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Abstract: The lattice Boltzmann method (LBM) has two key steps: collision and streaming. In a
conventional LBM, the streaming is exact, where each distribution function is perfectly shifted to the
neighbor node on the uniform mesh arrangement. This advantage may curtail the applicability of
the method to problems with complex geometries. To overcome this issue, a high-order meshless
interpolation-based approach is proposed to handle the streaming step. Owing to its high accuracy,
the radial basis function (RBF) is one of the popular methods used for interpolation. In general,
RBF-based approaches suffer from some stability issues, where their stability strongly depends on
the shape parameter of the RBF. In the current work, a stabilized RBF approach is used to handle
the streaming. The stabilized RBF approach has a weak dependency on the shape parameter, which
improves the stability of the method and reduces the dependency of the shape parameter. Both the
stabilized RBF method and the streaming of the LBM are used for solving three benchmark problems.
The results of the stabilized method and the perfect streaming LBM are compared with analytical
solutions or published results. Excellent agreements are observed, with a little advantage for the
stabilized approach. Additionally, the computational cost is compared, where a marginal difference is
observed in the favor of the streaming of the LBM. In conclusion, one could report that the stabilized
method is a viable alternative to the streaming of the LBM in handling both simple and complex
geometries.

Keywords: lattice Boltzmann method; radial basis function; Hermite expansion; shape parameter;
meshless; non-uniform mesh

1. Introduction

In recent years, the lattice Boltzmann method (LBM) has been used as a powerful
numerical tool to simulate a wide range of fluid flow and heat transfer problems [1–3]. The
LBM has competitive advantages over conventional computational fluid dynamic (CFD)
methods due to its simplicity, parallel computing nature, and the exactness of advection
term (no dissipation error) [2,4]. The solution in the LBM is obtained by two steps: collision
(local) and streaming (non-local). The collision step relaxes the distribution functions to
their equilibrium values. In the non-local streaming step, the distribution functions at
the local points are streamed (advected) to the neighbor points using the discrete lattice
speeds. Notably, this process leads to perfect shifting to the neighbor nodes because the
time and space increments are equal. The perfect shifting justifies the exactness of the
advection of the distribution functions and explains the high accuracy of the LBM. However,
it constrains the applicability of the method to uniform meshes, which impedes the ability
of the method to handle complex geometries [4].

Many approaches have been followed in the literature to alleviate this constraint. The
first approach employs both multi-blocks and local mesh refinement techniques [5–16]. The
mesh refinement techniques require a second-order interpolation to achieve the correct
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Navier–Stokes equations. In addition, they need complex interfacing between different
levels of refinement, which might adversely impact the conservation across the interface.
Furthermore, they require recalculations of the collision for each refinement level. To
avoid this, a second approach is used, which uncouples the time and space increments
and uses conventional computational fluid dynamic (CFD) methods such as the finite-
volume method (FVM) [17–22], the finite-difference method (FDM) [23–34], the finite-
element method (FEM) [35–41], or the meshless method [42–45]. This approach suffers
from numerical diffusion, which leads to dissipation error in proportion to the mesh
distribution. Additionally, complex mesh processing is required, thereby increasing the
computational cost. In order to remediate this issue, the radial basis function (RBF) method
is used because it has a large number of bases that equals the number of the considered
neighbors. Lin et al. [46] used the local semi-Lagrangian RBF for the streaming step in
LBM. Musavi et al. [47] handled the streaming of the LBM using the local Petrov–Galerkin
RBF method, which is based on the weak form of the partial differential equation (PDE).
Unfortunately, the methods depending on weak form solve for the average value over
a finite element or volume, which have less accuracy than the perfect shifting of the
standard LBM. Therefore, a very fine mesh should be used to achieve accuracy close to
that of the perfect shifting (streaming). This mesh refinement comes with the price of
high computational and storage costs. To reduce the computational cost, the interpolation-
based approach (third approach) is used by researchers [48–52]. In the third approach, the
streaming in the LBM is treated as a Lagrangian, and then the shifted distribution functions
are interpolated back to their original location. The interpolation-based approach usually
generates numerical diffusion in the solution. This diffusion can be reduced by drastically
increasing the number of grids or using a higher-order interpolation. Increasing the number
of mesh points is fraught with many negative effects such as raising the computational cost.
Although the higher-order interpolation is easy and applicable for the structured grid, it is
difficult for non-uniform meshes.

The present work proposes using the interpolation-based approach to achieve a viable
alternative to the streaming step, where the high-accuracy RBF interpolation is used to
interpolate the post-collision distribution functions. The usage of high-order RBF interpola-
tion enhances the accuracy and allows the usage of coarser mesh when compared to linear
interpolation. However, the accuracy of RBF is predicated on the shape parameter, which
needs to be selected carefully in order to achieve the desired stability and accuracy. Hence,
it is necessary to stabilize RBF for a wide range of shape parameter values. The stability of
the RBF depends strongly on shape parameter values that should be carefully selected. Us-
ing a novel stabilized RBF method proposed in our previous work [53] could beat this issue.
The stabilized RBF approach has a weak dependency on the shape parameter, where any
value of the shape parameter can be selected. In the current study, the stabilized approach
is used to solve the streaming step of the LBM to enhance the accuracy and applicability of
the method to problems with non-uniform grids. To evaluate the proposed method, three
benchmark problems are solved using the stabilized RBF method and the streaming of the
LBM. Moreover, the computational cost is compared for both used methods.

The rest of the paper is organized as follows. Section 2 describes the LBM. Section 3
explains the RBF interpolation method and how to use it for solving the streaming step of
the LBM. Section 4 shows the results of one- and two-dimensional benchmark problems.
Finally, Section 5 presents the conclusions.

2. Lattice Boltzmann Method

The LBM is derived from the Boltzmann transport equation after being discretized in
velocity space using a finite velocity set ei [54–57].

∂ fi
∂t

+ ei ·
∂ fi
∂x

=
1
τ

(
fi(t, x)− f M

i (ρ, u)
)
+ Gi(t, x), (1)
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where f , f M
i , t, x, τ, G, ρ, e, and u denote the distribution function, the Maxwell–Boltzmann

distribution function, the time, the position vector, the relaxation time, the force term, the
density, the microscopic velocity vector, and the macroscopic velocity, respectively. Many
approaches have been followed in the literature to discretize Equation (1). In the original
LBM approach, the Lagrangian discretization is selected for the left-hand side [54–57].

fi(t + dt, x + eidt)− fi(t, x) =
dt
τ

(
fi(t, x)− f eq

i

)
+ dtGi(t, x). (2)

Space and time increments are chosen to be equal to achieve the perfect shifting
(streaming), where each distribution function is shifted perfectly to the neighbor node in
the upstream direction. This approach is very efficient computationally and has no diffusion
error. However, it works only on a structured uniform grid, which is very restrictive and
might curb the applicability of the method to complex geometries. To relax this restriction,
space and time increments are separated by Lee et al. [58] using the θ method to discretize
the Boltzmann transport equation (i.e., Equation (1)) along the characteristic, which then
leads to the three-step method: pre-collision, streaming, and post-collision.

Pre-collision

f ∗i (t, x) = fi(t, x) + dt(1−θ)
τ

(
f eq
i (t, x)− fi(t, x)

)
+ dt(1− θ)Gi(t, x),

(3)

Streaming

f ∗i (t + dt, x + eidt) = f ∗i (t, x), and
(4)

Post-collision

fi(t + dt, x + eidt) = f ∗i (t+dt,x+eidt)+dtθGi(t+dt,x+eidt)+ dtθ
τ f eq

i (t+dt,x+eidt)
1+ dtθ

τ

.
(5)

Evidently, Equations (3) and (5) are local and denote the pre- and post-collision,
respectively. However, Equation (4) is the non-local streaming step. The streaming step
can be solved using conventional CFD methods such as FVM, FDM, or FEM. However,
they are not recommended due to the complicated and pedantic mesh processing of 2D
and 3D problems. Furthermore, the accuracy of those methods is considered low when
compared to the RBF method for the same number of points. The RBF-based interpolation
can be used to solve the streaming step (i.e., Equation (4)) even for an unstructured mesh.
In the following, the RBF method and methodology of implementation into the LBM are
presented in detail.

3. Radial Basis Function Method

The RBF method is used to interpolate a function by finding the coefficients of a basis
function. The primary difference between the RBF and the polynomial approach is the basis (φ),
which is a function of both distances between two points in space (r(x, ξ) =

√
(x− ξ)·(x− ξ))

and the shape parameter (ε). In the RBF method, the number of bases is the same as the number
of interpolation points. For this reason, it generates a square interpolation matrix. To illustrate, the
specified data f (xi) at xi locations can be interpolated by first defining the interpolant,

(x) = ∑j αjφ
(
r
(
x, xj

)
, ε
)
, (6)

where αj represent the coefficients associated with each basis. The coefficients can be
determined through the imposition of the interpolation constraints on the interpolant. This
can be achieved by equating the interpolant (I(x)) at points xi to the specified data ( f (xi))
at the same location.

I(xi) = ∑j αjφ
(
r
(
xi, xj

)
, ε
)
= f (xi). (7)
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Equation (7) is a linear system of equations that can be expressed in a matrix format

[φ][α] = [ f ]. (8)

The matrix [φ] is a symmetric and an invertible matrix if no repeated point is used. This
property is found to be effective because it lowers the computational cost. Once the coefficients
αj are calculated, the data can be interpolated to any point x using Equation (6). Subsequently,
this RBF-based interpolation can be used to solve the streaming step (i.e., Equation (4)) of
the LBM.

3.1. RBF for Solving the Streaming Step

The RBF interpolation can be used to interpolate the shifted distribution functions
( f ∗i (t + dt, x + eidt)) to their original locations (x), which can be achieved by first defining
the basis matrix φ

(
r
(
xi + ekdt, xj + ekdt

)
, ε
)
. This matrix can be simplified by noticing that

r
(
xi + ekdt, xj + ekdt

)
= r
(
xi, xj

)
, i.e.,

φ
(
r
(
xi + ekdt, xj + ekdt

)
, ε
)
= φ

(
r
(
xi, xj

)
, ε
)
. (9)

Subsequently, the coefficients αj are calculated from Equation (8) as follows:

φ[α] =
[
φ
(
r
(
xi, xj

)
, ε
)]−1

[ f ∗k (t + dt, xi + ekdt)]. (10)

The coefficients are then used to evaluate the data at the original location x.

f ∗k (t + dt, x) =
[
φ
(
r
(
x, xj + ekdt

)
, ε
)]
[α]

=
[
φ
(
r
(
x, xj + ekdt

)
, ε
)][

φ
(
r
(
xi, xj

)
, ε
)]−1︸ ︷︷ ︸

W(k)(x)

[
f ∗k (t + dt, xi + ekdt)

]
, (11)

where W(k)(x) is the interpolation matrix associated with kth distribution function ( fk).
This calculation needs to be made once before starting the time iteration to improve the
computational cost. Then, the interpolation operators (W(k)(x)) can be used at each time
step to obtain the solution of the streaming. However, it involves an unavoidable storage
cost because there is a need to store huge interpolation operators (W(k)(x)). This cost can
be reduced by using sparse matrix techniques.

To explain the difference between the perfect shifting and the RBF method in handling
the streaming step of the LBM, four cases for the D1Q2 model are presented in Figure 1.
Case A represents the perfect streaming, where each distribution function is shifted in
the original streaming step to its new position by magnitude and direction of eidt. The
streaming step in the RBF method consists of two steps, imaginary and interpolation steps,
as shown in Cases B, C, and D. The imaginary step is an unhappened step, mentioned
here just to demonstrate the procedures of the RBF method. For example, we imagine that
each distribution function in Case B is shifted to the imaginary position by magnitude and
direction of eidt. Then, each one is repositioned to its correct location using the interpolation
relation, Equation (11). Because the imaginary and the correct locations are the same in
Case B, Cases C and D are presented. As shown in the imaginary step of Case C, each
distribution function is shifted by magnitude and direction of eidt to the new imaginary
position. To illustrate the interpolation step, the distribution function labeled 7 is resulted
by using the interpolation between the distribution functions labeled 1 and 2. Case D
shows that each distribution function generated in the interpolation in the direction ei is
produced from all neighbor distribution functions that are in the same direction weighted
with appropriate weight (i.e., Equation (11)). For example, the distribution function labeled
13 is mainly produced from distribution functions labeled 1, 2, 3, 4, and 5. The weight
function is monotonically decreasing. The far distribution functions (labeled 1 and 5)
have less weight compared with the near distribution functions (labeled 2, 3, and 4). This



Mathematics 2022, 10, 501 5 of 16

makes the value of the interpolated distribution function labeled 13 closer to the values of
distribution functions labeled 2, 3, and 4 than that of distribution functions labeled 1, 5.
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the arrows with the BC label represent the distribution functions that are calculated based on the
boundary conditions.

As mentioned previously, the interpolation is predicated on the evaluation of the basis
function φ. The inverse of the matrix [φ], which is generated from the basis φ, is used to
approximate a function via the interpolation operator. The shortcoming of this approach is
its poor stability and hence occasionally yields inaccurate results, particularly when the
shape parameter (ε) approaches zero. A method to alleviate this problem is explained in
the subsequent section.

3.2. Basis Function

The accuracy of the RBF-based method is known to be contingent on the shape
parameter. In our previous work [53], the Hermite expansion with respect to the shape
parameter was proposed to stabilize the RBF method and to achieve the same accuracy
as the original RBF with weak or no dependency on the shape parameter. The RBF φ can
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be expressed in terms of the Hermite polynomial by projecting the RBF on the Hermite
polynomial space.

φ(r, ε) =
N
∑

n=0
an(r) Hn(ε) , (12)

where Hn and an signify the nth-order Hermite polynomial and its expansion coefficient, re-
spectively. The proposed expansion of the RBF can be used to weaken the coupling between
r and ε by truncating the Hermite expansion at a particular order N. Notably, the Hermite
polynomial is an orthogonal polynomial that satisfies the following recursion relation

Hn(ε) = 2εHn−1(ε)− 2(n− 1)Hn−2(ε). (13)

It is possible to obtain higher-order polynomials from Equation (13) by knowing the first
two polynomials (H0(ε) = 1 and H1(ε) = 2ε).

The expansion coefficients an are obtained for the Gaussian RBF (φ(r, ε) = exp
(
−ε2r2))

in the following manner

an =

{
Zn

rn

Rn+1 even n
0 odd n

, (14)

where Zn = (−1)n/2

2n ( n
2 )!

and R =
√

r2 + 1.

In the next section, these bases are used in the context of the RBF method with a view
for solving the streaming step of the LBM.

4. Results and Discussions

In this work, 1D and 2D problems are used to evaluate the RBF method in handling
the streaming step of the LBM. Furthermore, the results of the RBF method are compared
with those of the regular streaming of the LBM. The analytical solutions or published
results are presented to evaluate the accuracy of the RBF method and the streaming.
Two mesh distributions for the RBF method are used: uniform and stretched distributions.
In the uniform mesh distribution, the points are distributed uniformly along the x- and
y-axis, while in the stretched mesh distribution, the points are stretched at the center and
condensed at the edges of the domain to achieve a non-uniform mesh. The stretched
mesh is presented to investigate the ability of the proposed method to solve problems
associated with the irregular mesh. The following formula is used to map a uniform grid
to a stretched grid:

x = xmin +

erf
(

π
2

x−xmin
xmax−xmin

− π
4

)
2 erf

(
π
4
) +

1
2

(xmax − xmin), (15)

where erf denotes the error function.

4.1. One-Dimensional Problems

The solutions of 1D diffusion and 1D advection–diffusion equations are provided
to exemplify the efficiency of the RBF combined with the modified bases for solving the
streaming step. The Dirichlet boundary condition is used [2]. Three mesh sizes of 100, 200,
and 300 are considered for these problems. Notably, the D1Q3 lattice model can solve the
diffusion and advection–diffusion equations, where it has the following lattice weights
(Wt), microscopic speeds (e), speed of sound (Cs), and equilibrium distribution ( f eq):

Wt = [4, 1, 1]/6, (16)

e = [0,−1, 1], (17)

C2
s =

1
3

, and (18)
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f eq
i = ρWti

(
1 +

ei · u
C2

s

)
. (19)

The advection velocity (u) can be substituted with zero in the case of pure diffusion.
The diffusion coefficient (α) can be related to the relaxation time (τ = 3α + dt/2 + dtθ),
where θ denotes a parameter to control the implicitness of the method (see Equation (3)).

4.1.1. 1D Diffusion

The 1D diffusion equation can be expressed in the following manner.

∂ρ
∂t = α

∂2ρ

∂x2 . (20)

A step function centered at the origin is used as a benchmark for the diffusion equation
within the range of (−50, 50). The analytical solution of this step function’s diffusion can
be written as a function of the complementary error function (erfc) [59]

ρ(x, t) = 1
2 erfc

(
x√
4αt

)
. (21)

The boundary conditions can be deduced from the analytical solution (ρ(−50, t) and
ρ(50, t)). The solution is obtained for α = 0.25 m2/s at two different time steps (t = 200
and 600 s).

The results of the diffusion equation solved with the LBM and the conventional
streaming are depicted in Figure 2. The results illustrate an excellent agreement with the
analytical solution. Figure 3 presents the results of using the RBF interpolation to solve the
streaming step. The figure compares the uniform and stretched mesh distributions of 100-,
200-, and 300-mesh sizes. The results of the 100-mesh size are shown to be inferior to the
conventional streaming step, even for the stretched mesh distribution. This might be due
to numerical diffusion, which leads to dissipation error. Increasing the mesh size to 200 or
300 reduces numerical error and raises the computational cost. The results of the uniformly
distributed mesh are shown to deviate slightly from the analytical solution for the 200-mesh
size, while the results of the stretched mesh reveal excellent agreement with the analytical
solution. The results of the 300-mesh size improve the accuracy and achieve accuracy that
is comparable to conventional streaming. Previous results are essentially qualitative, which
prevents a fair comparison. Hence, it is necessary to make a quantitative comparison.
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Table 1 compares the error and the computational time of different mesh sizes and
distributions. The error is evaluated with respect to the analytical solution. It reveals that
the difference in the accuracy between the streaming and RBF interpolation decreases with
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an increase in the number of mesh points. To illustrate, the error per node at 300-mesh
is getting nearer to the error of the conventional streaming for both mesh distributions.
However, the computational cost for the RBF interpolation approach is higher than that of
the streaming approach. The difference is not very substantial, which demonstrates that
the used approach serves as a viable alternative to the streaming step, especially when it is
impossible to apply the conventional streaming as in the case of non-uniform meshes.

Table 1. Error and computational cost of the diffusion problem.

Model
Mesh Error

Time per Iteration (s)
Distribution Size Norm Norm per Node

Streaming Uniform 100 0.004746 4.75 × 10−5 1.58 × 10−4

Interpolation Uniform 100 0.734430 7.34 × 10−3 2.26 × 10−4

Interpolation Stretched 100 2.186103 2.19 × 10−2 2.28 × 10−4

Interpolation Uniform 200 0.197118 9.81 × 10−4 2.70 × 10−4

Interpolation Stretched 200 0.074056 3.68 × 10−4 2.50 × 10−4

Interpolation Uniform 300 0.108697 3.56 × 10−4 2.92 × 10−4

Interpolation Stretched 300 0.046173 1.53 × 10−4 2.79 × 10−4

4.1.2. 1D Advection–Diffusion

To investigate the proposed method furthermore, the 1D advection–diffusion equation
is used to compare the RBF interpolation and the streaming. The 1D advection–diffusion
equation can be expressed as follows

∂ρ

∂t
+ u

∂ρ

∂x
= α

∂2ρ

∂x2 , (22)

where u represents the advection velocity. The advection velocity represents a challenging
numerical issue, where it plays the main role in the numerical stability of the method used.
The same step function is used as a benchmark of the advection–diffusion equation. The
analytical solution of the advection–diffusion of the step function can be written in the
following manner.

ρ(x, t) =
1
2

erfc
(

x− tu√
4αt

)
. (23)

The step function is centered at the origin within the range (−50, 50). The boundary
conditions can be deduced from the analytical solution. The solution is obtained for
α = 0.25 m2/s, u = 0.1 m/s, and different time steps up to t = 200 s.

The LBM is used to solve the advection–diffusion equation that utilizes the conven-
tional streaming, as illustrated in Figure 4. An outstanding agreement with the analytical
solution is observed. Figure 5 illustrates the results of using the RBF interpolation as a fea-
sible alternative for the streaming approach to solve the advection–diffusion equation. The
results of the interpolation are shown to be inferior to those of the conventional streaming
approach. However, this gap can be reduced by increasing the number of mesh points.
For example, the accuracy of the results of the 300-mesh size is comparable to that of
conventional streaming with the 100-mesh size.

Comparing the obtained results of the diffusion and advection–diffusion problems
for the 100-mesh size, the diffusion results yielded by the RBF are more accurate than
that of the advection–diffusion problem in both cases of the uniform and stretched mesh
distributions. The authors believe that this huge error in advection–diffusion results for
the 100-mesh size is due to the effect of the advection velocity, which causes dispersion
error. However, both error sources (dispersion and dissipation) are reduced significantly
by increasing the mesh size with a small computational overhead, as shown in Table 2. As
a result, the proposed method is a powerful method to handle the streaming of the LBM
with a comparable computational cost to that of the streaming.
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Table 2. Error and computational cost of the advection–diffusion problem.

Model
Mesh Error

Time per Iteration (s)
Distribution Size Norm Norm per Node

Streaming Uniform 100 0.018873 1.89 × 10−4 1.66 × 10−4

Interpolation Uniform 100 0.567023 5.67 × 10−3 2.31 × 10−4

Interpolation Stretched 100 1.317779 1.32 × 10−2 2.43 × 10−4

Interpolation Uniform 200 0.179421 8.93 × 10−4 2.54 × 10−4

Interpolation Stretched 200 0.087822 4.37 × 10−4 2.59 × 10−4

Interpolation Uniform 300 0.117243 3.88 × 10−4 2.79 × 10−4

Interpolation Stretched 300 0.071195 2.36 × 10−4 2.92 × 10−4

Table 2 compares the error and the computational time of the different mesh sizes and
distributions. It demonstrates that the difference in the accuracy between the streaming
and interpolation approaches can be reduced by increasing the number of mesh points.
Moreover, a small difference is found in the computational cost between the interpolation
approach and the streaming approach. As a result, it can be inferred that there is a low
computational overhead in the utilization of the interpolation approach as an alternative to
the streaming step.

In conclusion, one can say that though the present approach consumes a little bit
more time compared to the perfect streaming of the LBM, it is still useful and effective in
complex geometries.

4.2. 2D Lid-Driven Cavity

The 2D lid-driven cavity problem is studied to show the applicability of the proposed
method to higher dimensions. Notably, the D2Q9 lattice model can solve the Navier–Stokes
equations, where it has the following lattice weights (Wt), speeds (e), and equilibrium
distribution ( f eq)

Wt = [16, 4, 4, 4, 4, 1, 1, 1, 1]/36, (24)

e =

[
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
, (25)

C2
s =

1
3

, and (26)

f eq
i = ρWti

(
1 +

ei · u
C2

s
+

(ei · u)2

2C4
s
− u · u

2C2
s

)
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Figure 5. Advection–diffusion problem solved by LBM and RBF interpolation. (a,c,e) have a uniform
mesh with 100, 200, and 300 points, respectively, while (b,d,f) have a stretched mesh with 100, 200,
and 300 points, respectively.
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The bounce-back boundary condition is used for the left, right, and bottom boundaries,
while the ZouHe boundary condition is used for the upper boundary (for more details,
see [2]). In the present study, the Reynolds number (Re) and lid velocity (uo) are set to be
100 and 0.1, respectively. In the current example, one uniform mesh size of 40 is used for
the conventional streaming of the LBM, while 40-, 60-, and 80-mesh uniform or stretched
distributions are used for the RBF approach. The obtained results are compared with that
of Ghia et al. [60] for the horizontal velocity (ux) at the mid-x plane and vertical velocity
(uy) at the mid-y plane.

The results of the 40-mesh size for the streaming and the RBF interpolation are shown
in Figure 6. The results indicate that the RBF interpolation with a uniform mesh is better
than the streaming, where the results are closer to the reference data. The error for horizontal
velocity (ux) with respect to Ghia et al.’s result is 0.0410 for the streaming, 0.0353 for the
RBF with a uniform mesh, and 0.1529 for the RBF with a stretched mesh, refer to Table 3.
Moreover, the error for the vertical velocity (uy) is 0.0367 for the streaming, 0.03368 for
the RBF with a uniform mesh, and 0.1028 for the RBF with a stretched mesh. Overall, the
results show a marginal difference. However, the RBF consumes more time for convergence
than the streaming. One may think that increasing the number of grid points could enhance
the results; however, this does not occur in our case. For instance, increasing the number
of grid points from 60 to 80 yields an error in ux of 0.1214 and 0.0372, respectively, for
the RBF interpolation with a uniform mesh, as shown in Figure 7 and Table 3. Moreover,
the error in the stretched mesh in uy is 0.1028 for the 40-mesh, 0.0448 for the 60-mesh,
and 0.0532 for the 80-mesh sizes. This is due to the effect of the shape parameter on the
accuracy of RBF interpolation, which does not appear for the mildly stretched mesh. In
a very fine mesh, the shape parameter would require fine-tuning and updating of the
matrix W(k)(x) at each time step to achieve the desired accuracy, which would increase the
computational cost drastically. Hence, the accuracy of the stabilized RBF [53] should be
further investigated and improved in the future for problems with very stretched mesh
distribution to be less sensitive for changes in the shape parameter. This might be achieved
using the local stabilized RBF approach, which uses a local support domain on each node
instead of selecting all nodes. This results in a sparse matrix, which can be solved faster
than a dense matrix. Hence, the computational cost would be improved.

Mathematics 2022, 10, 501  13  of  16 
 

 

   

Figure 6. Lid‐driven cavity solved using streaming with 40‐mesh and RBF interpolation with 40‐

mesh uniform and stretched. 

   

   

Figure 7. Lid‐driven cavity solved using streaming with 40‐mesh and RBF interpolation with 60‐ 

and 80‐mesh uniform and stretched. 

Figure 6. Lid-driven cavity solved using streaming with 40-mesh and RBF interpolation with 40-mesh
uniform and stretched.



Mathematics 2022, 10, 501 13 of 16

Table 3. Error and computational cost of the 2D lid-driven cavity problem.

Model
Mesh

No. of Steps
Time Error w.r.t Ghai

et al.’s Results

Distribution Size Total (s) Per Iteration (s) ux uy

Streaming Uniform 40 7227 173.9970 0.0241 0.0410 0.0367
Interpolation Uniform 40 8332 256.7160 0.0308 0.0353 0.0368
Interpolation Stretched 40 7620 237.4643 0.0312 0.1529 0.1028
Interpolation Uniform 60 8395 564.0292 0.0672 0.1214 0.0806
Interpolation Stretched 60 8629 616.4658 0.0714 0.0453 0.0448
Interpolation Uniform 80 9000 1285.9117 0.1429 0.0372 0.0315
Interpolation Stretched 80 8906 1302.6666 0.1463 0.0668 0.0532
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As shown in Table 3, the convergence time for the RBF interpolation with the 40-mesh
size is greater than that for the streaming for the same size. Increasing the number of
grid points to 80 leads to an increase in the convergence time of the RBF interpolation by
five times. Nevertheless, the increased computational cost is the price paid for simulating
problems with a non-uniform mesh.
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5. Conclusions

Handling the streaming step in complex geometries is one of the main issues of the
LBM. Therefore, the meshless methods appear as a savior to the LBM for solving that
problem. However, those methods suffer from some issues such as conservation across the
interface, recalculations of the collision, numerical diffusion, computational cost, etc. In
the current work, the novel stabilized RBF [53] interpolation is used as an alternative to
the conventional streaming of the LBM. The stabilized RBF [53] method is examined and
compared with the conventional LBM streaming by solving three benchmark problems,
namely the 1D diffusion, 1D advection–diffusion, and 2D lid-driven cavity. Excellent
agreements with analytical solutions and published results are realized. Regarding the
computational cost, the stabilized RBF method is a viable alternative to the conventional
streaming approach to handling complex geometries, even though it needs a little more
computational cost. The proposed method can also be enhanced by using the local RBF
approach in order to improve accuracy. Moreover, the local RBF approach facilitates the
utilization of the sparse matrix’s technique, which should reduce the computational cost.
This will be investigated in another study.
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