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Abstract: To solve the L2-gradient flow-based phase-field crystal equation accurately and efficiently,
we present a linear, second-order, and unconditionally energy-stable method. We first truncate the
quartic function in the Swift–Hohenberg energy functional. We also put the truncated function in the
expansive part of the energy and add an extra term to have a linear convex splitting. Then, we apply
the linear convex splitting to both the L2-gradient flow and the nonlocal Lagrange multiplier terms
and combine it with the second-order SSP-IMEX-RK method. We prove that the proposed method is
mass-conservative and unconditionally energy-stable. Numerical experiments including standard
tests in the classical H−1-gradient flow-based phase-field crystal equation support that the proposed
method is second-order accurate in time, mass conservative, and unconditionally energy-stable.

Keywords: L2-gradient flow-based phase-field crystal equation; linear convex splitting; SSP-IMEX-RK
method; mass conservation; unconditional energy stability

1. Introduction

The phase-field crystal (PFC) equation includes the microstructure evolution of atomic
length and diffusive time scales [1,2]. The PFC equation:

∂φ

∂t
= ∆µ, µ :=

δF
δφ

= φ3 + (1− ε)φ + 2∆φ + ∆2φ, (1)

is the H−1-gradient flow for the Swift–Hohenberg energy functional [3]:

F (φ) :=
∫

Ω

(
1
4

φ4 +
1− ε

2
φ2 − |∇φ|2 + 1

2
(∆φ)2

)
dx, (2)

where φ is the density field and 0 < ε < 1 is a constant with physical significance.
In addition, µ is the chemical potential and δ

δφ is the variational derivative. We use periodic
boundary conditions for φ and µ.

The PFC equation gives the mass conservation as well as needs special care to
discretize the sixth-order linear and second-order nonlinear terms [4–13]. In [4,5,7,9,12],
unconditionally and uniquely solvable and energy-stable methods were proposed based
on the convex splitting idea. Gomez and Nogueira [6] introduced an unconditionally
energy-stable method based on the Crank–Nicolson method. Dehghan and Mohammadi [8]
used a semi-implicit method which splits the linear terms into backward and forward
pieces while treating the nonlinear term explicitly. Yang and Han [10] developed linear and
unconditionally energy-stable methods based on the invariant energy quadratization idea.
Li and Shen [11] and Zhang and Yang [13] presented linear and unconditionally energy-stable
methods based on the scalar auxiliary variable approach. Other methods [14,15] can be
applied to solve the PFC equation.
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Recently, the L2-gradient flow-based PFC (L2-PFC) equation was introduced to reformulate
the PFC equation [16,17]:

∂φ

∂t
= −µ +

1
|Ω|

∫
Ω

µ dx. (3)

The L2-PFC equation assures mass conservation and the energy stability property:

d
dt

∫
Ω

φ dx =
∫

Ω

∂φ

∂t
dx = −

∫
Ω

µ dx +
∫

Ω
µ dx = 0

and

dF
dt

=
∫

Ω

δF
δφ

∂φ

∂t
dx =

∫
Ω

(
−∂φ

∂t
+

1
|Ω|

∫
Ω

µ dx
)

∂φ

∂t
dx

= −
∫

Ω

(
∂φ

∂t

)2
dx +

1
|Ω|

∫
Ω

µ dx
∫

Ω

∂φ

∂t
dx = −

∫
Ω

(
∂φ

∂t

)2
dx ≤ 0.

Although the PFC equation has been downgraded from the sixth-order to the fourth-
order, we need to discretize the L2-gradient flow and nonlocal Lagrange multiplier terms
at the same time level to preserve the mass conservation. In addition, we need to treat
the terms implicitly to preserve the energy stability. Zhang and Yang [16] constructed
a mass-conservative and unconditionally energy-stable scheme for the L2-PFC equation
by combining the invariant energy quadratization idea with the stabilization technique.
However, the scheme entails solving a linear system with complicated variable coefficients.
Lee [17] developed a mass-conservative operator splitting method for the L2-PFC equation.
However, the method fails to preserve the energy stability.

This study is aimed at presenting a linear, second-order, and unconditionally energy-
stable method for the L2-PFC equation. To this end, we first truncate 1

4 φ4 in F (φ). We also
put the truncated function in the expansive part of the energy and add an extra term to have
a linear convex splitting. Then, we apply the linear convex splitting to both the L2-gradient
flow and the nonlocal Lagrange multiplier terms, i.e., we discretize the terms at the same
time level. Additionally, we combine with the second-order strong-stability-preserving
implicit–explicit Runge–Kutta (SSP-IMEX-RK) method [18]. We prove that the proposed
method is mass-conservative and unconditionally energy-stable. Moreover, the method
entails solving a linear system with constant coefficients.

The outline of this paper is as follows. In Section 2, we construct the numerical method
for the L2-PFC equation and prove its mass conservation and unconditional energy stability.
Numerical experiments, including standard tests in the PFC equation, are provided in
Section 3 to illustrate the accuracy and energy stability of the constructed method. In
Section 4, we give our conclusions.

2. Linear, Second-Order, and Unconditionally Energy-Stable Method

In the PFC system, φ is relatively homogeneous in the liquid phase and spatially
periodic in the solid phase, which implies that φ is bounded. Thus, we can regularize 1

4 φ4

in F (φ) by the following equation:

f (φ) =


3A2

2 φ2 − 2A3φ + 3A4

4 , φ > A
1
4 φ4, φ ∈ [−A, A]
3A2

2 φ2 + 2A3φ + 3A4

4 , φ < −A,

where A > 0 is a constant and maxφ∈R | f ′′(φ)| ≤ 3A2. Then, the L2-PFC equation can be
expressed as follows:

∂φ

∂t
= −ν +

1
|Ω|

∫
Ω

ν dx, ν := f ′(φ) + (1− ε)φ + 2∆φ + ∆2φ. (4)
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Next, we suggest the following splitting:

F (φ) = Fc(φ)−Fe(φ)

=
∫

Ω

(
B + 1− ε

2
φ2 +

1
2
(∆φ)2

)
dx−

∫
Ω

(
B
2

φ2 − f (φ) + |∇φ|2
)

dx, (5)

where B ≥ 0 is a constant.

Lemma 1. Both Fc(φ) and Fe(φ) in (5) are convex provided B ≥ 3A2.

Proof. The convexity of Fc(φ) is obvious for B ≥ 0. For Fe(φ),

Fe(φ + ηψ) = Fe(φ) + η
∫

Ω

(
Bφ− f ′(φ)− 2∆φ

)
ψ dx

+
η2

2

∫
Ω

(
(B− f ′′(φ))ψ2 + 2|∇ψ|2

)
dx + O(η3).

Then, we obtain the following:

d2Fe(φ + ηψ)

dη2

∣∣∣∣
η=0

=
∫

Ω

(
(B− f ′′(φ))ψ2 + 2|∇ψ|2

)
dx

≥
∫

Ω
(B− f ′′(φ))ψ2 dx ≥ 0 if B ≥ 3A2,

where we used maxφ∈R | f ′′(φ)| ≤ 3A2. Thus, the convexity of Fc(φ) and Fe(φ) is satisfied
when B ≥ 3A2.

We develop the numerical method for the L2-PFC equation by applying the linear
convex splitting (5) to both ν and 1

|Ω|
∫

Ω ν dx in (4) and combining it with the second-order
SSP-IMEX-RK method [18]:

φ(1) = φn − ∆t
(

ν(1) − 1
|Ω|

∫
Ω

ν(1) dx
)

, (6)

φ(2) = −1
2

φn +
3
2

φ(1) − ∆t
2

(
ν(2) − 1

|Ω|

∫
Ω

ν(2) dx
)

, (7)

φn+1 = −1
2

φn +
5
2

φ(1) − φ(2) − ∆t
2

(
νn+1 − 1

|Ω|

∫
Ω

νn+1 dx
)

, (8)

where ν(1) := δFc(φ(1))
δφ − δFe(φn)

δφ = (B + 1− ε)φ(1) + ∆2φ(1) − (Bφn − f ′(φn)− 2∆φn), and

ν(2) and νn+1 are similarly defined.

Theorem 1. The methods (6)–(8) are mass-conservative.

Proof. From Equation (6), we obtain the following:(
φ(1) − φn, 1

)
= −∆t

((
ν(1), 1

)
−
(

ν(1), 1
))

= 0, i.e.,
(

φ(1), 1
)
= (φn, 1),

where (·, ·) is the L2-inner product with respect to Ω. In addition, we have the following
from Equation (7):(

φ(2), 1
)
=

(
−1

2
φn +

3
2

φ(1), 1
)
= −1

2
(φn, 1) +

3
2
(φn, 1) = (φn, 1).
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Finally, from Equation (8), we obtain:(
φn+1, 1

)
=

(
−1

2
φn +

5
2

φ(1) − φ(2), 1
)
= (φn, 1).

Theorem 2. The methods (6)–(8) with B ≥ 3A2 are unconditionally energy-stable, i.e.,

F (φn+1)−F (φn) ≤ 0

for any ∆t > 0.

Proof. The convexity of Fc(φ) and Fe(φ) gives the following:

F (φn+1)−F (φn)

=
(
F (φ(1))−F (φn)

)
+
(
F (φ(2))−F (φ(1))

)
+
(
F (φn+1)−F (φ(2))

)
≤
(

δFc(φ(1))

δφ
− δFe(φn)

δφ
, φ(1) − φn

)
+

(
δFc(φ(2))

δφ
− δFe(φ(1))

δφ
, φ(2) − φ(1)

)

+

(
δFc(φn+1)

δφ
− δFe(φ(2))

δφ
, φn+1 − φ(2)

)
=
(

ν(1), φ(1) − φn
)
+
(

ν(2), φ(2) − φ(1)
)
+
(

νn+1, φn+1 − φ(2)
)

=

(
ν(1) − 1

|Ω|

∫
Ω

ν(1) dx, φ(1) − φn
)
+

1
|Ω|

∫
Ω

ν(1) dx
(

1, φ(1) − φn
)

+

(
ν(2) − 1

|Ω|

∫
Ω

ν(2) dx, φ(2) − φ(1)
)
+

1
|Ω|

∫
Ω

ν(2) dx
(

1, φ(2) − φ(1)
)

+

(
νn+1 − 1

|Ω|

∫
Ω

νn+1 dx, φn+1 − φ(2)
)
+

1
|Ω|

∫
Ω

νn+1 dx
(

1, φn+1 − φ(2)
)

.

Let ν̃(1) = ν(1) − 1
|Ω|
∫

Ω ν(1) dx and ν̃(2) and ν̃n+1 similarly. Then, by Theorem 1, we
obtain the following equation:

F (φn+1)−F (φn)

≤
(

ν̃(1), φ(1) − φn
)
+
(

ν̃(2), φ(2) − φ(1)
)
+
(

ν̃n+1, φn+1 − φ(2)
)

= −∆t
((

ν̃(1), ν̃(1)
)
+

(
ν̃(2),

1
2

ν̃(2) +
1
2

ν̃(1)
)
+

(
ν̃n+1,

1
2

ν̃n+1 − ν̃(2) − 1
2

ν̃(1)
))

= −∆t
∫

Ω

(
ν̃(1), ν̃(2), ν̃n+1

) 1 1
2 − 1

2
0 1

2 −1
0 0 1

2

 ν̃(1)

ν̃(2)

ν̃n+1

dx = −∆t
∫

Ω
yTMy dx ≤ 0,

where the equation we used, 1
2 (M + MT), has all real and positive eigenvalues.

3. Numerical Experiments

We utilize the Fourier spectral method [9,12,17–23] to discretize the space.

3.1. Accuracy Test

We test the accuracy of the proposed method with an initial condition [4]
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φ(x, y, 0) = 0.07− 0.02 cos
(

π(x− 12)
16

)
sin
(

π(y− 1)
16

)
+0.02 cos2

(
π(x + 10)

32

)
sin2

(
π(y + 3)

32

)
− 0.01 sin2

(πx
8

)
sin2

(
π(y− 6)

8

)
(9)

on Ω = [0, 32]× [0, 32]. We use ε = 0.025, A = 1, B = 3A2, and ∆x = ∆y = 1
3 . Figure 1a,b

indicate the evolution of F (t) for the reference solution, with ∆t = 2−10 and the relative
l2-errors of φ(x, y, 1) for various time steps, respectively. Here, the errors are calculated
by comparison with the reference solution. Figure 1c also indicates the evolution of∫

Ω(φ(x, y, t)− φ(x, y, 0)) dxdy. It is shown that the method is second-order convergent in
time and conserves the mass.

0 1 2 3 4 5 6 7 8

2.62

2.63

2.64

2.65

2.66

2.67

2.68

2.69

(a)

10
-3

10
-2

10
-1

10
0

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

(b)

0 1 2 3 4 5 6 7 8

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
10

-13

(c)

Figure 1. (a) Evolution of F (t) for the reference solution with ε = 0.025, ∆x = ∆y = 1
3 , and

∆t = 2−10. (b) Relative l2-errors of φ(x, y, 1) for ∆t = 2−8, 2−7, . . . , 1. (c) Evolution of
∫

Ω(φ(x, y, t)−
φ(x, y, 0)) dxdy for various time steps.

3.2. Energy Stability Test

To verify the energy stability of the proposed method, we take the initial condition (9)
on Ω = [0, 32]× [0, 32] and set ε = 0.25, A = 1, B = 3A2, and ∆x = ∆y = 1

3 . Figure 2a
indicates the evolution of F (t) with several time steps. All energy curves non-increase
over time, which demonstrates that the proposed method is unconditionally energy-stable
(Theorem 2). Figure 2b indicates the evolution of φ(x, y, t) with ∆t = 2−4.
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3.3. Pattern Formation

To compare the proposed method with other methods, we perform a long time
simulation for pattern formation using the proposed method and the operator splitting
method in [17]. An initial condition is:

φ(x, y, 0) = φ̄ + rand(x, y)

on Ω = [0, 32]× [0, 32], where rand(x, y) is a random number between −0.1 and 0.1 at the
grid points. We choose ε = 0.2, A = 1, B = 3A2, ∆x = ∆y = 1

3 , and ∆t = 2. Figure 3a,b
indicate evolutions of φ(x, y, t) using the operator splitting method with φ̄ = 0.02 and 0.2,
respectively. According to the phase diagram in [1], we expect striped and hexagonal states
with φ̄ = 0.02 and 0.2, respectively. However, the operator splitting method with a large
time step ∆t = 2 produces unexpected constant states. On the other hand, the proposed
method leads to striped and hexagonal states even for ∆t = 2 (see Figure 4a,b).

0 32 64 96 128 160 192 224 256

-8

-6

-4

-2

0

2

4

(a) (b)

Figure 2. (a) Evolution of F (t) with several time steps. (b) Evolution of φ(x, y, t) with ε = 0.25,
∆x = ∆y = 1

3 , and ∆t = 2−4. The yellow, green, and blue regions show φ = 0.6288, 0.0688, and
−0.4913, respectively.

(a)

(b)

Figure 3. Evolution of φ(x, y, t) using the operator splitting method in [17] with (a) φ̄ = 0.02 and
(b) 0.2. Here, ε = 0.2, ∆x = ∆y = 1

3 , and ∆t = 2 are used. The yellow, green, and blue regions show
φ = 0.5, 0, and −0.5, respectively.
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(a)

(b)

Figure 4. Evolution of φ(x, y, t) using the proposed method with (a) φ̄ = 0.02 and (b) 0.2. Here,
ε = 0.2, ∆x = ∆y = 1

3 , and ∆t = 2 are used. The yellow, green, and blue regions show φ = 0.5, 0, and
−0.5, respectively.

3.4. Crystal Growth

We simulate the growth and interaction of four crystallites on Ω = [0, 512]× [0, 512]
with ε = 0.25, A = 1, B = 3A2, ∆x = ∆y = 1, and ∆t = 1. An initial condition is
established by superposing the crystallites over a constant density field φ(x, y, 0) = φ̄. To
define the crystallites, we employ the following expression:

φ(xl , yl) = φ̄ + C
(

cos(
q√
3

yl) cos(qxl)− 0.5 cos(
2q√

3
yl)

)
,

where xl and yl represent local Cartesian coordinates. For φ̄ = 0.285, C = 0.45,
q = 0.5q0, q0, q0, 2q0 (from the top-left to the bottom-right), and q0 = 0.66, Figure 5 indicates
the evolution of F (t) and φ(x, y, t). We can observe the energy dissipation and the
interaction between growing crystallites.

0 500 1000 1500

1.96

1.98

2

2.02

2.04

2.06

2.08

2.1
10

4

Figure 5. Evolution of F (t) and φ(x, y, t) with ε = 0.25, ∆x = ∆y = 1, and ∆t = 1. The red, green,
and blue regions show φ = 0.6475, 0.0741, and −0.4993, respectively.
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4. Conclusions

To obtain numerical solutions for the L2-PFC equation, we regularized 1
4 φ4 in F (φ)

by f (φ) such that maxφ∈R | f ′′(φ)| ≤ 3A2. Furthermore, we got the linear convex splitting
by putting f (φ) in Fe(φ), adding B

2

∫
Ω φ2 dx to Fe(φ), and setting B ≥ 3A2. Moreover, to

preserve the mass conservation and energy stability, we applied the linear convex splitting
to both ν and 1

|Ω|
∫

Ω ν dx. Finally, to achieve second-order time accuracy, we combined the
second-order SSP-IMEX-RK method. Numerical experiments proved that the proposed
method is second-order convergent in time, mass-conservative, and unconditionally energy-
stable. By using the proposed method, we performed a long time simulation for pattern
formation and crystal growth, where different patterns, depending on the value of φ̄, and
growing crystallites can be observed clearly.
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