evolutionary operator was used
in [5] to solve the local optima in standard WOA. The DE evolutionary includes mutation,
crossover, and selection operators. Boolean algebra (and operator) was used in BPSO [92].
The bacterial evolutionary algorithm and PSO algorithm, both with a plain and a memetic
variant complemented with gradient-based local search and fuzzy logic numbers were
used in [93] for solving various resource allocation problems.

A catfish strategy was applied in [94] to improve the performance of BPSO based
on introducing new particles into the search space when there is no improvement in the
searching process. For example, when the gbest is unchanged over a consecutive number
of iterations. The catfish particles replace the particles with the worst fitness and initialize
a new search from the extreme positions of the search space. Feature subset ranking was
introduced in [95]. The idea was to compute the significance of each feature according to
its classification accuracy and compute the accuracy for some combinations of these ranks,
then the BPSO wrapper approach was used to search on the top-ranked features subsets
instead of the whole features.

A Gaussian operator was introduced in [96] and the idea was that FS is highly influenced by
features interaction. The highly relevant features with a class label may have high interactions
with other features which makes them redundant. On the other hand, irrelevant features
concerning a class label may have small interactions with other features. As feature interaction is
a challenge to classification and FS, a statistical clustering method based on Gaussian distribution
was adopted. It groups homogeneous features based on the interactions between features
then the PSO algorithm selects one feature from each cluster. Threshold was adopted in [97].
The idea was to set a nonzero value for a threshold based on the number of trails BPSO were run.
The significance of a particular dimension is measured based on the frequency of appearance
for that dimension in the gbest vector in all runs. The final gbest after thresholding will contain
the most recurrent features.

Zhang in [91], used the Gaussian sampling to compute the positions of particles which
is based on pbest and gbest instead of velocity. Another operator was incorporated, called
reinforced memory. Reinforced memory is based on the idea of enhancing the probability
of survival for outstanding genes. These are the important features with high fitness value
in the current iteration. Consequently, the update of the local leaders (pbest) of each particle
will avoid the gene degradation and preserve it in the next iteration. Hamming distance
was used in [98] to replace the Euclidean distance in BPSO. Particularly, it was used to
measure the distance between two binary vectors based on the Exclusively-OR (XOR)
operator and count the number of ones in the resulting vector. In [99], a new model called
Hybrid Particle Swarm Optimization Local Search (HPSO-LS) was proposed based on
using local search with correlation information. The correlation information was used to
guide the local search in PSO. This was carried out by including the most dissimilar features
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(low correlated) as a feature subset in the newly generated particles. Consequently, similar
features (highly correlated) have less chance to be selected as a feature subset. Moreover,
HPSO-LS used a specific subset size determination scheme to allow PSO to search within
the abounded region and find a smaller number of features.

Binary quantum was used in [100] to modify and improve the PSO. The idea was to
perform a sampling around the personal best and compute the mean best of the sampled
points then introduce this value in the BQPSO. For any bit position of the mean best, it
will be equal to 1 if 1 appears more often than 0 in all the corresponding bit positions of
all pbests. On the other hand, if the 1 and 0 have the same frequencies, then each element
of the mbest is set randomly either to 0 or 1. A re-initialization strategy was applied on
PSO-mGA in [101]. The idea was to use a small population (3–6 chromosomes) with a
reinitialization strategy to achieve convergence. A non replaceable memory operator was
added to keep the original swarm and remains intact with it during the optimization
process. This will help in increasing the diversity of a swarm. Moreover, the nonreplaceable
memory was used for maintaining a secondary swarm with a leader and followers. Zhang
in [102] developed a new wrapper-based approach by utilizing the Firefly Algorithm (FA),
Return-cost, Pareto dominance-based, and adaptive movement operator. A return-cost
indicator was used to compute attractiveness. The firefly is cloned based on the return
cost instead of the distance so that the firefly with a big return and small cost has a great
chance to be cloned. A pareto dominance-based operator was added. Pareto dominance is
commonly used in multi-objective optimization. It is a selection strategy used to search
for the attractive one of a firefly based on the cost and return. Adaptive jump was used in
place of the fixed uniform jump. It requires a change in the jump probability based on a
linear function concerning the number of iterations to allow for more exploration.

In [103], a greedy search was used to enhance the local search. Three modified
versions of the Lion Algorithm (LA) (Lion M1, Lion M2, and Lion M1+M2) were proposed
to improve the local search. Mafarja, in [72], applied a new methodology based on BGOA
and Evolutionary Population Dynamics operator (EPD). EPD depends on making a local
change in the population instead of external force. This idea comes from the theory of
Self-organized Criticality (SOC). Hancer, in [26], developed a new version of the DisABC
algorithm for FS by introducing a DE-based neighborhood mechanism into the similarity-
based search of DisABC. DE evolutionary operators were also used in [5] for solving the
problem of local optima in native WOA. These include mutation, crossover, and selection
operators. Khushaba in [74] developed a new modified FS method called DEFS using a
repair mechanism. The repair mechanism was based on feature distribution measures and
the RWS structure. A new model was developed in [104] based on GA and m-features
(OR operator). The OR operator performed a search space reduction and improved GA
performance and convergence. Zeng in [105] developed a novel GA with a new population
structure and a new operator called dynamic neighboring. Dynamic neighboring is a new
selection strategy that was used to boost the capabilities of GA for the FS problem. In [106],
Guo proposed a new repair operator that allowed GA to transform feature subsets from
arbitrary combinations to valid combinations that conform to the feature model constraints
and domain-specific objective function.

5.2. Hybridization

Hybridization means the integration of over one algorithm to build a powerful
predictive framework that combines the power of the integrated algorithms. The expectation
of combining the complementary features of different optimization strategies is to achieve
a better performance compared with implementing them separately as pure paradigms.
There are several categories of NIAs hybridization techniques that were investigated in the
literature such as combining NIA with other NIA or combining NIA with other algorithmic
components from different areas of optimizations, such as with tree search, dynamic
programming, and constraint programming [107].
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5.2.1. NIA-NIA Hybridization

In mimetic models, a single solution algorithm is embedded in the population’s structure
algorithm to enhance the local search and exploitation of the search space. These algorithms
are implemented in two search stages. In the first stage, the algorithm captures a global view
of the search space. In the second stage, the algorithm focuses on the most promising area to
perform a successive process of local search. As exploration/exploitation balance is guaranteed
using these models and the premature conversion is avoided. In [4], Zawbaa developed
a novel hybrid GWO-ALO system that exploits the GWO global search ability and Ant
Lion Optimization algorithm (ALO) local search performance. In [65], Mafarja developed a
hybrid model based on BALO and hill-climbing techniques called HBALO. A new hybrid
algorithm was presented in [108] by combining the Clonal Selection Algorithm (CSA) with
the Flower Pollination Algorithm (FPA). CSA was good in exploitation, while FPA was
good in exploration via Levy flight. In [109], the Mine Blast Algorithm (MBA) was used to
support the exploration phase. MBA was integrated with simulated annealing to optimize
a local search in the exploitation phase to get closer to the optimal solutions. Ibrahim
in [110] designed a hybrid SSA-PSO model. He integrated the update strategy of PSO
into the structure of SSA so that the update for the current population was done by using
either the SSA or PSO depending on the quality of the fitness function. PSO-mGA (micro
Genetic Algorithm) model was presented in [101]. The ACO-DE model was developed
in [23]. A novel SA-MFO model was presented by Sayed in [111]. The use of SA was
to make the conversion rate slower, to reach to the global optima, and escape the local
minima. A new MFO-based hybrid model was developed in [112] by combining MFO
and Levy FA (LFA) algorithms. The other target of NIA-NIA hybridization is to refine the
best solutions by implementing the NIAs sequentially as a pipeline where the operators
of the first algorithm applied first then the operators of the other integrated algorithms
are applied sequentially. These models often suffer from being slow in the search process.
This hybridization strategy was applied in [113] to develop the PSO-GA model. In [46],
the WOA-SA model was developed. In WOASA-1 (Low-Level Team-work Hybrid (LTH))
SA was used as an operator in WOA to enhance the exploitation. In WOASA-2 (High-Level
Relay Hybrid (HRH)) SA was used after WOA to enhance the final solution. In 2020 [114],
SA was hybridized with the HHO algorithm and AND and OR bitwise operations. SA
was used to flee the HHO optimizer from local minima in the feature search space. A new
hybrid binary version of the Bat Algorithm (BA) is suggested to solve feature selection
problems. In [115], BA was hybridized with an enhanced version of the DE algorithm to
reach the global solution. Hybridizing different NIAs to perform parallel exploration for
the search space was also a primary target for other studies. Each algorithm generates its
initial population and iteratively explores and evaluates the feature subsets. Using this
strategy increases the speed of the search process. ACO-GA is an example of these hybrid
models [116,117]. Recently, in [118], an enhanced hybrid approach using GWO and WOA
was proposed to alleviate the drawbacks of both algorithms.

Another target for NIA-NIA hybridization is to enhance the initialization of the search
using different NIAs. In these models, one algorithm is used to generate the initial solutions.
Then the other combined algorithm is used to update these solutions. An example of these
models is GA-IGWO presented in [119]. In [120], the hybridization of two Immune Firefly
Algorithms (IFA1 and IFA2) was proposed. In IFA1, the FFA and Artificial Immune System
(AIS) are used simultaneously to increase the global search of fireflies and select the best
feature subset. IFA2 was used to study the influence the initial population on the searching
progress of the AIS algorithm.

5.2.2. NIA-Classifier Hybridization

Hybridizing different classifiers such as SVM, Artificial Neural Network (ANN), aided
Radial Basis Function (RBF), Optimum Path Forest (OPF), bagging, and Bayesian statistical
with NIA for evaluating the solutions. Since classifiers have different capabilities regarding
the training speed, computation complexity, and generalization capability; many studies
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investigated their influence when used in the wrappers framework. Other studies tried
to make simultaneous FS and parameter optimization to enhance the performance of a
classifier. NIA in these hybrid models works as a tuner to optimize the training parameters
set up and select the optimal feature subset. In [121], a new wrapper approach was built
to perform parallel FS and optimization for SVM parameters by exploiting the merits of
MVO. Another hybrid model was presented in [122] for optimizing the SVM parameters
simultaneously with selecting the best feature subsets using a GOA optimizer.

5.2.3. NIA-Filter (Wrapper-Filter) Hybridization

The filter-wrapper hybrid model is applied in two ways. First, a filter is applied to
eliminate redundant and irrelevant features, minimize the dimensionality, and produce
a reduced data set that is ready to be used by a wrapper. The second way to apply the
filter-wrapper model is to use the filter in the structure of a wrapper to evaluate the
generated features subsets. In [123], the Information gain and correlation-based were
integrated with BPSO in models called IG-IBPSO and CB-IBPSO, respectively to solve
FS. In [17], a MSPSO-F-score was developed. A mutual information filter was integrated
with PSO and presented as a model called MI-PSO in [124]. PSO-MI and PSO-Intropy
were developed in [125]. CS-MI was developed in [126]. BALO with QuickReduct and
CEBARKCC filtering approaches were developed in [65]. In [5], IWOA-IG was developed.
The ACO-MI model was presented in [127]. ACO with the multivariate filter was presented
in [16]. The GA-MI model was presented in [128], GA-IG in [18,129], and GA-entropy
in [130]. In [131], Relief-f was used with DE to rank the most significant features. Lately,
in [132], an Embedded Chaotic Whale Survival Algorithm (ECWSA) has been proposed
as a wrapper process and a filter method. In [133], an efficient hybrid model based on a
combining filter and evolutionary wrapper approach was proposed for sentiment analysis
of various topics on Twitter. The classification system was based on a SVM classifier and
two FS methods using the ReliefF and MVO algorithms. Authors in [134] proposed a filter
wrapper approach using a Sequential Floating Forward Search (SFFS) to acquire features for
activity recognition. The model was validated using a benchmark dataset with a multiclass
Support Vector Machine (SVM). The results show that the system is affected even with
limited hardware resources.

5.3. Update Mechanism

The update modification aims to achieve a balance in exploration/exploitation processes.
The update strategy is performed by either enhancing the update process of individuals or
dynamically control the NIA parameters. A new variant of ACO was presented in [25,135].
The update strategy used performance and the number of selected features as heuristic
information for ACO with no need for prior information about features. In [136], the gbest
was updated based on some conditions. This strategy determines when to reset the gbest
based on several epochs (iterations) in which the value of the gbest did not change. The same
strategy was applied in [24,90]. Martinez, in [137], claimed that the initialization procedure
and the update of all particles are not beneficial in high dimensional space. Hence, only a
small subset of particles is randomly selected to be updated. The update for a particle is
carried out by filling it with active features from the current particle, local best, and global
best. This strategy was applied to the original PSO to get a new variant called CuPSO.

In [138], a new rule to update particle’s positions was proposed. Instead of the original
rule in BPSO that lies in giving equal probabilities to either selecting or not selecting a
feature. P(xd

i (t) = 0) = P(xd
i (t) = 1) = 0.5 where xd

i (t) is the gene in the d dimension of
the position vector at iteration t. The new rule was introduced to increase the probability
of xd

i (t + 1) = 0 and reduce the probability of xd
i (t + 1) = 1. The idea in [139] is that

pbest is usually updated based on the fitness value. However, if the new position has the
same fitness value as the current pbest, then the pbest will not be updated even if the new
solution corresponds to a smaller feature subset. This is a limitation of PSO. The proposed
PSO was to update pbest and gbest into two stages where the priority is given first for the
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classification accuracy. Next, if the new particle position has the same performance as the
current pbest but the number of features is smaller, then in this case, pbest will be updated
and replaced by the new position.

In [96], the objective was to update PSO based on a clustering approach. The new
GPSO uses Gaussian distribution. The idea was to group homogeneous features based
on interactions between features, then PSO is used to select one representative feature
from each cluster. Mafarja in [140] proposed five update strategies for the inertia weight
(w) parameter. Linear, non-linear, coefficient, decreasing, oscillating, and logarithm were
applied. His idea was based on applying an exploration operator more than exploitation at
the beginning of the search then search those regions carefully to find the global optima.
The conclusion was that the gradual decrease for the inertia weight (w) either linearly or
non linearly improves BPSO. Mafarja in [141] studied the influence of the inertia weight
(w) parameter on the performance of BPSO. He suggested the adaptive change for the
exploration and exploitation by using a rank-based for updating the inertia weight (w)
parameter. The same author presented in [83] the time-varying update strategy to improve
the performance of the DA optimizer. In [142], Aljarah applied several asynchronous update
strategies to solve the FS problem. An adaptive update strategy based on a descending
linear function was used to update the SSA c1 parameter.

Recently in [143], a Binary DA (BDA) was proposed with new mechanisms to update
its main coefficients. The main target is to apply the survival-of-the-fittest principle
using different functions such as linear, quadratic, and sinusoidal. Three variants of
BDA were introduced and compared with the standard DA. The new variants are linear-
BDA, quadratic-BDA, and sinusoidal-BDA. Recently, in [144], a time-varying number of
leaders and followers in a binary SSA (TVBSSA) with Random Weight Network (RWN)
was proposed. In 2020, the CSA algorithm was enhanced in [145] using three enhancement
strategies to solve the FS problem: Adaptive awareness probability to balance exploration
and exploitation, dynamic local neighborhood to improve local search, and proposing a
global search strategy to increase the global exploration of the crow.

In [146], an enhanced Binary Global Harmony Search algorithm, called IBGHS, was
proposed to solve FS problems. An improved step is proposed to enhance the global search
ability. In [147], a new update strategy based on ranking of the individuals was proposed.
Each moth in the MFO algorithm is given a rank based on its fitness value. Therefore,
a moth with a small fitness value will have a high rank so that there will be a great change
in its position. On the other hand, a moth with a high fitness value will have a small rank
so that there will be a small change in its position. This adaptive update strategy enhanced
the performance of the optimizer. In [148], a time varying flame strategy was proposed
to enhance the MFO algorithm. The number of flames represents the number of the best
solution that decreases gradually across iterations. Different mathematical formulas were
experimented with to decide the best formula that ensures exploitation around the best
solution in the late stages.

5.4. Modified Population Structure

Zeng in [105] developed a novel GA with a dynamic chain-like agent population
structure. CAGA aimed to enhance the population structure and diversity. This was better
than the lattice-like agent population structure where agents do genetic operations just
with neighboring agents. In [101], Mistry used a new population structure for PSO-mGA.
He used a small-population secondary swarm strategy. A secondary swarm performs a
collaborative role to avoid stagnation and overcome premature convergence.

5.5. Different Encoding Scheme

Galbally in [149], tried to minimize the verification error rate in the online signature
system. Different encoding schemes were used, including binary and integer coding. GA
with binary coding was used to search the complete search space. On the other hand,
GA with integer coding was used for searching a subset of the search space. GA with an
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optimized descriptor weight or/and optimal descriptor subset was developed in [150]
over MPEG-7. There were three different encoding schemes: A real-coded chromosome
for weight optimization, binary-coded chromosome for the selection of optimal feature
descriptor subset, and bi-coded chromosomes for simultaneous weight optimization and
optimal feature descriptor selection. A new ensemble classifier was proposed in [151]. It
was based on AdaBoost learning and parallel GA. A hybrid model parallel-GA-AdaBoost
with different encoding schemes BGAFS and BCGAFS was proposed.

5.6. New Initialization

In [53], authors developed a hybrid model based on BPSO to solve the FS problem.
A new initialization strategy called Opposition-based Learning (OBL) was proposed. The
OBL strategy was used to enhance the initialization of particles and enforce diversity
among solutions by considering the solution as well as its opposite solution simultaneously.
OBL was used also to generate the opposite position of the gbest particle to get rid of the
stagnation case. A novel framework based on IGWO and Kernel Extreme Learning Machine
(KELM) was developed in [119]. In the GA-IGWO-KELM model, GA was applied first to
generate high quality and diversified initial positions, then GWO was used to update the
positions of the individuals in the discrete search space. Tubishat, in [5] developed a hybrid
model called IWOA-SVM-IG. The OBL strategy was applied for increasing the level of
diversity in the initial solutions generated by standard WOA. In [152], a quasi-oppositional
learning-based Multi-Verse Optimization (MVO) algorithm was used to improve the initial
setting up of solutions.

5.7. New Fitness Function

Chakraborty [153], proposed the PSO algorithm where the fitness evaluation of each
particle is based on ambiguity. The new fuzzy evaluation function was used to measure
the fuzziness of a fuzzy set. The best feature was represented with minimum intraclass
ambiguity as well as maximum interclass ambiguity. In [154], GA was proposed with
Fisher’s Linear Discriminant function in a model called GA-FLD. The new evaluation
function estimates the probability distribution of the class in the N-dimensional feature
space. It uses also the cardinality of the feature subset using covariance matrices which
is an extension of FLD. This method was used to measure the statistical proprieties of
the feature subset. Authors in [53] developed BPSO with a new fitness function based on
dynamic inertia weight. High inertia weights are assigned to particles with low fitness
values to facilitate more exploration of the search space. Low inertia weights are assigned
to particles with high fitness to facilitate more exploitation. In [6], GWO was modified
using several fitness functions. The fitness functions were accuracy, Hausdorff distance,
Jeffries–Matusita (JM) distance, the weighted sum of the accuracy and Hausdorff, and the
weighted sum of the accuracy and JM. In [155], different fitness functions were used to
enhance the performance of the MFO algorithm. The best fitness function was the one that
was applied across two-stages. The first stage optimizes the classification performance only
while the second stage takes into consideration the number of genes. The results show that
the proposed fitness functions can achieve better classification results compared with the
fitness function that takes into account only the classification performance.

5.8. Multi Objective

Zio [156], developed a system for nuclear plants based on GA to select among the
several measured plant parameters. The first approach applied was single objective GA
with fuzzy k-Nearest Neighbor classifier (KNN) then multi-objective approaches were
applied. Mandal, in [157] developed a prediction system based on a multi-objective PSO
that satisfies the Pareto front and makes a trade-off between the non-dominated solutions
based on different objectives. The proposed multi-objective PSO FS algorithm performed
a dual-task where the first objective was maximizing the mutual information between a
feature and class label (relevance) and the second objective was minimizing the mutual
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information among the features (redundancy). A Dynamic Locality Multi-Objective SSA
for FS was proposed in [158]. In [159], a multi-objective FS method was proposed based on
bacterial foraging optimization. In [160], a multi-objective PSO modified by Levy Flight
was proposed for intrusion detection in Internet of Things (IoT). RWS mechanism was
used to remove redundant features and information exchange mechanisms to avoid local
minima. A systematic review of the multi-objective FS problem that covered the related
studies in the period (2012, 2019) was introduced in [161].

5.9. Parallelism

In [162], Punch applied a wrapper FS based on GA to biological datasets. 5KNN
was modified to work on weighted features (multiplied by weights according to their
importance). The new approach was applied to a parallel distributed machine (Sparc and
HP). A new ensemble classifier was proposed in [151]. It was based on AdaBoost learning
and parallel GA. A parallel version of GA was applied on 16 processors with a master-slave
paradigm and KNN was used as a base classifier. Ghamisi in [163] applied the parallelism
strategy on PSO. Darwinian PSO (DPSO) was based on running many PSO algorithms
simultaneously. Each algorithm runs as a different swarm on the same problem. A natural
selection process was applied by rewarding the swarm that got better results and extending
its particles’ life so that new descendants were spawned. On the other hand, the swarm
with suboptimal results (stagnate) was punched so its search area was discarded and its
life was reduced by deleting its particles.

6. NIAs FS Applications

This section provides an extensive discussion on the use of modified NIA algorithms
in different applications.

6.1. Microarray Gene Expression Classification

In [164], a hybrid model of GA and SVM was developed to perform FS and kernel
parameter optimization. GA-SVM is a recommended approach for FS especially when the
kernel parameters are optimized and the number of selected features is not known beforehand.
Huang, in [128], developed a new GA-based wrapper approach. He adopted two stages of
optimizations. The outer optimization stage (global search) applied a fitness function based on
mutual information between actual classes and predicted classes. The second stage (the inner
optimization) implements a local search (filter manner) based on feature ranking. A gene
selection approach based on ACO was developed in [165]. A high-dimensional multi-class
cancer gene expression (GCM) and colon cancer data sets were used. The comparisons were
conducted with several rank-based models. The simulated results proved the validity of the
proposed ACO approach for FS in high dimensional data sets.

A reliable FS technique was developed in [136] for selecting relevant features in the
gene expression data set. The proposed methodology was IBPSO-KNN. The results of the
accuracy increased by 2.85% compared with other methods in the literature. Yang [92],
presented a new modified model for BPSO and applied it over six multi-category cancer-
related human gene expression data set. Yang [18] developed a hybrid filter wrapper
method for FS in microarray data sets using GA and IG. The ranking of features was
performed using a decision tree. Experiments showed that the IG-GA algorithm simplified
the number of gene expression levels and either achieved higher accuracy or used fewer
features compared to other methods. A hybrid filter-wrapper model based on Information
Gain (IG), Correlation-based (CFS), and IBPSO was proposed in [123]. Kabir [166] developed
a new hybrid model based on GA, NN, MI, and local search operators. A new PSO model
that has the capability of discovering biomarkers from microarray data was designed
in [137].

Chuang [52] developed a hybrid model for FS and classification of large-dimensional
microarray data sets. Mohammad [138] developed a diagnostic medical model based on
IBPSO to find the least possible number of discriminative genes. One year later, Kabir
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developed an ACO-based FS model in [167]. The ACOFS target was to select the salient
features with the smallest size. The model combined the ACO, neural network, filter,
and included an update for the rules-based on subset size determination scheme. In [24],
the PSO variant was superior to other methods in terms of performance, a number of
features, and cost.

A new filter-based approach based on the CS optimizer, mutual Information filter
(MI), entropy, and Artificial Neural Network (ANN) classifier was proposed in [126].
The entropy and mutual information were applied in the fitness function to calculate
the relevance and redundancy for the feature subsets. Banka developed a new modified
version of the PSO algorithm in [98]. Three benchmark data sets were used for colon
cancer, defused B-cell lymphoma, and leukemia. The model achieved a minimal number
of features and a higher classification accuracy. In [100], a model for cancer gene selection
and cancer classification was developed based on BQPSO and SVM with LOOCV. Five
DNA microarray data sets were used. Experiments showed better results for BQPSO/SVM
compared with BPSO/SVM and GA/SVM in terms of accuracy, robustness, and the number
of genes selected. Zawbaa [4], handled the complexity of the FS problem in data sets with
large dimensionality and few numbers of instances by developing a novel hybrid system
called GWO-ALO. A total of 27 different microarray and image processing data sets were
used. Some of the data sets were very complex with 50,000 features and less than 200
instances. The experiments showed promising results when compared with GA and PSO.
Ibrahim, in [168], developed a novel wrapper approach based on combining SVM with the
GOA optimizer, and then he applied the hybrid model on three biomedical data sets from
Iraqi cancer patients and UCI.

6.2. Facial Expression Recognition

A new modified ACO-based FS approach without a need for prior knowledge about
features was presented in [25]. The experiments were applied to an ORL gray-scale face image
database. The same author proposed after one year another ACO-based FS approach [135],
which showed superior performance compared with GA-based and other ACO FS approaches.
Aneesh, in [76], proposed a new face recognition technology using a modified version of BPSO,
called Accelerated BPSO (ABPSO). ORL database images taken at the AT&T Laboratories and
Cropped Yale B database-4 were used in the experiments. A biometric technique for Face
Recognition (FR) based on BPSO was developed in [97]. Seven benchmark databases, namely,
Cambridge ORL, UMIST, Extended YaleB, CMUPIE, Color FERET, FEI, and HP were used in
the experiments.

Zhang [112] developed a facial recognition system based on the MFO-LFA-SA hybrid
model to avoid premature stagnation and to guide the search procedure towards global optima.
MFO logarithmic spiral search behavior increased the exploitation power meanwhile the LFA
used the attractiveness function for more exploration in the search space. The SA empowered
the exploitation around the most promising solution. Experiments used frontal-view images
extracted from CK+JAFFE, MMI, and BU-3DFE. MFO-LFA FS outperformed other facial
expression recognition models. Mistry [101] incorporated several update mechanisms in one
model including the hybridization of a PSO- and mGA- (micro Genetic Algorithm), modified
population structure, new velocity update strategy, diversity maintenance strategy, and a sub-
dimension-based regional facial feature search strategy. Cross-domain images from the extended
Cohn Kanade and MMI benchmark databases were used in the experiments besides multiple
classifiers including NN with back-propagation, a multi-class SVM, and ensemble classifiers.

In [169], a system for Facial Emotion Recognition (FER) was developed based on
GWO-NN. The hybridization was used to tune the weights with less training error, then it
classified the emotions from the selected features. The proposed FER system was evaluated
using the JAFFE and Cohn–Kanade database and the results showed higher accuracy
compared with conventional methods.
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6.3. Medical Applications

A new recognition system for skin tumor diagnosis was developed by handels in [170].
A GA algorithm was used to extract the most suitable features from 2D images that
characterize the structure of the skin surface. NN with back-propagation was used as
a learning paradigm that was trained using the selected feature sets. Different network
topologies and parameter settings were investigated for optimization purposes and GA
was compared with heuristic greedy algorithms. The GA skin tumor achieved the highest
classification performance of 97.7%. An optimized mass detection system for digitized
mammograms was developed by Zheng [171]. A GA-BBN hybrid model was used to
classify positive and negative regions for masses depicted in digitized mammograms.
The results showed that GA achieved the same ratio of feature reduction in comparison with
the exhaustive search but reduced the total computation time by a factor of 65. In [113], a
hybrid PSO-GA FS system was developed to improve the cancer classification performance
and reduce the cost of medical diagnoses. Chakraborty [153] proposed a modified version
of PSO using a new fuzzy evaluation.

In [172], different hybridization models were developed using the GA algorithm
with different neural classifiers to get the best feature subset while preserving accuracy.
A comparison was conducted between GA-KNN, GA-BP-NN, GA-RBF-NN, and GA-LQV-
NN. The results showed that GA with neural classifiers were more robust and effective.
In [173], Babaoglu investigated the effectiveness of both BPSO and GA as FS models
for determining the existence of Coronary Artery Disease (CAD). BPSO-SVM and GA-
SVM were applied on a data set obtained from patients who had performed Exercise
Stress Testing (EST) and coronary angiography. The results showed that the BPSO-FS
method was more successful than GA-FS and SVM on determining CAD. An automatic
breast cancer diagnosis framework was designed by Ahmad [174]. The developed hybrid
Genetic Algorithm Multilayer Perceptron (GA-MLP) model performed simultaneous FS
and parameter optimization of ANN.

Three different variations of the backpropagation training algorithm, namely the resilient
backpropagation (GAANN-RP), Levenberg Marquardt (GAANN-LM), and Gradient Descent
with momentum (GAANN-GD) were investigated. The Wisconsin Breast Cancer Database
(WBCD) was used. The experiments showed that the best accuracy was achieved by the
RP. Sheikhpour developed a hybrid model to distinguish between benign and malignant
breast tumors [175].

PSO-KDE was used to minimize the kernel density estimation error and avoid the
time needed by the surgical biopsy. The Wisconsin Breast Cancer Data set (WBCD) and
Wisconsin Diagnosis Breast Cancer Database (WDBC) were used. Sayed [176] developed
an automatic system based on MFO for Alzheimer’s Disease (AD) diagnosis. It was able
to distinguish three kinds of classes including Normal, AD, and Cognitive Impairment.
A benchmark data set consisted of 20 patients from the National Alzheimer’s Coordinating
Center (NACC). Experiments showed that the SVM-polynomial kernel function was the
best one in terms of accuracy precision, recall, and f-score. A novel medical diagnosis
framework based on IGWO and KELM was developed in [119].

The model was investigated on Parkinson’s and breast cancer disease data sets.
The comparison was performed between IGWO-KELM, GWO-KELM, and GA-KELM.
The experimental results proved that the proposed method was better than the other two
competitive counterparts. One year later, Sayed developed a new approach for mitosis
detection in breast cancer histopathology slide images based on the MFO FS algorithm [177].
MFO was used to extract the best discriminating features of mitosis cells such as statistical,
shape, texture, and energy then the selected features were used to feed the Classification
and Regression Tree (CART) to make classification into either mitosis and non-mitosis.
Wang [3] developed an efficient medical diagnosis tool based on CMFO and KELM to
minimize the number of features and to perform parameters optimization for KELM.
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6.4. Handwritten Letter Recognition

The target in [178] was to study which one of the machine learning algorithms had
the right bias to solve specific natural language processing tasks. GA achieved the best
results on a language processing WSD data set. In [89], authors developed a hybrid GA to
mitigate the weakness of standard GA in fine-tuning near the local minima. The proposed
approach was validated using a data set gained by extracting the gray-mesh features
from the CENPARMI handwritten numeral samples. Galbally [149] tried to find a way
to minimize the verification error rate in the online signature verification system. A GA-
based approach with new modification was proposed. Experiments were conducted on
the MCYT signature database with 330 users and 16,500 signatures. The new approach
showed remarkable performance in all the carried out experiments. Zeng [105] developed a
novel GA with a dynamic chain-like agent population structure and dynamic neighboring
competitive selection strategy. He used a letter-recognition database from UC Irvine (UCI).
The experimental results showed that the feature subset generated from CAGA achieved a
higher classification rate, more stability, and lower classification complexity in comparison
with the other four GAs. A novel FS algorithm based on ACO was presented in [179]
to improve the performance of the algorithm in text categorization. Comparisons were
conducted with GA, information gain, and Chi Square test (CHI) on the Reuters-21578 data
set. The proposed approach proved its superiority concerning the Reuters-21578 data set.
In [129], Principal Component Analysis (PCA) was used with the IG filter method and GA
optimizer in a model called IG-GA-PCA. In the first stage, the IG method was applied to
rank the terms of the document according to their importance. In the second stage, GA
and PCA FS and feature extraction methods were applied separately to the ranked terms.
Experiments used both Reuters-21578 and Classic3 data sets. The experiments showed that
the IG-GA-PCA model could achieve high categorization results as measured by precision,
recall, and F-measure. In [154], a GA-FLD-based FS approach was used in order to find
features subsets that could optimally discriminate samples from different classes without
prior knowledge about features dimensionality. Another modification based on fitness
function were also proposed. Three standard databases of handwritten digits and one of
handwritten letters were used in the experiments. In [53], authors developed a hybrid
intelligent algorithm using BPSO and other operators to solve the FS problem in the text
clustering. A new initialization strategy, new fitness function, and new operator were
proposed. The Reuters-21578, Classic4, and WebKB benchmark text data sets were used.
The results showed higher clustering accuracy and improved the convergence speed of
BPSO. Ewees, in [180] introduced a new approach for Arabic handwritten letter recognition
(AHLR) called MFO-AHLR. A data set for Arabic handwritten letter images (CENPARMI)
was used. Results showed that MFO-AHLR achieved a 99.25% accuracy, which was the
highest ratio achieved among all AHLR approaches. Tubishat, in [5], developed a novel
hybrid model for Arabic SA. The targets of the study were to mitigate the limitations of
the WOA such as local minima, slow convergence diversity, and over-fitting problems.
A hybrid model IWOA-SVM-IG was applied over four Arabic benchmark data sets for
sentiment analysis. IWOA was compared with six well-known optimization algorithms
and two deep learning algorithms, namely Convolution NN (CNN) and Long Short-
term Memory (LSTM). The results showed that the IWOA algorithm outperformed all
other algorithms.

6.5. Hyper Spectral Images Processing

Tackett in [181] worked on extracting the statistical features from a large noisy US
Army NVEOD Terrain Board imagery database using GP. In [182], a new model was
proposed based on GA, Bayesian classification, and a new proposed fitness function
to discriminate the targets from clutters in SAR images. Jarvis [183] developed a novel
approach based on GA and DFA for the selection of important discriminatory variables from
Fourier Transform Infrared (FT-IR) spectroscopic data. The GA achieved 16% reduction in
the model error. The GA-SVM model for hyper-spectral data classification was proposed
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in [184]. The proposed GA-SVM was tested on an HYPERION hyper-spectral image.
Experiments demonstrated that the number of bands was reduced from 198 to 13, while
accuracy increased from 88.81% to 92.51%. A GA-based image annotation system with
optimized descriptor weights or/and optimal descriptor subset over MPEG-7 was developed
in [150]. The Corel image database consisted of 2000 images with 20 categories used.
Experiments showed that the binary-coded GA and the bi-coded GA improved the accuracy
of the image annotation system by 7%, 9%, and 13.6%, respectively compared to the
commonly used methods.

A new ensemble classifier was proposed in [151]. It was based on AdaBoost and
parallel GA in the context of the FS problem for image annotation in MPEG-7 standard.
The experiments were performed over 2000 classified Corel images. In [185], a new
approach based on GA, SVM, MI, and BB was developed to search for the best combination
of bands in the hyper spectra images. MI was used as a pre-processing step for band
grouping based on the correlation between bands and classes. GA-SVM was used to search
for the optimal combinations of bands that increase accuracy. A post-processing step based
on BB was used to filter out those irrelevant band groups. Ghamisi [163] applied the
FODPSO SVM approach to determine the most informative bands in the Hekla and Indian
Pines hyper-spectral data set using the parallelism modification technique. In the same
year, Ghamisi [186] presented a new hybrid approach based on GA, PSO, and SVM. His
target was to detect roads from a background in complex urban images. He integrated the
standard velocity and update rules of PSO with selection, crossover, and mutation from GA.
In [6], Medjahed developed a novel GWO framework for Pavia and AVIRIS hyper-spectral
images data sets.

6.6. Protein and Related Genome Annotation

In [116], a new FS model based on ACO-GA was proposed. Both ACO and GA
generated the feature subsets in parallel then the generated subsets were evaluated by
a certain fitness function. ACO used GA operators to update the solutions. The GPCR-
PROSITE dataset and ENZYME-PROSITE challenging protein sequences data sets were
used. Mandal [157], developed a prediction system to identify the possible subcellular
location of a protein-based on a multi-objective PSO.

6.7. Biochemistry and Drug Design

Raymer [187] developed a system that integrates FE, FS, and classifier training using
GA and KNN. This approach was applied in biochemistry and drug design for the
identification of favorable water-binding sites on protein surfaces. The approach was
validated using protein water interactions from a biochemistry field. Another model was
developed by Salcedo [104]. The proposed FS model was based on GA and m-features
operator (OR operator). The new approach was evaluated using two machine learning
classification problems; the first one used two artificial data sets and the second one was
a real application in molecular bioactivity for a drug design taken from the ones used in
the KDD Cup. THe m-features operator improved the GA performance over the other
existing approaches.

6.8. Electroencephalogram (EEG) Application

Palani [188] used GA and Fuzzy ARTMAP (FA) NN for FS. GA-FA-NN was used
with the VEP data which was recorded from 10 alcoholics and 10 controls. The target was
to classify alcoholics and controls, using multi-channel EEG signals. The discriminatory
spectral bands reduced from 7 to 2. The identification of useful spectral power ratios
produced better performance. In [189], a hybrid GA-SVM model was used to extract the
favorable patterns from noisy multidimensional time series obtained from EEG which are
a base for Brain-computer Interfaces (BCIs). The data set was collected by a procedure
in which subjects were placed in a dim, sound controlled room. The proposed nonlinear
system was better than other linear approaches with a slight difference. A novel ACO-DE
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FS system called ANTDE was presented in [23]. It could cope with the limitations of ACO
regarding the sequential generation for solutions. ANTDE was used in EEG and Myoelectric
Control (MEC) biosignal applications. Wang [130] developed a BCI system using a hybrid
model GA-SVM-entropy and 28 EEG channels. Noori designed an effective BCI in [190].
He used a new version of GA based on SVM to get smaller optimal features from functional
Near-infrared Spectroscopy signals (fNIRS). The experiments were established by recruiting
seven subjects who do not have any psychological disorder. Subjects were seated in a quiet
room and asked to relax to settle down their responses before beginning to perform mental
arithmetic tasks for a certain period.

6.9. Financial Prediction

In [191], a new financial prediction model was proposed. A hybrid model SVM-GA
was evaluated using 15 business data sets. Each data set consisted of 186 sampled firms.
GA-SVM achieved a prediction accuracy of up to 95.56% for all the tested business data.
In [192], the authors developed a hybrid fuzzy-GA approach for stock selection. The fuzzy-
based scoring mechanism was applied for scoring a set of stocks then the topmost stocks
were selected. GA applied for performing a dual job of FS and parameter optimization.
The constituent stocks of the 200 largest market capitalization listed in the Taiwan Stock
Exchange were used in the experiments.

6.10. Software Product Line Estimation

Oliveira [22] investigated the use of the GA method for simultaneous FS and parameters
optimization of Support Vector Regression (SVR) when applied for software effort estimates.
GA, SVR, MLP, and model trees were used. Six benchmark data sets of software projects,
namely, Desharnais, NASA, COCOMO, Albrecht, Kemerer and Koten, and Gray were used
in the experiments. In [106], Guo presented a new methodology for FS in the software
application. The target of the new modified GA was optimizing FS in a Software Product Line
(SPLs) to find a feature subset with an optimal product capability subject to feature model
constraints and resource constraints. The results showed that GA FS algorithms produced a
system with high performance and in 45–99% less time than existing heuristic FS techniques.

6.11. Spam Detection in Emails

Temitayo [193] developed a new approach for the classification of emails, either spam or
legitimate. GA was used to perform simultaneous FS and parameter optimization. The hybrid
GA-SVM spam detection model was evaluated using a Spam Assassin (6000 emails) data set.
Experiments showed that GA-SVM improved the results compared with SVM by achieving a
higher recognition rate with only a few feature subsets. In [85], a mutation-based BPSO FS
model was developed in an email application. A data set of 6000 emails manually collected
during the year 2012 was used. The proposed was able to effectively reduce the false-positive
error. In [194], a hybrid GA-RWN was used for identifying the most relevant features in spam
emails and automatic tuning for the hidden neurons. The GA-RWN achieved promising
results according to the spam detection rate and optimization for the configuration of its core
classifier. Lately, in [195], a novel Northern Bald Ibis Algorithm (NOA) was used with a SVM
classifier to get an optimal feature subset of the Enron-spam dataset.

6.12. Other Various Applications

Zio [156] developed an efficient transient diagnosis system for nuclear power plants
based on GA to select among the several measured plant parameters. In [61], the target was
addressing the problem of a lengthy Intrusion Detection (ID) process based on attributes
of network packets. Rough-PSO was used and evaluated using the KDDCup 1999 data
set. An automatic FS model that can choose the most relevant features from password
typing patterns was designed in [196]. The data sets were captured on a Sun Sparc-
Station by a program in an X window environment in which the keystroke duration
times were measured. Rodrigues in [197] proposed a CS-OPF model for theft detection
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in power distribution systems. The proposed model was evaluated using two data sets
from a Brazilian electrical power company. Experiments proved the robustness of the
CS-OPF model by increasing the theft recognition up to 40%. Zhang [127] developed a new
forecaster FS model based on combining MI and ACO. The ACO-MI model was applied
on forecasters data sets at the Australian Bureau of Meteorology. A system for diagnosing
different types of fault in a gearbox was designed in [198]. Hassanien [67] developed an
automatic tomato disease detection system based on integrating rough set with MFO.

6.13. An Open Source Evolopy-FS Framework

EvoloPy-FS [199] is an open-source FS software tool developed by our team and it
is publicly available on (www.evo-ml.com). It serves as an explicit white-box NIAs-FS
optimization framework. The main objective was to support researchers from different
disciplines with an easy-to-use, transparent, and automated NIAs-FS optimization tool.
The framework contains severe recent NIAs algorithms written in Python and a set of
different operators such as transfer functions (S-TFs and V-TFs). Moreover, the framework
applies wrappers, filters and a hybrid filter-wrapper, different evaluation metrics, and
allows for loading data from different resources. Evolopy-FS is a continuation of our
path, which is building an integrated optimization environment. The work was started
by EvoloPy [200] for global optimization problems then EvoloPy-NN for optimizing MLP
and recently Evolopy-FS for optimizing the feature selection process. In [199], authors
constructed the experiments based on 30 different well-regarded data sets from common
repositories such as UCI and Kaggle. The comparisons were conducted between wrapper
FS, filter FS, and hybrid filter-wrapper approaches. It was shown that wrapper and hybrid
filter-wrapper were superior and more trustable in dealing with large dimensionality data
sets. However, the filter approach was faster and generated results in a shorter time and
fewer computational efforts.

7. Assessment and Evaluation of NIAs FS Modification Techniques

As discussed, NIAs-FS approaches achieved big contributions and clear success in
solving the FS problem in different domains. This section presents the results from the
analysis of modified NIAs-FS studies. Table 1 shows a summary of the main studies in the
literature that adopted new operators as modification techniques for NIAs-FS, Table 2 shows
a summary of the main studies in the literature that adopted hybridization modification
technique for NIAs-FS, Table 3 shows a summary of main studies in the literature that
adopted the remaining modifications techniques for NIAs-FS, Table 4 shows a summary of
main modifications applied in the literature on main NIAs (applied/not applied), Table 5
shows a summary of main modifications applied in the literature on main NIAs (by
numbers), Table ?? shows a summary of the main studies in the literature that applied
modified NIAs FS in applications, and Table 7 shows a summary of modifications applied
on NIAa-FS in the main applications. It was observed that 34 different operators were
applied on NIAs wrappers in 48 different papers. Some references adopted over one
operator in their work. As it is clear also from the list, the most applied operator is the
chaotic map, which was applied in 10 references, then rough set in 6 references, then
selection operators (RWS, TS) in 5, then S-shaped and V-shaped transfer functions and
crossover in 4 references. The mutation was applied in 3 and UC, DE, and local search
operators each were been adopted by 2 references. A single reference adopted the remaining
operators. It was found that the PSO wrapper was the most modified optimizer using
newly adopted operators for tackling the FS problem. It was modified using a new operator
in 21 references. In addition, GA was modified in 6 references, WOA in 4, CS in 3, SSA in 3,
GWO, GOA, and MFO each one was modified by a new operator in 2 references. For DA,
FFA, LA, BA, MVO, ABC, CSO, DE, and CSA, the number of references was 1. For FPA and
ACO, no work applies new operators to their algorithms for solving the FS problem.

It was clear from the analysis that the hybridization modification technique was
applied in 75 references to solve FS. This counting result shows that hybridization is the
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most widely applied modification technique to enhance NIAs wrappers in the FS domain.
This high number of work comes from GA, which is the NIA that had the most number
of works regarding wrapper hybridization. GA wasapplied hybridization in 38 different
works, which is much higher than 6, the number of works that adopted new operators
to GA. We can infer from this works count and from the contribution of studies that
hybridization is the best suitable modification technique to be applied with GA. ACO also
were hybridized in 7 references, while no work adopted a new operator to modify ACO.
Conversely, PSO hybridization works were 11, which is less than 21, the number of works
with new operators, thus we can again infer from these counts and the contribution of
studies that adopting a new operator to PSO is more suitable than hybridization. It was
also noticed that hybridization using different kinds of classifiers was the most prominent
hybridization technique.

There are 49 studies that tried to investigate the influence of the classification technique
on the performance of wrappers for optimizing FS, some of these studies applied simultaneous
optimization for FS and a classification/prediction task by tuning the parameters of the
classifier with applying FS. The next widespread hybridization technique is a filter-wrapper,
which was applied in 14 studies and was very effective in dealing with large dimensionality
feature space. Hybridization techniques that tried to balance the exploration/exploitation
of the search space also were adopted by a considerable number of works. In summary, PSO
and GA are the most widely modified NIAs-FS approaches. They were equally modified
and used. Each one of them was adopted and modified for FS in 56 references of the
gathered studies.

On the other side, regarding applications of NIAs-FS, it was evident that microarray
gene expression classification is the most dominant application where NIAs-FS approaches
were applied in 18 studies with a ratio 24% concerning other applications. The medical
application was the second prominent application for applying NIAs-FS approaches with
a ratio of 21%. The medical application includes different medical branches SONAR,
tumor, mass, and various disease detection, medical diagnosis, medical data, and bio-signal
analysis. Then, follows hyper-spectral image with a ratio of 17%, Arabic handwritten
recognition with a ratio of 13%, facial expression recognition with a ratio of 9%, EEG
application with a ratio of 7%, financial diagnosis with a ratio of 5%, and spam detection
with a ratio of 4%. Furthermore, it is noticeable that GA is the most dominant NIA optimizer
for optimizing FS in applications with a ratio of 45%. PSO is the second most widespread
optimizer with a ratio of 26%, then ACO with a ratio of 11%, MFO with a ratio of 7%, GWO
with a ratio of 6%, CS with a ratio of 2%, WOA with a ratio of 2%, and GOA with a ratio
of 1%.

No Free Lunch (NFL) theorem [201] states no optimization algorithm can solve all
the optimization problems equally. The success in solving a specific problem does not
guarantee that the algorithm will perform similarly for other problems. On average, all
the optimization algorithms perform equally. This theorem has motivated researchers
to develop new algorithms or improve the existing ones to solve another wide area
of optimization problems, such as feature selection. Researchers are advised to read
the following references as they are the most cited papers after 2010 in the field of
NIAs-FS: [17,51,80,90,94,124,202].
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Table 1. Summary of main ro pub the tables, and please check if it is the background color can
be deleted, same as follows. studies in the literature that adopted new operators as modification
techniques for Nature Inspired Algorithms Feature Selection NIAs-FS.

New Operator NIA Wrapper and No. of Publications References Total NIAs

Chaotic maps PSO(4), SSA(2), MVO(1), CSA(1) WOA(1), MFO(1) [3,51–58] 10

Rough set PSO(2), CS(2), FA(1), MFO(1) [61–64,66,67] 6

Selection operators (RWS,TS) GOA(1), WOA(2), ABC(1), DE(1) [26,46,72–74] 5

Sigmoidal function PSO(1), GWO(1), CS(1), BA(1), GOA(1) [6,76–79] 5

S-shaped and V-shaped TFs PSO(1), SSA(1), DA(1), GOA(1) [79,80,82,83] 4

Crossover GWO(1), SSA(1), WOA(1), GOA(1) [73,79,82,84] 4
Mutation PSO(2), GOA(1) [53,79,85] 3

Uniform Combination (UC) PSO(2) [80,91] 2

Local search PSO(2) [24,90] 2

DE evolutionary operators WOA(1), ABC(1) [5,26] 2

Boolean algebra operation PSO(1) [92] 1

Logistic regression PSO(1) [202] 1

Catfish strategy PSO(1) [94] 1

Feature subset ranking PSO(1) [95] 1

Statistical clustering PSO(1) [96] 1

Threshold PSO(1) [97] 1

Gaussian sampling PSO(1) [91] 1

Reinforced memory strategy PSO(1) [91] 1

XOR operator PSO(1) [98] 1

Correlation information PSO(1) [99] 1

Binary quantum PSO(1) [100] 1

Reinitialization strategy PSO(1) [101] 1

Non replaceable memory PSO(1) [101] 1

Levy flight CS(1) [64] 1

Return cost indicator FFA(1) [102] 1

Pareto dominance based FFA(1) [102] 1

Movement operator and adaptive jump FFA(1) [102] 1

Greedy search ALO(1) [103] 1

Evolutionary Population Dynamics (EPD) GOA(1) [72] 1

DE-based neighborhood mechanism ABC(1) [26] 1
Repair mechanism DE(1) [74] 1

m-features operator (OR operator) GA(1) [104] 1

Dynamic neighboring genetic GA(1) [105] 1

Repair operator GA(1) [106] 1
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Table 2. Summary of main studies in the literature that adopted hybridization modification technique for NIAs-FS.

Target Type Strategy Model References Total

Enhance the exploitation NIA-NIA (Population-trajectory
(mimetic) SI-EA, SI-SI)

Global search followed by
local search

GWO-ALO, WOA-SA, CSA-FPA,
SSA-PSO, PSO-mGA, ACO-DE,
MFO-SA, MFO-LFA

[4,23,46,101,108,110–112] 8

Refine the best solutions NIA-NIA Implementing NIAs
sequentially as a pipeline.
Apply operators of 1st
algorithm then apply
operators of the 2nd
algorithm sequentially

WOA-SA, PSO-GA [46,113] 2

Speed up the search process NIA-NIA Perform parallel exploration ACO-GA [116,117] 2

Enhance the initialization process NIA-NIA Generate initial solutions
by one algorithm then
update them using the other
algorithm

GA-IGWO [119] 1

Improve the training process.
Improve the evaluation process.
Reduce the computation complexity.
Investigate the capability of different
classifiers. Simultaneous parameters
optimization and feature reduction.
Study the influence of different
evaluation strategies on wrappers
performance.

NIA-Classifier For the simultaneous
parameter and FS
optimization, NIA works as a
tuner to optimize the training
parameters set up, selecting
the optimal feature subset by
making new representations
of an individual, in such
a way the length of the
individual equals the number
of parameters and number
of features and adjusts
the values of genes by
either doing real or binary
conversion.

PSO-KDE, GA-IGWO-KELM, GWO-
NN, CS-OPF, CSA-FPA-OPF, BBA-
OPF, BBA-NaiveBayes, {MVO-RF,
MVO-J48, MVO-Kstar, MVO-LMT},
MVO-SVM, GOA-SVM, ACO-SVM,
ACO-NN, CMFO-KELM, CSO-SVM,
GA-KNN,
{GA-NN, GA-BNN, GA-MLP,
GA-BP-NN, GA-RBF-NN, GA-LQV-
NN, GAANN-RP, GAANN-LM,
GAANN-GD, GA-RWN}, GA-C4.5,
GA-SVM, GA-Bayesian, GA-FKNN,
GA-adaboost, GA-SVR,

[3,18,22,22,56,77,78,108,117,
119,121,122,128,130,151,
156,164,166,166–169,171–
175,182,185,188–191,194,196–
198,203–208]

49
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Table 2. Cont.

Target Type Strategy Model References Total

Minimize the dimensionality
of the large datasets,
eliminate the redundant/
irrelevant features, evaluate the
generated features subsets

NIA-Filter (Wrapper-Filter) Classically applied in two
steps: Filtering of the features
applied first then a wrapper
is applied on the reduced
dataset. Other studies tried
to embed the filter in the
structure of a wrapper
in order to evaluate the
generated features subsets

{IG-IBPSO, CFS-IBPSO}, MSPSO-F-
Score, MI-PSO, {BPSO-G (Intropy-
PSO), BPSO-P (MI-PSO)}, CS-
MI-Entropy, LA-QuickReduct-
CEBARKCC, IWOA-IG, ACO-MI,
ACO-Multivariate filter, GA-MI,
IG-GA, GA-Entropy

[5,16–18,64,65,124–130] 14



Mathematics 2022, 10, 464 32 of 45

Table 3. Summary of main studies in the literature that adopted the remaining modifications
techniques for NIAs-FS.

Modification NIA Wrapper and No. Publications References Total Works

Update mechanism PSO(10), SSA(1), DA(1), ACO(5) [24,25,53,83,90,96,135–139,141,142,179,
209–211]

17

Modified population
structure

PSO(1), SSA(1), GA(1) [101,105,142] 3

Different encoding
scheme

PSO(3), GA(4) [17,90,91,105,149,150,212] 7

New initialization PSO(2), GWO(1) [53,84,139] 3

New fitness function PSO(2), GWO(1), FFA(1), WOA(1), GA(4) [5,6,106,153,154,182,183,213,214] 9

Multi objective PSO(4), ACO(1), GA(1) [156,157,209,215–217] 6
Parallelism PSO(2), GA(2) [17,151,162,163] 4

Table 4. Summary of main modifications applied in the literature on main NIAs-FS (applied/
not applied).

Modification PSO GWO SSA CS DA FFA LA BA MVO GOA WOA ACO MFO GA

New operator 3 3 3 3 3 3 3 3 3 3 3 7 3 3

Hybridization 3 3 3 3 7 7 3 3 3 3 3 3 3 3

Update mechanism 3 7 3 7 3 7 7 7 7 7 7 3 7 7

Modified population
structure

3 7 3 7 7 7 7 7 7 7 7 7 7 3

Different encoding
scheme

3 7 7 7 7 7 7 7 7 7 7 7 7 3

New initialization 3 3 7 7 7 7 7 7 7 7 7 7 7 7

New fitness function 3 3 7 7 7 3 7 7 7 7 3 7 7 3

Multi objective 3 7 7 7 7 7 7 7 7 7 7 3 7 3

Parallelism 3 7 7 7 7 7 7 7 7 7 7 7 7 3
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Table 5. Summary of main modifications applied in the literature on main NIAs-FS (by number of studies).

Modification PSO GWO SSA CS DA FFA LA BA MVO GOA WOA ACO MFO GA Total Studies/Modification

New operator 21 2 3 3 1 1 1 1 1 2 4 0 2 6 48
Hybridization 11 2 1 3 0 0 1 3 2 2 2 7 3 38 75
Update mechanism 10 0 1 0 1 0 0 0 0 0 0 5 0 0 17
Modified population structure 1 0 1 0 0 0 0 0 0 0 0 0 0 1 3
Different encoding scheme 3 0 0 0 0 0 0 0 0 0 0 0 0 4 7
New initialization 2 1 0 0 0 0 0 0 0 0 0 0 0 0 3
New fitness function 2 1 0 0 0 1 0 0 0 0 1 0 0 4 9
Multi objective 4 0 0 0 0 0 0 0 0 0 0 1 0 1 6
Parallelism 2 0 0 0 0 0 0 0 0 0 0 0 0 2 4

Total studies/FS-NIA 56 6 6 6 2 2 2 4 3 4 7 13 5 56 172
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Table 6. Summary of main studies in the literature that applied modified NIAs-FS in applications.

FS Application NIA Wrapper and No. of
Publications References Total NIAs

Microarray gene expression
classification. (DNA micro

array classification)

PSO(9), GWO(1), CS(1), GOA(1),
ACO(2), GA(4)

[4,18,24,52,98,100,123,126,128,136–
138,164–168] 18

Facial expression recognition PSO(3), GWO(1), ACO(2), FO(1) [25,76,97,101,112,135,169] 7

Medical applications (SONAR,
tumor, mass and various

disease detection, medical
diagnosis, medical data, and

bio signal analysis)

PSO(4), GWO(1), WOA(1),
ACO(1), MFO(3), GA(6) [3,57,62,113,119,153,172–177,211] 16

Handwritten letter
recognition, sentiment

analysis, language processing,
signature verification system,

and text categorization

PSO(1), WOA(1), ACO(1), MFO(1),
GA(6) [5,53,89,105,129,149,154,178–180] 10

Hyper spectral images
processing and classification. PSO(3), GWO(2), GA(9) [4,6,150,151,163,181–186,212] 13

Intrusion detection PSO(1) [61] 1

Protein and related genome
annotation. PSO(1), ACO(1) [116,157] 2

Meteorology weather
forecasting ACO(1) [127] 1

Biological application GA(1) [162] 1

Biochemistry and drug design GA(2) [104] 2

Electroencephalogram (EEG)
signals application/Brain
Computer Interface (BCI)

system

ACO(1), GA(2) [23,130,188–190] 5

Design an automatic FS model
that can choose the most

relevant features from
password typing

GA(1) [196] 1

Transient diagnosis system for
nuclear power plants GA(1) [156] 1

Financial diagnosis /business
crisis detection/stock price

prediction
PSO(1), GA(3) [191,192,202] 4

Diagnose different types of
fault in a gearbox GA(1) [198] 1

Software Product Line (SPLs)
and sw effort estimation GA(2) [22,106] 2

Theft detection in power
distribution systems CS(1) [197] 1

Spam detection in emails PSO(1), GA(2) [85,193,194] 3

Transient diagnosis system for
nuclear power plants GA(1) [156] 1

Automatic tomato disease
detection system based MFO(1) [67] 1
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Table 7. Summary of modifications applied on NIA-FS in the main applications.

App Modification Model Classifier Datasets Dimension Year Ref.

M
ic

ro
ar

ra
y

ge
ne

ex
pr

es
si

on

Hybridization GA-SVM SVM 2 2000 2003 [164]
Hybridization GA-MI SVM 13 2000 2007 [128]

Update mechanism IPSO 1-KNN 11 15,009 2008 [136]
Update mechanism BPSO 1-KNN 6 10,509 2008 [92]

Hybridization IBPSO-IG, IBPSO-CFS 1-KNN 6 11,225 2008 [123]
Update mechanism cuPSO 1-KNN 11 15,009 2010 [137]

Hybridization GA-IG 1-KNN 11 15,009 2010 [18]
Hybridization New operator/chaotic TCBPSO-CFC 1-KNN 10 9868 2011 [52]

Update mechanism IBPSO SVM 10 12,600 2011 [138]
Hybridization GA-NN-MI NN-BP 11 7129 2011 [166]
Hybridization ACOFS NN 9 2000 2012 [167]
Hybridization CS-MI-Entropy ANN 6 15,009 2014 [126]

Update mechanism PSO-LSRG 1-KNN 5 12,600 2014 [24]
New operator/XOR HDBPSO 1-KNN, 3-KNN, 5-KNN 3 7129 2015 [98]

New operator/binaryquantum BQPSO-SVM SVM 5 12,600 2016 [100]
Hybridization GWO-ALO 5-KNN 7 49151 2018 [4]
Hybridization GOA-SVM SVM 3 17,678 2018 [168]

M
ed

ic
al

ap
pl

ic
at

io
n

Hybridization GABPNN, GARBFNN, GALQVNN BPNN, RBFNN, LQVNN 1 30 2006 [172]
Hybridization PSO-GA SVM 3 7129 2008 [113]

New fitness function PSO-MLP MLP 3 16 2008 [153]
Hybridization BPSO-FST, GA-FST SVM 1 23 2010 [173]

New operator/rough set PSO-RR, PSO-QR Naive Bayes, BayesNet, KStar 4 45 2014 [62]
Hybridization GAANNRP, GAANNLM, GAANNGD, NNRP, NNLM, NNGD 1 10 2015 [174]
Hybridization PSO-KDE KDE 2 32 2016 [175]
Hybridization IGWO-GA-KELM KELM 2 32 2017 [119]

New operator/chaotic maps CMFOFS-KELM KELM 1 22 2017 [3]
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Table 7. Cont.

App Modification Model Classifier Datasets Dimension Year Ref.

H
yp

er
sp

ec
tr

al
im

ag
es

pr
oc

es
si

ng

New fitness function hybridization GA-MDLP-Bayesian Bayesian 3 20 2003 [182]
New fitness function GA-DFA Validation by projection 1 882 2004 [183]

Hybridization GA-SVM SVM 1 198 2008 [184]
Different encoding schemes GA-KNN KNN 1 25 2008 [150]
Different encoding schemes GA-KNN KNN 1 25 2008 [212]
Hybridization parallelism Parallel-GA-Adaboost Adaboost ensemble, KNN 1 25 2010 [151]

Different encoding schemes BGAFS, BCGAFS Adaboost ensemble, KNN 1 25 2010 [151]
Hybridization MI-GA-SVM-BB SVM,BB 2 202 2011 [185]

Parallelism FODPSO-SVM SVM 2 220 2015 [163]
Hybridization HGAPSO-SVM SVM 1 220 2015 [186]

New fitness function GWO-KNN 7-KNN 3 224 2016 [6]
Hybridization GWO-ALO 5-KNN 5 10,304 2018 [4]

A
ra

bi
c

H
R

New operator/local search HGA 1-KNN 1 16 2004 [89]
Different encoding schemes GA No classifier 1 100 2007 [149]

Update mechanism ACO KNN 1 7542 2009 [179]
New population structure CAGA NN-BP 1 16 2009 [105]

Hybridization IG-GA-PCA KNN, C4.5 4 7542 2011 [129]
New fitness function GA-FLD KNN, MLP, SVM (RBF, Poly, Sigm) 4 780 2014 [154]

New initialization+New operator/mutation BPSO No classifier/clustering problem 3 8830 2016 [53]
Hybridization new operator/DE evolutionary IWOA-IG-SVM SVM 4 8057 2018 [5]

Fa
ce

re
co

gn
it

io
n

Update mechanism ACO KNN 1 400 2007 [25]
Update mechanism ACO KNN 1 400 2008 [135]

New operator/intelligent acceleration ABPSO Euclidean classifier 2 2204 2012 [76]
New operator/threshold BPSO Euclidean classifier 7 16,380 2014 [97]

Hybridization new operator update PSO-mGA NN-BP,SVM-RBF,ensembles 2 1280 2017 [101]
Hybridization GWO-NN NN 2 486 2018 [169]

New operators/return-cost Rc-BBFA 1-KNN 10 1280 2016 [112]
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8. Conclusions and Future Research Directions

In this study, a survey about modifications of NIAs for tackling the FS optimization
problem is presented. The review is based on a solid theoretical, applied, and technical
foundation. Three main research streams are identified in this review: Meta-heuristic
optimization, feature selection, and modification on NIAs for tackling FS. This review
aims to draw the map for researchers and guide them when creating new research in this
area. This survey is based on 156 articles collected and studied on modifications of NIAs
for solving the FS problem. The sources of the information search came mainly from six
well-regarded scientific databases: Elsevier, Springer, Hindawi, ACM, World scientific,
and IEEE. From the review, it can be seen that the NIAs algorithms have been extensively
investigated over the past years to improve the FS problem. About 34 different operators
were investigated. The most popular operator is chaotic maps. Hybridization is the most
widely used modification technique. There are three types of hybridization: Integrating
NIA with another NIA, integrating NIA with a classifier, and integrating NIA with a
classifier. The most widely used hybridization is the one that integrates a classifier with the
NIA. Microarray and medical applications are the dominated applications where most of
the NIA-FS are modified and used. Despite the popularity of the NIAs-FS, there are still
many areas that need further investigation:

• Until now, there are few works in the binary optimization field. Many new operators
can be proposed to enhance the performance of binary optimizers in a binary space.
This is an interesting research direction;

• The proposed enhanced binary versions of optimizers can be used as a data mining
tool in various applications. There are some applications where the usage of modified
NIAs-FS in them is still limited;

• It would also be interesting to look at the dimensionality and number of instances in
data sets. Nowadays, the majority of FS works to address problems with dimensionality
up to several thousand but the question that may arise is what will happen if the
data sets scaled up to millions of features? There is a scalability gap that should be
addressed in the future;

• There is still room for improvement through parallel NIAs-FS. This might be a fruitful
direction for research;

• Hyper volume Pareto optimal dominance and many-objective optimization need
further crucial investigation.

Based on the above trends, the size of the NIAs-FS research area can be recognized.
Besides, it can be imagined that a thorough investigation and improvement of NIAs will
improve the FS process in various high-dimensional areas. This review paper will be used
to help researchers take an excellent view of the modification strategies in nature-inspired
algorithms for tackling the feature selection problem.
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34. Ksiazek, K.; Połap, D.; Woźniak, M.; Damaševičius, R. Radiation heat transfer optimization by the use of modified ant

lion optimizer. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence, Honolulu, HI, USA,
27 November–1 December 2017; Volume 2018, pp. 1–7.
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121. Faris, H.; Hassonah, M.A.; AlaḾ, A.Z.; Mirjalili, S.; Aljarah, I. A multi-verse optimizer approach for feature selection and
optimizing SVM parameters based on a robust system architecture. Neural Comput. Appl. 2018, 30, 2355–2369. [CrossRef]
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133. Hassonah, M.A.; Al-Sayyed, R.; Rodan, A.; AlaḾ, A.Z.; Aljarah, I.; Faris, H. An efficient hybrid filter and evolutionary wrapper
approach for sentiment analysis of various topics on Twitter. Knowl.-Based Syst. 2020, 192, 105353. [CrossRef]

134. Ahmed, N.; Rafiq, J.I.; Islam, M.R. Enhanced human activity recognition based on smartphone sensor data using hybrid feature
selection model. Sensors 2020, 20, 317. [CrossRef]

135. Kanan, H.R.; Faez, K. An improved feature selection method based on ant colony optimization (ACO) evaluated on face
recognition system. Appl. Math. Comput. 2008, 205, 716–725. [CrossRef]

136. Chuang, L.Y.; Chang, H.W.; Tu, C.J.; Yang, C.H. Improved binary PSO for feature selection using gene expression data. Comput.
Biol. Chem. 2008, 32, 29–38. [CrossRef] [PubMed]

137. Martinez, E.; Alvarez, M.M.; Trevino, V. Compact cancer biomarkers discovery using a swarm intelligence feature selection
algorithm. Comput. Biol. Chem. 2010, 34, 244–250. [CrossRef] [PubMed]

138. Mohamad, M.S.; Omatu, S.; Deris, S.; Yoshioka, M. A modified binary particle swarm optimization for selecting the small subset
of informative genes from gene expression data. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 813–822. [CrossRef]

139. Xue, B.; Zhang, M.; Browne, W.N. Novel initialisation and updating mechanisms in PSO for feature selection in classification. In
Proceedings of the European Conference on the Applications of Evolutionary Computation; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 428–438.

140. Mafarja, M.; Sabar, N.R. Rank based binary particle swarm optimisation for feature selection in classification. In Proceedings of
the 2nd International Conference on Future Networks and Distributed Systems, Amman, Jordan, 26–27 June 2018; pp. 1–6.

141. Mafarja, M.; Jarrar, R.; Ahmad, S.; Abusnaina, A.A. Feature selection using binary particle swarm optimization with time varying
inertia weight strategies. In Proceedings of the 2nd International Conference on Future Networks and Distributed Systems; ACM:
New York, NY, USA, 2018; p. 18.

142. Aljarah, I.; Mafarja, M.; Heidari, A.A.; Faris, H.; Zhang, Y.; Mirjalili, S. Asynchronous accelerating multi-leader salp chains for
feature selection. Appl. Soft Comput. 2018, 71, 964–979. [CrossRef]

143. Hammouri, A.I.; Mafarja, M.; Al-Betar, M.A.; Awadallah, M.A.; Abu-Doush, I. An improved Dragonfly Algorithm for feature
selection. Knowl.-Based Syst. 2020, 203, 106131. [CrossRef]

http://dx.doi.org/10.1007/s12559-019-09668-6
http://dx.doi.org/10.1155/2017/9512741
http://dx.doi.org/10.22266/ijies2019.0831.31
http://dx.doi.org/10.1007/s00521-016-2818-2
http://dx.doi.org/10.1007/s12559-017-9542-9
http://dx.doi.org/10.1016/j.ins.2010.05.037
http://dx.doi.org/10.1016/j.patrec.2007.05.011
http://dx.doi.org/10.1016/j.knosys.2011.04.014
http://dx.doi.org/10.22266/ijies2017.0430.03
http://dx.doi.org/10.1016/j.knosys.2019.105353
http://dx.doi.org/10.3390/s20010317
http://dx.doi.org/10.1016/j.amc.2008.05.115
http://dx.doi.org/10.1016/j.compbiolchem.2007.09.005
http://www.ncbi.nlm.nih.gov/pubmed/18023261
http://dx.doi.org/10.1016/j.compbiolchem.2010.08.003
http://www.ncbi.nlm.nih.gov/pubmed/20888301
http://dx.doi.org/10.1109/TITB.2011.2167756
http://dx.doi.org/10.1016/j.asoc.2018.07.040
http://dx.doi.org/10.1016/j.knosys.2020.106131


Mathematics 2022, 10, 464 43 of 45
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