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Abstract: The main coolant system (MCS) plays a vital role in the stability and reliability of a nuclear 

power plant. However, human errors and natural disasters may cause some reactor coolant system 

components to fail, resulting in severe consequences such as nuclear leakage. Therefore, it is crucial 

to perform a resilience analysis of the MCS, to effectively reduce and prevent losses. In this paper, 

a resilience importance measure (RIM) for performance loss is proposed to evaluate the 

performance of the MCS. Specifically, a loss importance measure (LIM) is first proposed to indicate 

the component maintenance priority of the MCS under different failure conditions. Based on the 

LIM, RIMs for single component failure and multiple component failures were developed to 

measure the recovery efficiency of the system performance. Finally, a case study was conducted to 

demonstrate the proposed resilience measure for system reliability. Results provide a valuable 

reference for increasing the system security of the MCS and choosing the appropriate total 

maintenance cost. 
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1. Introduction 

In the early days of nuclear reactors, nuclear power plants (NPPs) were mainly used 

for military purposes. As a result of the industry’s continuous development and progress, 

NPPs began to be used primarily for nuclear power generation. However, following the 

widespread establishment and use of NPPs, nuclear accidents have highlighted the 

dangers of nuclear reactors. After the Chernobyl nuclear accident, people began to pay 

attention to nuclear safety and study the safety issues associated with nuclear reactors. In 

addition, issues such as waste and the economy also affect social and environmental 

acceptability [1]. For nuclear energy, promoting strengths and avoiding weaknesses has 

become a problem to be considered. 

At present, the pressurized water reactor (PWR) is the most competitive reactor used 

in NPPs, and accounts for the largest proportion. The core system of the PWR is the main 

coolant system (MCS), also known as the primary loop system. It is composed of two to 

four identical cooling loops according to its capacity. Its main functions include 

transferring energy and cooling the core. In addition, because the water in the primary 

circuit is closed and the heat exchange is carried out through the heat transfer of the tube 

wall, the MCS can also prevent the leakage of radioactive materials. On 28 March 1979, a 

serious nuclear leakage occurred at the Three Mile Island nuclear power station in the 

United States, namely the Three Mile Island nuclear accident. At the time, the MCS was 
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not functioning due to human errors. This accident resulted in serious consequences, and 

the clean-up cost of reactor two alone reached USD 1 billion [2]. 

Due to the setting of redundant components, failure of some components may not 

cause the failure of the whole MCS, but some degradation in the system performance. In 

addition, failed components may have a negative effect on the components to which they 

are connected, possibly leading to cascading effects with more serious consequences. At 

this time, maintenance is essential for managing system reliability, preventing system 

failures, and improving the effectiveness of system operations [3]. Therefore, this paper 

considers the preventive maintenance of the remaining operational components while 

maintaining the failed components, to restore the system performance to a great extent. 

By combining resilience with importance measures, the recovery process of the MCS after 

an accident can be better guided. Specifically, in this paper, the resilience of the MCS is 

represented by the loss and recovery of system performance. The loss importance measure 

(LIM) is proposed to indicate the maintenance priority of the MCS components under 

different failure conditions. Considering the limited maintenance cost, we determined the 

preventive maintenance components set to maximize the system performance. Then, the 

resilience importance measures (RIMs) for single component failure and multiple 

component failures were used to evaluate the recovery efficiency of the MCS. 

The rest of this paper is organized as follows. Section 2 presents some relevant works. 

Section 3 introduces the MCS of a nuclear reactor and presents the problem descriptions. 

Section 4 presents the component maintenance priority and proposes the resilience 

measure of the MCS. Section 5 uses a case study to illustrate the proposed method. Finally, 

Section 6 presents the conclusions. 

2. Relevant Work 

System resilience is the ability of a system to respond and recover quickly from an 

external disruptive event. In recent years, studies have been undertaken to analyze system 

resilience. Panteli and Mancarella [4] introduced a new sequential Monte-Carlo-based 

time-series simulation model to assess the resilience of power systems. Mao et al. [5] 

developed two metrics, including the resilience of cumulative performance loss and the 

resilience of restoration rapidity, to measure the resilience of the supply chain networks. 

Ali et al. [6] proposed an approach that considers the resilient behavior of collaborative 

Cyber-Physical systems to achieve the fail-operational goal in autonomous platooning 

systems. Zarei et al. [7] developed a fuzzy hybrid multi-criteria decision-making model 

for quantifying resilience. Hajializadeh and Imani [8] presented a new framework for 

building a resilience and vulnerability-informed decision support system. Kim et al. [9] 

established a resilience assessment model by quantifying the relationship between 

resilience and resilience components in the recovery from emergency accidents in NPPs. 

Combining the Markov model with dynamic Bayesian networks, Cai et al. [10] developed 

a novel evaluation methodology for resilience evaluation under the influence of various 

external disasters. Zeng et al. [11] developed a non-homogeneous semi-Markov reward 

process model for resilience analysis of multi-state systems. 

The above research on system resilience shows that there is no unanimous 

measurement standard and method for the concept of system resilience. The study of the 

resilience of the MCS should focus on restoring the system to normal operation to the 

greatest extent as soon as possible, that is, determining how to quickly improve the 

efficiency recovery of the MCS, to avoid more serious consequences. 

For the study of reactor reliability, Mullor et al. [12] described a general method for 

optimal reliability and imperfect maintenance activities of repairable equipment. The 

proposed procedure was illustrated using a real data example of an NPP. Rejc and Cepin 

[13] proposed an advanced method for common cause failure modeling and estimation, 

allowing more detailed reliability analyses. Ma et al. [14] investigated the reliability 

analysis and maintenance optimization approaches of two-unit warm standby cooling 

equipment. He et al. [15] used the methodology to assess the reliability of squib valves in 
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pressurized water NPPs. Hu and Peng [16] developed a dynamic reliability model with 

random and dependent transition probabilities for a non-repairable discrete-time multi-

state system. Mamdikar et al. [17] devised a reliability analysis framework validated with 

32 safety-critical system instances of the NPP. Wakankar et al. [18] proposed an 

architecture model to quantitatively evaluate the reliability of the large reactor safety 

system. Tripathi et al. [19] used the dynamic flowgraph methodology to study the NPP 

and analyze its reliability. Most research regarding the reactor relates to its reliability 

evaluation and analysis, and the different costs of the MCS are not considered. 

Importance measures can quantitatively describe the importance of each component 

of the system, which is valuable for design and failure analysis. In recent years, increasing 

research has been conducted on the importance theory [20–22]. For example, Xu et al. [23] 

proposed a new component importance measure for multi-state networks based on 

resilience from the perspective of the post-disaster recovery process. Chybowska et al. [24] 

developed methods for evaluating the importance of events during disasters. Fu et al. [25] 

proposed a new time-dependent importance measure for degrading components to 

address the component reassignment problem of degrading components. Fang et al. [26] 

used importance measure methods in the complex project risk management field and 

established priorities for further decision making. Kala [27] presented a new importance 

measure in a reliability-oriented global sensitivity analysis. Dui et al. [28] proposed a joint 

importance to identify components or component groups that can be used for preventive 

maintenance. Dui et al. [29] proposed a resilience importance measure to quantify the 

contribution of a component to the loss of system performance. 

The main concerns of NPPs relate to their high cost, uncertainty, and severe 

aftermath of accidents. However, the above studies did not focus on these issues. In 

addition, when some components of the MCS fail, there is a lack of an appropriate 

importance measure to reflect the change in the maintenance priority of other components 

so as to guide the recovery process of the system. In order to prevent further escalation of 

the accident, determining how to quickly recover the system performance in the case of 

component failure has become a crucial issue to be considered. In the process of recovery, 

the quantitative expression of the resilience of the MCS is an open and challenging 

question.  

In this paper, we address these questions by proposing a loss importance measure 

(LIM) that can indicate the maintenance priority of the MCS components under different 

failure conditions, in addition to resilience importance measures (RIMs) for single 

component failure and multiple component failures that can be used to evaluate the 

recovery efficiency of the MCS. 

3. MCS and Problem Descriptions 

This section analyzes the working principle and system structure of the reactor MCS, 

and describes the structure and function of the main components. The schematic diagram 

of the reactor coolant system is shown in Figure 1. The system consists of three similar 

loops. Each loop has a steam generator and a main pump connected with the reactor by 

the main pipe to form a closed cooling circuit. The nuclear fuel in the reactor releases much 

heat energy through the nuclear fission reaction. The coolant takes away the heat 

generated and cools the fuel assembly. Driven by the reactor coolant pump (PCR), the 

coolant flows into the steam generator through the pipe. The heat is transferred to the 

secondary circuit’s main feedwater through the U-tube’s wall heat transfer. The main 

feedwater is heated into steam and led into the main steam pipe, thus causing the steam 

turbine to generate power. A pressurizer is set in the first loop to compensate and adjust 

the volume and pressure of the system coolant. When the pressure is lower than a specific 

set value, the heater at the bottom of the pressurizer operates to heat the water in the 

pressurizer and generate steam, making the pressure rise. When the pressure is too high, 

the spray system is adjusted, and the coolant is introduced from the cold pipe of the 

system. The saturated steam in the pressurizer is condensed into water after being sprayed 
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by the coolant to reduce the pressure value of the system. The pressure relief valve and 

safety valve are installed on the top of the pressurizer to protect the system from 

overpressure. When the system pressure exceeds a specific set value, the pressure relief 

valve and safety valve open, and part of the steam is sent to the pressure relief tank to 

reduce the system pressure. A safety injection pump and safety injection tank are set in 

each loop to form a safety injection system (RIS). When a loss of coolant accident (LOCA) 

occurs in the reactor coolant system (RCP) or the main steam system piping (VVP) breaks, 

the RIS can complete the core emergency cooling function so that the residual heat of the 

core can be discharged in time to ensure the integrity of the containment and limit the 

further development of the accident [30]. 
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Figure 1. Schematic diagram of the MCS. 

In this paper, the main components of MCS are analyzed and studied, and their 

influences on the system reliability are considered. It is assumed that the failure time of 

each component follows the Weibull distribution ( | , )W t   , and components of the same 

type have the same parameters. The scale and shape parameters of each component are 

shown in Table 1. Table 2 lists the names and codes of the main components. During the 

system’s working process, the steam generator and main coolant pump are in operation 
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most of the time. According to engineering experience, they are prone to failures during 

the system’s service life, so they are most likely to be the vulnerable components. 

Table 1. Scale and shape parameters of each component. 

No. Component 𝛉 𝛄 

1 Reactor pressure vessel 1860 2.43 

2 Pressurizer 2730 3.92 

3 Safety valve 3567 1.76 

4 Steam generator 4235 2.14 

5 Main coolant pump 6165 2.36 

6 Safety injection pump 7304 3.46 

7 Safety injection tank 3051 2.03 

Table 2. Major components of the MCS. 

Code Name Code Name 

X1 Reactor pressure vessel X10 Steam generator No.2 

X2 Pressurizer X11 Main coolant pump No.2 

X3 Safety valve X12 Safety injection pump No.4 

X4 Safety injection pump No.1 X13 Safety injection tank No.2 

X5 Steam generator No.1 X14 Safety injection pump No.5 

X6 Main coolant pump No.1 X15 Steam generator No.3 

X7 Safety injection pump No.2 X16 Main coolant pump No.3 

X8 Safety injection tank No.1 X17 Safety injection pump No.6 

X9 Safety injection pump No.3 X18 Safety injection tank No.3 

In the MCS, there are three loops in the system. When a component in one of the 

loops fails, the other two loops are not affected by the faulty component. The whole 

system continues to run, but the system performance is degraded. When one component 

and its backups fail, the whole loop may fail. For example, when LOCA occurs and both 

X4 and X7 fail, the safety injection system cannot operate normally, and the whole first 

loop fails. The remainder of the components without backup are key components, and the 

failure of any key component can cause the whole system to crash. The specific problems 

to be solved in this paper are as follows. 

• As a multi-state system, different states of components will lead to different 

performance levels of the MCS; how can the impact of the status change in other 

components on the system performance, when some components of the MCS fail, be 

evaluated? 

• Under the constraints of maintenance resources, how can the combination of 

maintenance components to achieve the highest system performance, when one or 

more components of the MCS fail, be determined? 

• In the current competitive energy market, the nuclear industry is committed to 

reducing maintenance costs while maintaining safe and reliable operations. 

Therefore, how can the maintenance efficiency of optimal preventive maintenance 

policies corresponding to different total maintenance costs at a certain time be 

measured so as to control maintenance costs and improve recovery efficiency? 

4. Component Maintenance Priority and Resilience Measure for the MCS 

The failure process of the system is the superposition of the failure processes of all 

components. Moreover, due to the comprehensive effects of each component state, the 

system presents different utilities. Therefore, we consider using system performance to 

quantitatively represent the loss of system performance caused by component failure. We 
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use 0 1 ... Ma a a    to represent the performance levels corresponding to the state space 

{0,1,2,..., }M  of the system. It is assumed that all the components of the MCS have two 

states: perfect function and failure (1 and 0). The state of component i is indicated by ( )iX t

; a system state represents a combination of all system component states, the state of the 

MCS is indicated by ( ( ))S X t , and ( )X t  is the state space of all MCS components. By 

default, 0 0a =  when the MCS is at state 0 (complete failure). Thus, the performance of 

the system can be measured by the system utility expectation of different system states, 

which is expressed as: 

0

1 2

1 1

( ( )) Pr[ ( ( )) ]

Pr[ ( ( )) ] Pr[ ( ( ), ( ), , ( )) ],

M

j

j
M M

j j n

j j

U X t a S X t j

a S X t j a S X t X t X t j

=

= =

= =

= = = =



 
 (1) 

where 
ja  is the performance level of the MCS when the system state is j. The states and 

corresponding performance level parameters of the MCS are shown in Appendix A. 

4.1. LIM and Determining Component Maintenance Priority 

We define the LIM in this section. LIM refers to the impact of other non-failed 

components on system performance when some components of MCS fail. The higher the 

LIM value of a component, the more the system performance will recover when the 

component is repaired, so the higher maintenance priority of the component. It can 

provide a theoretical basis for the determination of component maintenance priority. 

1. When component i fails, the state of component i becomes 0, and the system 

performance can be expressed as: 

1 1 1

1

(0 , ( )) Pr[ ( ( ),..., ( ),0 , ( ), , ( )) ]
M

i j i i i n

j

U X t a S X t X t X t X t j− +

=

= = . (2) 

In this case, the LIM of component k is expressed in the form of a partial derivative. 

The LIM of component k is: 

/ 1

1

( (0 , ( )))
( ) ( )[Pr( (1 ,0 , ( )) ) Pr( (0 ,0 , ( )) )],

( )

( ) Pr[ ( ) 1].

M
i

k i j j k i k i

jk

k k

U X t
I t a a S X t j S X t j

t

t X t





−

=


= = −  − 



= =


 (3) 

The proof of Equation (3) is shown in Appendix B. 

2. Similarly, when multiple components fail, the system performance is: 

' '

1

(0 , ( )) Pr[ (0 , ( )) ],
M

N j N

j

U X t a S X t j
=

= =  (4) 

where 'N  is the set of failed components. 

At this point, the LIM of component k is equal to: 

'
/ ' 1 ' '

1

( (0 , ( )))
( ) ( )[Pr( (1 ,0 , ( )) ) Pr( (0 ,0 , ( )) )]

( )

M
N

k N j j k N k N

jk

U X t
I t a a S X t j S X t j

t
−

=


= = −  − 


  (5) 

When each component has the same maintenance cost, the preventive maintenance 

priority of the components can be determined by the ranking of their importance 

measures. However, in practice, the limited maintenance cost constraints should be 

considered, and each component’s maintenance cost is often different (a component with 

a high importance measure may need a higher maintenance cost). Therefore, to maximize 

the expected system performance under cost constraints, the integer programming 

method can be used to determine the set of preventive maintenance components. 



Mathematics 2022, 10, 563 7 of 19 
 

 

When a single component i fails, the following integer programming problem needs 

to be solved: 

/

,

max ( ) ,

. . ,

{0,1},

k i k

k G k i

i k k

k

Z I t x

s t c x c C

x

 

= 

+  





  (6) 

where G  is the set of system components, 
ic  is the maintenance cost of component i, 

kc  

is the preventive maintenance cost of component k, and 
kx  is the decision variable 

indicating whether to repair component k. 
kx  is a 0–1 variable. C  represents the total 

maintenance cost constraint. 

When multiple components fail, the following integer programming problem needs 

to be solved: 

/ '

, '

'

max ( ) ,

. . ,

{0,1},

k N k

k G k N

N k k

k

Z I t x

s t c x c C

x

 

= 

+  





  (7) 

where 
'Nc  is the cost required to repair the failed components. 

For the integer programming model above, the optimal solution is *{ , }kx k i  (for the 

single component failure case) and *{ , '}kx k N  (for the multi-component failures case). 

Thus, the optimal component maintenance priority set is *{ | 1}kk x = . 

4.2. RIM 

After determining the preventive maintenance component set based on LIM, in order 

to measure the recovery efficiency of preventive maintenance when one or more 

components fail, this section proposes the RIM based on the system resilience. 

Firstly, based on Equation (1), we can obtain: 

1

1 1

( Pr[ ( ( )) ])
( )( ( )) Pr[ ( ( )) ]

.
( )

M

j M n
j i

j

j i i

d a S X t j
dR tdU X t S X t j

a
dt dt dt R t

=

= =

=
 =

= =



   (8) 

where ( )iR t  is the reliability of component i, [1, ]i n , n is the number of system 

components. 

Because 

Pr[ ( ( )) ] Pr[ ( ) 1]Pr[ (1 , ( )) ] Pr[ ( ) 0]Pr[ (0 , ( )) ]

( ) Pr[ (1 , ( )) ] (1 ( )) Pr[ (0 , ( )) ]

i i i i

i i i i

S X t j X t S X t j X t S X t j

R t S X t j R t S X t j

= = = = + = =

= = + − =
  

and 
( ) /

( )
( )

i
i

i

dR t dt
t

R t
 = − , then we have: 

1 1 1

( ( ))
( ) ( ){Pr[ (1 , ( )) ] Pr[ (0 , ( )) ]} ( )

n M n

j i i i i i

i j i

dU X t
a R t t S X t j S X t j I t

dt


= = =

= − = − = = −   (9) 

where ( )iI t  is the Integrated importance measure of component i. The loss of system 

performance per unit time when components fail is expressed as a performance loss 

importance measure (PLIM). The improvement of system performance per unit time in 

the case of component maintenance is expressed as a performance recovery importance 

measure (PRIM). Then the RIM of the maintenance component set is discussed in two 

cases. 

1. Single component failure 



Mathematics 2022, 10, 563 8 of 19 
 

 

The loss of system performance per unit time is equal to the loss of system 

performance caused by the failure of component i. Based on Equation (9), PLIM of 

component u is obtained as follows: 

0

1 1

( ( ( )) (0 ))) (0 ( ))( ( ))
( )

( ) ( ) ( )
u

u u
u

n n

i i u

i i

d U X t U ,X(t dU ,X tdU X t
PLIM t

dt dt dt

I t I t I t
= =

−
= = −

= − + = 

 (10) 

where ( )uI t  is the Integrated importance measure of component u. 

In the process of repairing the failed component u and preventively maintaining 

component set *{ | 1, }kk x k u=  , the improvement of system performance per unit time is 

equal to the sum of PRIM of all non-failed components in the system: 

* *

*

/ / /{ | 1, } { | 1, }
( ) ( ) ( ) ,

k k
k u k u k uk x k u k x k u

PRIM t I t I t
=  = 

= −  (11) 

where 
/ ( )k uPRIM t  is the contribution of the set of preventively maintained components 

to system performance improvement while repairing component u. *

/ ( )k uI t  represents 

system performance after the preventive maintenance, 
/ ( )k uI t  represents system 

performance before the preventive maintenance. 

Based on Equations (10) and (11), we can define and evaluate the RIM of component 

k as: 

/
/

( )
( )

( )

k u
k u

u

PRIM t
RIM t

PLIM t
=  (12) 

That, is, the RIM of component k is equal to the ratio of the sum of PRIM values of all 

preventively maintained components to PLIM. The larger RIM of components, the higher 

the recovery efficiency of system performance when they are repaired, which means that 

higher maintenance priority should be provided for these components for the best return 

in improving the system performance. 

2. Multiple components failures 

The failed components are represented as the set 
1 2 3' { , , ... }yN i i i i= . The loss of system 

performance per unit time is equal to the loss of performance caused by the failure of 

components 
1 2 3, , ... yi i i i  to state 0. The PLIM for the set is: 

'

' '
'

0

1 1 1

( ( ( )) (0 ( ))) ( ( )) (0 ( ))
( )

( ) ( ) ( ).
N

N N
N

yn n

i i i

i i i

d U X t U ,X t dU X t dU ,X t
PLIM t

dt dt dt

I t I t I t
= = =

−
= = −

= − + =  
 (13) 

Based on Equation (11), the PRIM for multi-component failure is: 

* *

*

/ ' / ' / '{ | 1, '} { | 1, '}
( ) ( ) ( )

k k
k N k N k Nk x k N k x k N

PRIM t I t I t
=  = 

= −  (14) 

Based on Equations (13) and (14), the RIM for the failed component k is defined and 

evaluated as: 

/ '
/ '

'

( )
( )

( )

k N
k N

N

PRIM t
RIM t

PLIM t
=  (15) 

In addition, an illustration using the parallel-serial structure of the MCS is shown in 

Appendix C to indicate the specific calculation process of the above formula. 
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5. Case Study 

This section takes the MCS in Figure 1 to illustrate the proposed method in Section 4. 

The component maintenance priority based on the LIM under different illustrative failure 

conditions is shown in Figures 2 and 3. 

 

 

Figure 2. Component maintenance priority in the case of a single component failure. 
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Figure 3. Component maintenance priority in the case of multiple component failures. 

The maintenance priority of each component under different conditions can be 

shown by the LIM values of the MCS components. It can be seen from Figures 2 and 3 that 

LIM values decrease rapidly before 1000 h and then decrease slowly to 0. It can also be 

observed that the maintenance priority of the reactor pressure vessel, pressurizer, and 

safety valve are always high because they are the key components of the MCS, and the 

failure of these components may lead to the failure of the whole system. Therefore, we 

should focus on the maintenance of these components. Safety injection pumps and safety 

injection tanks always have the lowest maintenance priority; thus, they have a lower 

chance of receiving preventive maintenance. Therefore, the high reliability of these two 

components should be strictly maintained to ensure the normal operation of the reactor. 

When the MCS starts to operate, the maintenance priority of the safety valve is higher 

than that of the reactor pressure vessel, but the slope of the safety valve curve is larger. 

The maintenance priorities of the two components change as time proceeds. Therefore, 

the maintenance focus needs to be adjusted over time. In addition, comparing the curves 

under different conditions, it can be seen that the impact of the backup components 

corresponding to the failed components on the system performance will become greater, 

so the preventive maintenance priority of the backup components will also become 
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higher. Therefore, when a component fails, more attention should be paid to its redundant 

components in other loops to ensure their normal operation. 

After determining the maintenance priority of each component under different 

conditions, considering the cost constraints, different total maintenance costs will have 

corresponding different preventive maintenance policies. The maintenance and 

preventive maintenance costs of each component are shown in Table 3. 

Table 3. Maintenance cost and preventive maintenance cost of each component. 

Components No. Repair Cost PM Cost 

Reactor pressure vessel X1 12,000 5700 

Pressurizer X2 7000 3400 

Safety valve X3 5000 2300 

Safety injection pump X4, X7, X9, X12, X14, X17 4000 1800 

Steam generator X5, X10, X15 9000 4200 

Main coolant pump X6, X11, X16 10,000 4700 

Safety injection tank X8, X13, X18 3000 1500 

Solving the optimization problems of Equations (6) and (7), the optimal preventive 

maintenance component set at a specific time under different cost constraints can be 

obtained. Four cases are selected to analyze the impact of different maintenance cost 

constraints on the selection of preventive maintenance components. The results are shown 

in Tables 4–7, where 1 means the component is selected for preventive maintenance, and 

0 means the component is not selected for maintenance. Considering the maintenance cost 

and maintenance priority, it can be seen that, due to the lower preventive maintenance 

cost and higher maintenance priority, the safety valve has priority among the preventive 

maintenance components in different situations. Considering the influence of time, at 600 

h, the choice of the reactor pressure vessel or safety valve for preventive maintenance is 

preferred due to the large gap between the maintenance priority curves of key 

components and other components. At 1000 h, the gap between the repair priority curves 

of each component becomes smaller, and the low maintenance costs of the safety injection 

pump and safety injection tank make them the preferred choice for preventive 

maintenance. In addition, the failure of different components will also result in the 

selection of their preferred components for preventive maintenance. When X10 fails, the 

pressurizer is more likely to be selected for preventive maintenance due to the increase in 

total maintenance cost. When X11 fails, the reactor pressure vessel is more likely to be 

selected. In the case of X9 and X10 failures, preventive maintenance for safety injection 

pump is preferred. When X10, X11, and X13 fail, preventive maintenance for safety 

injection tank is preferred. 

Table 4. X10 failure, t = 600h. 

Cost Constraint 

Part 
15,000 16,000 17,000 18,000 19,000 20,000 21,000 22,000 

Reactor pressure vessel 0 0 1 1 0 0 1 1 

Pressurizer 1 0 0 0 1 1 1 1 

Safety valve 1 1 1 1 1 1 1 1 

Steam generator 0 1 0 0 1 1 0 0 

Main coolant pump 0 0 0 0 0 0 0 0 

Safety injection pump 0 0 0 0 0 0 0 0 

Safety injection tank 0 0 0 0 0 0 0 1 
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Table 5. X11 failure, t = 600h. 

    Cost Constraint 

 

Part 

15,000 16,000 17,000 18,000 19,000 20,000 21,000 22,000 

Reactor pressure vessel 0 0 0 1 1 1 0 1 

Pressurizer 0 1 0 0 0 0 1 1 

Safety valve 1 1 1 1 1 1 1 1 

Steam generator 0 0 0 0 0 0 0 0 

Main coolant pump 0 0 1 0 0 0 1 0 

Safety injection pump 1 0 0 0 0 1 0 0 

Safety injection tank 0 0 0 0 0 0 0 0 

Table 6. X10 and X9 failures, t = 1000h. 

    Cost Constraint 

 

Part 

18,000 19,000 20,000 21,000 22,000 23,000 24,000 25,000 

Reactor pressure vessel 0 0 0 0 0 1 1 0 

Pressurizer 0 0 0 1 0 0 0 1 

Safety valve 1 1 1 1 1 1 1 1 

Steam generator 0 0 1 0 1 0 0 1 

Main coolant pump 0 0 0 0 0 0 0 0 

Safety injection pump 1 1 0 1 1 1 1 1 

Safety injection tank 0 1 0 0 0 0 0 0 

Table 7. X10, X11, X13 failures, t = 1000h. 

    Cost Constraint 

 

Part 

27,000 28,000 29,000 30,000 31,000 32,000 33,000 34,000 

Reactor pressure vessel 0 0 0 0 0 1 1 0 

Pressurizer 0 0 0 0 0 0 0 1 

Safety valve 1 1 1 1 1 1 1 1 

Steam generator 0 0 0 1 1 0 0 1 

Main coolant pump 0 0 0 0 0 0 0 0 

Safety injection pump 0 1 1 0 0 0 0 0 

Safety injection tank 1 1 1 1 1 1 1 1 

Finally, the RIM values corresponding to the optimal preventive maintenance 

policies with different total maintenance costs are calculated when some components fail 

at a specific time. The results are shown in Figure 4. With the increase in the total 

maintenance cost, the number of components selected for preventive maintenance 

increases, and then the RIM value increases continuously in the form of a ladder. When 

X10 fails at 600 h, the RIM value does not increase significantly in the early stage but 

increases rapidly when the total maintenance cost is 19,000, and the subsequent increase 

is no longer obvious. In view of this situation, the total maintenance cost of 19,000 is the 

best, and can result in high recovery efficiency and control the total maintenance cost. 

When X11 fails, and the total maintenance cost is 16,000 and 21,500, the RIM value 

increases rapidly at 600 h. The appropriate maintenance cost should be selected according 

to the actual cost and performance requirements. When multiple components fail, the set 

of components corresponding to different maintenance costs changes less, so the change 

in the RIM value is less than that of a single component. The total maintenance cost also 

needs to be controlled according to the actual situation. 
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Figure 4. RIM when total maintenance cost changes. 

6. Conclusions 

This paper proposes a novel LIM measure to evaluate the effect of the failure of one 

or multiple components on the system performance in the case of different failure 

conditions. The evaluation of the LIM can facilitate the determination of the maintenance 

priority of the MCS components. Based on the LIM, the optimal preventive maintenance 

component set under a cost constraint is calculated. Then, we propose the RIM of 

preventive maintenance to quantitatively evaluate the loss of system performance caused 

by component failure and the recovery of system performance after preventive 

maintenance of components so as to calculate the recovery efficiency.  

For the case study conducted on the MCS, based on the LIM evaluation, it is verified 

that the key components of the MCS are the reactor pressure vessel, pressurizer, and 

safety valve. The case study also demonstrates that a component failure can lead to higher 

maintenance priority of its redundant components in other loops. The simulation results 

for the RIM show that, with the increase in the total maintenance cost, the RIM value 

increases continuously in the form of a ladder, and the RIM value increases significantly 

at some specific maintenance cost values. The results can provide valuable information to 

guide the recovery process. 

In future research, we will consider extending and applying the proposed method to 

other technological or engineering multi-state systems. By defining the system 

performance and analyzing the impact of components on the system performance, the 

maintenance priority of components can be determined based on this to formulate the 

corresponding maintenance strategy to improve system resilience. We are also interested 
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in extending the proposed LIM and RIM for risk analysis of safety-critical systems, 

including MCSs. 
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Appendix A 

According to Table A1, the MCS has 48 states, namely intermediate states 1–46, 

complete failure state 47, and perfect state 48. Each state represents the failure of the 

corresponding components. For example, in system state 40, ‘X11 X12 X13’ means that 

components X11, X12, and X13 are in the failure state, whereas other components are the 

in working state. When all components in the system stop working, the system is in 

complete failure state, 0ja = . When all components are working, 1ja = . 

Table A1. System states and corresponding performance level parameters. 

j  System States ja  j  System States ja  

1 X9  

 

 

 

 

 

 

 

 

 

X14 

X17 

X14 

X17 

X9 

X12 

X14 

X17 

X13 

X18 

X13 

0.9 25 X11 X9   0.54 

2 X12 0.9 26 X11 X12   0.54 

3 X14 0.9 27 X16 X14   0.54 

4 X17 0.9 28 X16 X17   0.54 

5 X10 0.8 29 X10 X11 X13  0.432 

6 X15 0.8 30 X15 X16 X18  0.432 

7 X11 0.6 31 X10 X11 X9  0.432 

8 X16 0.6 32 X10 X11 X12  0.432 

9 X13 0.9 33 X15 X16 X14  0.432 

10 X18 0.9 34 X15 X16 X17  0.432 

11 X9 0.81 35 X10 X9 X13  0.648 

12 X9 0.81 36 X10 X12 X13  0.648 

13 X12 0.81 37 X15 X14 X18  0.648 

14 X12 0.81 38 X15 X17 X18  0.648 

15 X10 0.72 39 X11 X9 X13  0.486 

16 X10 0.72 40 X11 X12 X13  0.486 

17 X15 0.72 41 X16 X14 X18  0.486 

18 X15 0.72 42 X16 X17 X18  0.486 

19 X10 0.72 43 X10 X11 X9 X13 0.3888 

20 X15 0.72 44 X10 X11 X12 X13 0.3888 

21 X11 0.54 45 X15 X16 X14 X18 0.3888 
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22 X16 X18 

X11 

X16 

0.54 46 X15 X16 X17 X18 0.3888 

23 X10 0.48 47 failure 0 

24 X15 0.48 48 perfect function 1 

Appendix B 

Proof of Equation (3):  

We have: 

1 1

1

1

( ( )) ( ) Pr[ (0 , ( )) ] ( ) ( ),

( ) Pr[ ( ) 1],

i

M
G

j j i i

j

i i

U X t a a S X t j I t t

t X t





−

=

= −  + 

= =


 (A1) 

where ( )GI i  is the Griffith importance of component i. When component i fails, system 

performance equals: 

1 1 1

1

(0 , ( )) Pr[ ( ( ),..., ( ),0 , ( ), , ( )) ]
M

i j i i i n

j

U X t a S X t X t X t X t j− +

=

= =  (A2) 

At this time, the influence of component k on system performance can be expressed 

as: 

1

/

1 1

1

1
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i
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k k
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j j k i k i

j
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
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−
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 
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 

= −  − 
 (A3) 

where 1( ) Pr[ ( ) 1].k kt X t = =  

Appendix C 

Illustration using the parallel-series structure of the MCS: 

Figure A1 is the high-level abstraction of the MCS, which appears as a parallel-series 

structure. In order to facilitate the calculation, the components are recoded. We assume 

that all components 
ijX  have two states: perfect function and failure. The reliability of 

component 
ijX  is ( )ijR t , the failed component is 

abX . Based on Equation (3), the LIM of 

component 
mnX  can be expressed as: 

/

1

( (0 , ( )))
( ) [Pr( (1 ,0 , ( )) ) Pr( (0 ,0 , ( )) )]

M
ab

mn ab z mn ab mn ab

zmn

U X t
I t s S X t z S X t z

 =


= = = − =


  (A4) 

where z  represents the state of the MCS, 
zs  is the performance level corresponding to 

the system state. 
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Figure A1. High-level parallel-series structure of the MCS. 

1. When the failed components at state 
1Z  are in series with abX  and 1a = , we have: 
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When 2a = , 
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By combining Equations (A5)–(A8), we obtain: 
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Similarly, it can be concluded that: 
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When 2a =  or 3a = , after calculation, we can obtain: 
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Similarly, it can be concluded that: 
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Based on Equations (A9) and (A11), the LIM of mnX  can be obtained as: 
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Then, based on Equations (A10) and (A16), the PLIM for component abX  can be 

expressed as: 
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We use 'A  to represent the set of failed components. The time before maintenance 

is represented by 
1t , and 

2t  means the time after maintenance. Based on Equations (12) 

and (A18), the PRIM is: 
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Based on Equation (12), the RIM for abX  is obtained as: 
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