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Abstract: Network representation learning is a machine learning method that maps network topology
and node information into low-dimensional vector space. Network representation learning enables
the reduction of temporal and spatial complexity in the downstream data mining of networks, such as
node classification and graph clustering. Existing algorithms commonly ignore the global topological
information of the network in network representation learning, leading to information loss. The
complete subgraph in the network commonly has a community structure, or it is the component
module of the community structure. We believe that the structure of the community serves as the
revealed structure in the topology of the network and preserves global information. In this paper, we
propose SF-NRL, a network representation learning algorithm based on complete subgraph folding.
The algorithm preserves the global topological information of the original network completely, by
finding complete subgraphs in the original network and folding them into the super nodes. We
employ the network representation learning algorithm to study the node embeddings on the folded
network, and then merge the embeddings of the folded network with those of the original network
to obtain the final node embeddings. Experiments performed on four real-world networks prove
the effectiveness of the SF-NRL algorithm. The proposed algorithm outperforms the baselines
in evaluation metrics on community detection and multi-label classification tasks. The proposed
algorithm can effectively generalize the global information of the network and provides excellent
classification performance.

Keywords: network representation learning; complete subgraph; graph folding

1. Introduction

With the development of deep learning techniques and increasing requirements for
graph data mining, the study of Network Representation Learning (NRL) has attracted
greater attention from scholars. There are limitations to the existing random walk-based
methods in the research of NRL [1]. For instance, the DeepWalk algorithm [2] and the
Node2Vec algorithm [3] estimate target node embedding based on a walking sequence with
a finite step length set. In addition, the LINE algorithm [4] obtains neighborhood informa-
tion of nodes based on their similarity, but only considers the second-order neighborhood,
so the algorithm only considers the local topology information of the network and ignores
its global topology information. A complete graph is a simple undirected graph in which
there is one edge between each distinct pair of nodes. In numerous real-world networks,
we find that these networks commonly contain many complete subgraphs consisting of
several nodes [5], and some are even connected by complete subgraphs and some com-
mon connection nodes. In real-world networks, the nodes in the communities are closely
connected, and the structure of complete subgraphs often appears in the communities.
Therefore, it can be inferred that most of the nodes in the same complete subgraph are
in the same community [6]. There is a greater first-order similarity between nodes in the
complete subgraph. These nodes are closely connected and naturally form the structure of
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the community or become part of the community in the network. The American Football
League Network [7] contains 115 nodes and 613 edges and there are a large number of
complete subgraphs with k = 4. There are also 113 nodes in the complete subgraphs, with
k = 4, and only two nodes; central Florida and Connecticut are isolated. These two nodes
do not affect the acquisition of the global topology of the network. The complete subgraph
in the network commonly has a community structure, or it is the component module of
the community structure. We believe that the structure of the community serves as the
revealed structure in the topology of the network and preserves its global information.
The global structure of a network is the topology of the network that can provide valuable
information for graph data mining tasks. Therefore, we assume that the community of
the network is approximated by finding its complete subgraphs and we employ this ap-
proximate community information as the global topology information of the network to
improve the performance of NRL.

Existing algorithms fail to completely cover the global topology information of the
network, which leads to information loss. To solve this problem, we propose a Network
Representation Learning Algorithm Based on Complete Subgraph Folding (SF-NRL). We
first find the complete subgraphs in the network and fold the original network by treating
the complete subgraphs as folding units and applying pre-defined folding rules. We
employ this method to find global topological information on the network and merge
the representation of the original network with the coarsened network representation.
Finally, we obtain the node embeddings that consider both the global topology and the
local topological information.

Overall, our paper makes the following contributions:

(1) The proposed algorithm solves the problem that existing NRL methods fail to balance
global and local network structures.

(2) The algorithm enables the design of a graph-coarsening approach based on de-
fined graph folding rules to obtain the global topological structure information
of the network.

(3) The experimental results on four network datasets show that the proposed algo-
rithm can significantly improve the quality of node embeddings, and the effec-
tiveness of the algorithm is demonstrated by community detection and multi-label
classification tasks.

2. Related Work

NRL methods are widely employed in network data mining tasks, including commu-
nity detection [8], node classification [9], and link prediction [10]. These methods enable
capturing node relationships in complex networks and obtaining embedding of that nodes’
representations by mapping the topological structure information of the network and node
attribute information into a low-dimensional vector space [11,12]. Random walk-based
methods have received significant attention in recent years, and researchers have proposed
algorithms such as DeepWalk and Node2Vec. Salamat et al. [13] defined a notion of a nodes
network neighborhood and designed a balanced random walk procedure, which adapts to
the graph topology. In addition, to balance the ability to obtain local and global information
of the network topology, Chen et al. [14] proposed star-coarsening and edge-coarsening
strategies for improving the quality of node embeddings. Liang et al. [15] designed novel
edge-coarsening strategies considering the weighting problem of edge-coarsening. Bartal
et al. [16] proposed that it is important to consider global exposure to information by
non-neighbors when modeling information spread in online social networks. To balance
the local and global network topology information, Liang et al. [15], inspired by the HARP
algorithm [14], proposed the MILE algorithm, which merges nodes with similar local struc-
tures into a super node and considers the weights on the coarsened connected edges. Deng
et al. [17] found that node embedding, community detection, and community embedding
create a closed-loop by investigating the relationship between community embedding
and node embedding. Node embedding contributes to the result of community detection,
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community detection helps to obtain community embedding, and community embedding
contributes to the result of node embedding.

3. Methods
3.1. Folding Rules

In this paper, we define novel folding rules to find the global topology of the network.
Folding is employed to preserve the original network structure by transforming each
folding unit in the network into a sub node, while the edges between the nodes contained
in the folding unit and those not in the folding unit are still retained.

The complete subgraph is a concept of graph theory [18]. If any two nodes in a
subgraph have a connected edge, then the subgraph is called a complete subgraph and
can also be called a clique. In general, if the number of nodes in a complete subgraph
is k, it is called the K-complete subgraph. The K-complete subgraph with k nodes has
k(k−1)/2 edges.

Each K-complete subgraph in the network is treated as a sub node, and these nodes
preserve the K-complete subgraphs in the network. As shown in Figure 1, nodes 1, 2, 3,
and 4 form a complete graph, which, as a whole, is connected with nodes 5 and 6. We fold
the nodes (node 1, 2, 3, and 4) in the complete subgraph into a sub node to preserve the
original topology of the network. Node 5 and node 6 are connected with the sub node.
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Figure 1. Example of Complete subgraph folding.

The real-world network is often not as simple as in Figure 1; the relationships between
the nodes are complex and there maybe a complete subgraph that is interconnected. When
different complete subgraphs are closely connected, it is unreasonable to collapse all
connected complete subgraphs into one node. Therefore, some rules should be designed
for network folding to make the network structure more reasonable after folding.

There are two kinds of nodes in the original network: complete subgraph nodes and
incomplete subgraph nodes. If we consider the complete subgraph as the folding unit, the
connection between incomplete subgraph nodes and the connection between incomplete
subgraphs and complete subgraphs is simple. However, there may be common nodes
between complete subgraphs, and the number of common nodes is very important for the
folding process. If there is a common node in two complete subgraphs and they are folded
into one node, it is likely to make the folded network very small, leading to over-coarsening
of the network [19]. In this way, the global information fails to be preserved completely.
Therefore, for the different number of common nodes, the folding rules are designed.

The number of common nodes can be divided into two cases. When the number of
common nodes between the complete subgraphs is 1, the complete subgraphs are folded
into one node, respectively, and then the folded nodes are connected. When the number
of common nodes between complete subgraphs is greater than 1, the complete subgraphs
with common nodes are folded into one node. The following two cases are illustrated.

• Figure 2 shows what happens when the number of common nodes is 1. In the graph,
nodes 1, 2, 3, and 4 form a complete subgraph, nodes 4, 5, 6, and 7 form other
complete subgraphs, and node 4 is a common node. The two complete subgraphs
are not considered to be closely connected here, and the two complete subgraphs are,
respectively, folded into two sub nodes.
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• Figure 3 shows the situation when the number of common nodes is greater than 1. In
the figure, nodes 1, 2, 3, 4 and 3, 4, 5, 6, respectively, form two complete subgraphs,
and the number of common nodes is 2. Obviously, due to the existence of public nodes
3 and 4, nodes 2, 3, 4, 5 and nodes 1, 3, 4, 6, respectively, form an approximate complete
subgraph, which makes the original two complete subgraphs connect very closely, so
the nodes 1, 2, 3, 4, 5, 6 tend to be in the same community with a high probability, so it
is reasonable that the two complete subgraphs are folded as a node.
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Figure 3. Example of complete subgraph folding.

In the following, we define the selection strategy for k. Since complete subgraphs
with k = 3 are frequent in the network and there are many edges between these complete
subgraphs, adopting the complete subgraph with k = 3 as the folding unit can easily
fold the network into an over-coarsening network, leading to over-coarsening of local
and global information, which is not beneficial for information retention. In addition,
complete subgraphs with k = 5 and k = 6 are not frequent in small-scale datasets, and both
complete subgraphs contain complete subgraphs with k = 4. Therefore, we set the complete
subgraphs with k = 4 as folded units. We first defined a set sub-set to preserve all folded
sub nodes and we defined a set un-sub-set for preserving the nodes which are not in the
complete subgraph. The steps of the folding process are as follows:

Step 1: From the original network G, we extracted all the complete subgraphs of
k = 4 in the original network, and each complete subgraph was added to the sub-set as a
sub node.

Step 2: The sub nodes were traversed in the sub-set. If the number of common nodes
in subi and subj was greater than 1, the two nodes were merged into one node.

Step 3: The node set in the original network G was divided into set sub-set = {sub1, ..., subn}
and set unsub-set = {v1, ..., vn}, where each element in the sub-set represents a complete sub-
graph, and each element in the unsub-set represents a non-complete subgraph node.

Step 4: We then rebuilt an empty graph M to represent the folding network, and every
element in the sub-set was called a sub node. Each sub node in the folded sub-set and the
node in unsub-set was added to the empty graph M.

Step 5: All the edges were traversed in the original network G. If there were edges
between nodes in the unsub-set in the original network G, then an edge between nodes in
unsub-set was added in the empty graph M. If there is an edge between the node in the sub
and the node in unsub-set in the original network G, then an edge is added between the
node in sub and the node in unsub-set in the empty graph M. If there is an edge between
nodes subi and subj in the original network G, then edge between nodes subi and subj was
added to the empty graph M until all edges were traversed.



Mathematics 2022, 10, 581 5 of 13

Algorithm 1 FLOD-N

Input: Network G
Output: Folded network M
1 Sub-set = k_clique_communities (G, k)// Obtain K-complete subgraphs.
2 for subi in Sub-set do // Merges complete subgraphs with public nodes greater than 1.
3 for subj in Sub-set do
4 if len (subi. intersection(subj))>1 then
5 Sub-set.remove(subi, subj);
6 Sub-set.append(subi.union(subj));
7 for sub in Sub-set do
8 for node in sub do
9 if node not in UnSub-set then
10 tmp.append(node);
11 UnSub-set =G.nodes − tmp;
12 M = new Graph; //create a new network
13 for node in Unsub-set, Sub-set do
14 M.add_nodes(node);
15 for node1 in UnSub-set do
16 for sub in Sub-set do
17 for node2 in sub do
18 if (node1, node2) in G.edges then
19 M.add_edges (node1, sub):
20 for node1 in UnSub-set do
21 for node2 in UnSub-set do
22 if (node1, node2) in G.edges then
23 M.add_edges(node1, sub);
24 for subi in Sub-set do
25 for subj in Sub-set do
26 for node1 in subi do
27 for node2 in subj do
28 if (sub1, sub2) in G.edges then
29 M.add_edges(subi, subj);
30 return M

As shown in Figure 4, the original network is shown in the example on the left of
the figure, in which red nodes 1–6 are connected to gray nodes 14 and 17, yellow nodes
7–10 are connected to gray nodes 18, and have a common node with green nodes; green
nodes 10–13 are connected to yellow nodes and gray nodes 16. Through the above folding
process, the red node, the yellow node, and the green node, respectively, form three sub
nodes: sub0, sub1, and sub2; the nodes 14–18 remain as the original topological structure.
The folded network is shown in the example on the right of the figure. The sub node is
separated from the node in the unsub-set and sub0 is connected to the original nodes 14 and
17 of the network. Since sub1 and sub2 have a common node, they are connected. Similarly,
nodes 16 and 18 are also connected to sub1. The original network structure is not destroyed
by folding, and the global topology information of the network is well preserved. The
pseudo-code of this algorithm to obtain the folded network is described in Algorithm 1.
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3.2. Algorithm Process

We fold the original network into a coarsened network M based on the defined graph
folding rules, employing the complete subgraph as the folding unit, and find embeddings
on the original network G and the small coarsened network M, respectively, with the NRL
algorithms, and then the embeddings of the coarsened network M are fused with the
embeddings of the original network G to learn the embeddings of the target network for
downstream network data mining tasks. The whole procedure of the algorithm is shown
in Figure 5.
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4. Experiments

We employ the popular NRL algorithms DeepWalk, Node2Vec, and LINE as baselines
to prove the effectiveness of our proposed algorithm and perform extensive experiments
on community detection and multi-label classification tasks.

4.1. Datasets

In the community detection, we employed books about US Politics [20], American
College Football [7], a jazz musicians network [21], and CORA citation network [22]. In the
multi-label classification task, we employed books about US Politics, American College
Football, and the CORA citation network. The statistics of the four datasets are shown in
Table 1. The following is an introduction about the datasets:
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Table 1. Statistics of network datasets. Nodes and Edges represent the number of nodes and edges of
the network, respectively, <k> indicates the average degree, and <d> denotes the average shortest
path length of the network.

Dataset Nodes Edges <k> <d>

PolBooks 105 441 8.4 3.07
Football 115 613 10.66 2.5

Jazz 198 2742 27.69 2.23
Cora 2708 5278 3.89 5.31

PolBooks: Based on the network of Books about US Politics on Amazon, the entire
web is divided into three categories according to political affiliation. The nodes in the
network represent political books, and the edges between nodes represent the same buyers
of both books.

Football: Statistics for games between school teams during the 2000 American football
season included a total of 115 teams in 12 divisions. The nodes represent teams from
different schools, and the edges represent two schools that have played a match.

Jazz: A network created by Arenas and other 197 collaborators. The edge of the data
set represents the cooperative relationship between the two musicians. There is a total of
198 nodes and 2742 edges in the network.

CORA: This data set is a citation network composed of 2708 papers. Each node in
the network represents a paper, and the edges represent the citation relationship between
papers, which can be divided into seven categories.

4.2. Community Detection

The above four datasets with real labels, PolBooks, Football, Jazz, and CORA, are used
in the community detection task. In the experiment, the SF-NRL algorithm and the baseline
were used to obtain the network representation vectors, respectively, and the k-means
clustering algorithm [23] was used to cluster the obtained vectors.

The Normalized Mutual Information (NMI) value was calculated to compare the
clustering result with the real community situation. The higher the NMI value, the more
similar the clustering result was to the real community situation, which can prove that
the clustering effect is better. Furthermore, it can be shown that the higher quality of
the network representation obtained by the algorithm can indicate the effectiveness of
the algorithm.

NMI(A, B) =
−2·∑CA

i=1 ∑CB
j=1 Nij

Nij N
Ni Nj

∑CA
i=1 Ni log Ci

N + ∑CB
j=1 Nj log

Cj
N

, (1)

where A denotes the truth community labels and B denotes the community detection results
obtained using the algorithm, respectively, CA and CB denote the number of communities
in A and B, respectively, Nij denotes the elements in the confusion matrix, Ni and Nj denote
the sum of the elements in row i and column j of the confusion matrix, respectively. n
denotes the number of nodes in the network.

The experiment compares three classic NRL algorithms, DeepWalk, Node2Vec, and
LINE with the proposed algorithm, respectively, that is, SF-NRL(DW) with DeepWalk, SF-
NRL(N2V) with Node2Vec, and SF-NRL(Line) with LINE. Simultaneously, the experimental
environment and algorithm parameters of each group of comparative experiments are kept
consistent. The experimental results are shown in Table 2. We bold the best results.
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Table 2. NMI value between SF-NRL algorithm and the comparing algorithms.

Algorithm PolBooks Football Jazz Cora

DeepWalk 0.6066 0.9308 0.4599 0.3817
SF-NRL(DW) 0.6213 0.9449 0.4662 0.4389

Node2Vec 0.6147 0.9314 0.4615 0.3953
SF-NRL(N2V) 0.6216 0.9407 0.4633 0.4271

LINE 0.0754 0.3325 0.4604 0.0273
SF-NRL(LINE) 0.4335 0.8848 0.448 0.0367

It can be seen from Table 2 that the SF-NRL algorithm has certain advantages in the
comparative experiment in terms of NMI value, among which the DeepWalk algorithm
and Node2Vec algorithm based on Word2Vec have small improvement, while for the LINE
algorithm the result is significantly improved.

Among them, the jazz dataset has the least improvement under the DeepWalk algo-
rithm and Node2Vec algorithm and is at a disadvantage in comparison with LINE. The
result is due to the tight structure of the jazz dataset, which is very dense with 198 nodes
and 2742 edges, and so holds a high average degree, resulting in dramatic data folding.
Although global information can be captured, the folding granularity is large, and the
over-coarsening phenomenon occurs, which contributes to insignificant improvement.

4.3. Multi-Label Classification

In multi-label classification, PolBooks, Football, and CORA were employed for verifi-
cation. A total of 10–90% of the original data were selected as training data, and the rest
were used as verification data. The classification results were determined by two indexes,
Macro-F1 value, and Micro-F1 value. The higher the Macro-F1 value and Micro-F1 value,
the better the classification effect. We provide the definitions of Macro-F1 and Micro-F1 in
Equations (2)–(5).

Precisionmacro =
1
n
·∑n

i=1
TPi

TPi + FPi
Precisionmicro =

∑n
i=1 TPi

∑n
i=1 TPi + ∑n

i=1 FPi
(2)

Recallmacro =
1
n
·∑n

i=1
TPi

TPi + FNi
Recallmicro =

∑n
i=1 TPi

∑n
i=1 TPi + ∑n

i=1 FNi
(3)

Macro − F1 = 2· Precisionmacro·Recallmacro

Precisionmacro + Recallmacro
(4)

Micro − F1 = 2· Precisionmicro·Recallmicro
Precisionmicro + Recallmicro

(5)

where n denotes the number of classes, TP denotes true positive, FP denotes false positive,
and FN denotes false negative.

Corresponding to NRL algorithms DeepWalk, Node2Vec, and LINE, this paper pro-
posed SF-NRL(DW), SF-NRL(N2V), SF-NRL(LINE). We compared SF-NRL(DW) with
DeepWalk, SF-NRL(N2V) with Node2Vec, and SF-NRL(LINE) with LINE, respectively.

As shown in Figure 6, the F1 values of the comparison experiment between SF-
NRL(DW) and DeepWalk are presented in the form of a polyline graph, with Micro-F1
values on the left and Macro-F1 values on the right. From Figure 6, the Micro-F1 of SF-
NRL(DW) on the Football dataset is lower than that of DeepWalk when the training set is
10%, and for Macro-F1, the training set is 60%. In addition, the Micro-F1 and Macro-F1 of
the SF-NRL(DW) are superior to DeepWalk in all other cases.
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Figure 7 exhibits the results between SF-NRL(N2V) and Node2Vec. As can be seen
from Figure 7, the Macro-F1 value SF-NRL(N2V) on the PolBooks dataset is significantly
higher than that of Node2Vec when the training data are 10% and 70%, while the difference
is trivial for the remaining proportion of training data. In other cases, the algorithm
proposed in this paper is superior to the comparative algorithm Node2Vec.
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Similarly, Figure 8 depicts the comparison between SF-NRL(LINE) and LINE; the left
side is Micro-F1 value. From top to bottom, the results on datasets of PolBooks, Football,
and CORA are, respectively, shown where the red polyline represents SF-NRL(LINE) and
the blue one indicates LINE. In this group of experiments, compared with the NMI value
in the community discovery experiment, SF-NRL(LINE) has been greatly improved, and
it still performs well in the multi-label classification task. Compared with the compara-
tive algorithm LINE, SF-NRL(LINE) obtains greater improvement in both Micro-F1 and
Macro-F1 values.
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According to the experimental results of multi-label classification, we found that the
proposed method improves the classification performance of the existing NRL algorithm
effectively, and this usage of global information can enable the NRL algorithm to learn
more information about the network, rather than just focusing on local information. The
proposed method can consider more valuable information based on the original algorithm,
and this idea can help scholars to design more effective algorithms to implement graph
data mining.

5. Conclusions

These NRL algorithms, which estimate the destination node embedding by obtaining
neighborhood information, ignore the problem of global structural information loss. We
propose the SF-NRL algorithm to fold the original network into a small-scale network by
finding the complete subgraphs in the network, and we employ the complete subgraph
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as the folding unit to obtain the global topology information of the original network with
the folding rules The original network and the folded network are, respectively, found
for network representation, and the two kinds of representations are merged to obtain a
network representation incorporating both global and local information.

The effectiveness of the SF-NRL algorithm is verified by the community discovery
test and the multi-label classification test. Three groups of comparative experiments SF-
NRL(DW) vs. DeepWalk, SF-NRL(N2V) vs. Node2Vec, and SF-NRL(LINE) vs. LINE are
set up. The experimental results and analysis show the outperformance of the proposed
algorithm in community discovery and multi-label classification. Distinguishingly, the
comparison between SF-NRL(LINE) and LINE shows nontrivial advantages of the SF-NRL
algorithm. Therefore, the effectiveness of the SF-NRL algorithm is verified. The proposed
algorithm adequately employs the information that the network topology can provide
to improve the performance of existing algorithms. The proposed idea can provide a
novel method for researchers to further applications of network global information [24,25].
In future work, we will focus on designing more efficient graph folding strategies and
designing more accurate NRL algorithms.
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