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Abstract: This paper studies a multi-stage multi-product production and inventory planning problem
with random yield derived from the cold rolling process in the steel industry. The cold rolling process
has multiple stages, and intermediate inventory buffers are kept between stages to ensure continuous
operation. Switching products during the cold rolling process is typically very costly. Backorder
costs are incurred for unsatisfied demand while inventory holding costs are incurred for excess
inventory. The process also experiences random yield. The objective of the production and inventory
planning problem is to minimize the total cost including the switching costs, inventory holding costs,
and backorder costs. We propose a stochastic formulation with a nonlinear objective function. Two
lower bounds are proposed, which are based on full information relaxation and Jensen’s inequality,
respectively. Then, we develop two heuristics from the proposed lower bounds. In addition, we
propose a two-stage procedure motivated by newsvendor logic. To verify the performance of the
proposed bounds and heuristics, computational tests are conducted on synthetic instances. The
results show the efficiency of the proposed bounds and heuristics.

Keywords: production and inventory planning; random yield; multi-stage; multi-product; newsvendor
logic

1. Introduction

For the manufacturing system, production and inventory planning is oriented to
meet the needs of customers. On the basis of comprehensively considering the production
process and inventory management requirements, this planning determines the output of
each unit and the inventory strategy of each warehouse so as to reduce production and
inventory costs and ensure the stable operation of the production process. Production and
inventory planning under uncertainty is a classical problem in operations management.
The goal is to find a feasible production and inventory plan that specifies the production
quantity and inventory level over a finite time horizon with the lowest cost. The production
and inventory planning problem often involves multi-products, and each product requires
the use of multiple resources (machines). This paper considers the production and inventory
planning problem for cold rolling mills in the steel production process, which involves
multiple products and a set of shared production facilities. Further adding to the complexity
of the problem, the production process is not perfect, as is typical for cold rolling, resulting
in the random yieldof the finished products.

In the production management, three planning levels are usually distinguished de-
pending on the time horizon: strategic, tactical, and operational (see Karakostas et al. [1]
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and Karakostas et al. [2]). Production and inventory planning problems belong to the oper-
ational level and have received considerable attention in the literature. Gelders and Wassen-
hove [3] conduct a literature review of production and inventory planning. Aggregate pro-
duction planning is concerned with determining the optimum production and workforce
levels for each period over the medium-term planning horizon. Cheraghalikhani et al. [4]
provide a survey of the models and methodologies used in aggregate production planning.
Mula et al. [5] offer a classification scheme for the literature on models for production and
inventory planning under uncertainty. As a specific application, production planning and
scheduling problems in steel manufacturing have also received significant attention (see,
e.g., Han et al. [6], Lv et al. [7], Chen et al. [8], Xu et al. [9], Tang and Meng [10]).

Steel production generally consists of four processes, i.e., ironmaking, steelmaking,
hot rolling, and cold rolling (Tang and Wang [11],Tang et al. [12]). Cold rolling is typically
the last production stage in steel plants. It uses a pickling roll or other rolls to change the
structure of metals and is often used to process stainless steel. Cold rolled steel as a raw
material has a wide variety of applications in medical, aerospace, and automotive engineer-
ing. Zhao et al. [13] address an integrated scheduling problem of production derived from
the rolling sector of steel production. However, cold rolling is heavily dependent on the
type of customer order. There is little literature considering the production and inventory
planning of cold rolling, which is the focus of this paper.

Cheng and Tang [14] provide robust policies for a multi-stage production/inventory
problem with switching costs and uncertain demand, which use examples of cold rolling.
This paper has differences from theirs in the following aspects. First, this paper focuses
on the flow chart of cold rolling with cross material feeding between different production
lines, and the switching costs between two type products are considered. Thus, production
and inventory planning are more operational. Second, this paper proposes an expected
objective function with random yield, rather than forecasting the yield and optimization
step by step. Third, this paper aims to find a better solution, given that the worst case does
not often happen.

The problem studied in this paper is motivated from a real application in a steel com-
pany. As illustrated in Figure 1, the production line often has a mesh structure characterized
by multiple stages and products. Meanwhile, there are parallel units in each stage, and
there may be multiple machines in each unit. Second, the inventory is kept at warehouses
during the intermediate stages to provide an inventory buffer. When there is insufficient
inventory to feed the downstream units, the product line must be halted, which can be
very costly. Third, product switching is very costly and needs to be carefully planned.
Finally, due to the random yield of the final products, either underage or overage costs are
incurred. Insufficient inventory to satisfy demand will result in the loss of goodwill and
revenue. Sufficient inventory will lead to a waste of resource space and increase in costs.
Our problem requires a decision regarding the production quantity and inventory level at
each unit for each period to reduce both the production and inventory costs.

To solve the problem, we formulate it with an expected objective function. The
objective function with expectation is due to the random yield, which makes the problem
considerably harder to solve. In this paper, we introduce two lower bounds to solve the
problem. The first one is based on full information relaxation, where we sample the random
yield and solve a series of deterministic linear programs. The second one is based on
Jensen’s inequality, which takes advantage of the convexity of the objective function. We
construct heuristics from the two lower bounds. In addition, a two-stage procedure is
proposed, which is motivated by newsvendor logic. The lower bounds allow us to evaluate
the performance of the heuristic solution. Even though we are not able to compute the
optimal objective value, a comparison with the lower bounds produces a conservative
estimate of the optimality gaps. Using the lower bounds allows us to conclude that the
heuristics are not too far from optimality through numerical study.
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Figure 1. An example of production process for cold rolling.

In a numerical study, we investigate the performance of the three heuristics and
analyze the influence of the parameter values on the results. We also investigate scenarios
corresponding to different parameters and random yield. The goal of our experiment is to
illustrate the superiority and feasibility of the heuristic based on newsvendor logic, which
can provide a reference for production planning.

Our main research contribution is a nonlinear programming formulation with random
yield and the corresponding bounds and heuristic solution methods. The heuristics we
propose can be used to solve large-scale problems in practice and therefore have the
potential for practical applications.

The rest of the paper is organized as follows. Section 2 reviews the related literature.
Section 3 introduces the background of cold rolling and the problem formulation with
random yield as a nonlinear program. Section 4 proposes two lower bounds and a heuristic.
The solutions based on these methods provide an upper bound on the expected costs.
Section 5 contains the results of a numerical study. We perform the study to test the
performance of these heuristics. Finally, some conclusions are outlined in Section 6.

2. Related Literature

The problem studied in this paper is a multi-product multi-stage production and
inventory planning problem with random yield derived from the cold rolling process in
the steel industry. It is at the intersection of three literature streams. The first one is the
literature on production planning and scheduling for the cold rolling mill. The second one
is the literature on generalized production and inventory planning problems. The last one
is the literature on random yield. Our paper is a synthesis of these three parts.

2.1. Production Planning and Scheduling for Cold Rolling

The planning and scheduling task is important for cold rolling mills and has also
attracted the attention of academia. Tang et al. [15] investigated a practical batching
decision problem arising in the batch annealing operations in the cold rolling stage of
steel production. Exact and heuristic algorithms were proposed to solve different scale
instances. Valls Verdejo et al. [16] addressed a sequencing problem in the continuous
galvanizing line of the cold rolling stage. A conceptually simple model and a Tabu Search
algorithm were proposed to solve it. To solve a continuous galvanizing line scheduling
problem with parallel machines, Gao and Qu [17] developed a new hybrid mixed integer
linear programming/constraint programming decomposition method. To deal with the coil
sequencing/scheduling problem in parallel continuous annealing machines to minimize
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stringer utilization, Mujawar et al. [18] developed heuristic methodologies to address
industrial-sized instances. The main idea behind heuristic methods is the logical grouping
of coils and their modes such that (most likely) sequential operations among them can
be achieved without the use of stringers. Dong et al. [19] established a multi-objective
optimization model for scheduling of a single color-coating turn in the cold rolling stage.
To solve the problem, a multi-objective evolutionary algorithm based on decomposition
and a dynamic local search was proposed.

The above research on cold rolling planning and scheduling problems mainly focuses
on decisions about batching and sequencing coils on machines in a single stage. Rather
than considering a single stage, we focus on multi-stage production at the cold rolling mill.
In addition, the previous research mainly focused on scheduling-related decisions, while
this paper mainly concentrates on planning-related decisions.

2.2. Production and Inventory Planning

The literature on production and inventory planning can be dissected in several
different ways. Depending on the planning horizon considered, the literature can be
classified into short-term, medium-term, or long-term planning. Based on the number of
products, production and inventory planning can be divided into single-product planning
and multi-product planning. Depending on the number of stages in the production process,
production and inventory planning problems can be divided into single-stage problems
and multi-stage problems.

In fact, there is no clear demarcation between planning horizons. Drexl and Kimms [20]
described production and inventory planning as a hierarchical process ranging from short-
term to long-term. Our work can be considered as a short-term or medium-term production
and inventory planning. They also introduced the basic model for production planning
with different horizons, which is divided into two types: the capacitated lot-sizing prob-
lem (CLSP) and the discrete lot-sizing and scheduling problem (DLSP). Salomon et al. [21]
stated that the CLSP is mostly used for medium-term or long-term production planning
problems (months or years), while the DLSP is used both for medium-term planning and
for short-term planning in which periods stand for days, shifts, or even hours. They also
derived the computational complexity of the DLSP. Yanasse [22] showed that the CLSP
is NP-hard for some special cases. Many authors have developed heuristics, including
Cattrysse et al. [23] and Diaby et al. [24]. Solving the DLSP optimally is also known to be
NP-hard. Fleischmann [25] and Salomon et al. [26] developed heuristics to solve the DLSP
with some constraints.

There is a huge literature for production and inventory planning with multi-products.
Bitran and Dasu [27] and Bitran and Leong [28] modeled production problems where
multiple products are produced with stochastic yield. They studied different heuristics
and compared their performances. Zijm [29] presented a framework for the planning and
control of materials flow in a multi-item production system. Kelle and Milne [30] developed
a quantitative tool to analyze a multi-echelon inventory distribution system. They analyzed
how the demand variability affects inventory policy and logistics costs. Torkaman et al. [31]
considered multi-stage multi-product multi-period production planning with sequence-
dependent setups in a closed-loop supply chain. They formulated the problem as a mixed
integer programming model and proposed four MIP-based heuristic algorithms and a
meta-heuristic algorithm based on simulated annealing. Chen and Zhang [32] investigated
a multi-period multi-product stochastic inventory problem in which a cash-constrained
online retailer can leverage order-based loans. Sample average approximation and moment-
matching scenario tree are adopted to solve this problem. Cyril et al. [33] investigated
an integrated lot sizing and scheduling problem inspired by a real-world application in
the off-the-road tire industry. A problem-based matheuristic method that solves the lot
sizing and assignment problems separately was proposed. Pazhani et al. [34] developed
strategic decision-making models for two different closed-loop supply chains with multiple
products over multiple periods. For the production planning of multi-product multi-
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stage production under yield uncertainty, Talay and Ozdemir-Akyıldırım [35] developed a
discrete stochastic optimization model.

Whether a production and inventory planning problem involves a single stage or
multiple stages depends on the definition of stage. Porteus [36] and Sepehri et al. [37]
viewed the entire production process as a single stage for production systems. Wagner [38]
pointed out the need for methods to handle multi-stage systems, which tend to be more
realistic. Karabuk and Wu [39] formulated a multi-stage stochastic program in the semicon-
ductor industry. They considered decomposing the planning problem, which resembles
decentralized decision making.

For the production system, the intermediate inventory buffer is an important linkage
between stages to ensure continuous operation. Choong and Gershwin [40] proposed a
decomposition method to analyze capacitated transfer lines with unreliable machines and
random processing times. An iterative search algorithm was developed to calculate the
throughput rate and the average buffer levels. Gershwin [41] presented an efficient method
for evaluating performance measures for a class of tandem queueing systems with finite
buffers in which blocking and starvation are important. Ouazene et al. [42] addressed
an equivalent machine method to evaluate the system throughput of a buffered serial
production line. Actually, the performance evaluation of a production line in the presence
of buffers and unreliable machines is a hard task. In this paper, we simplify the problem by
assuming the upper and lower limits of inventory capacity for the intermediate buffer.

Although there have been many studies on production and inventory planning with
multiple products and multiple stages, there is no literature focusing on the production
and inventory planning of steel manufacturing, to our knowledge. As described in the
next section, our problem is characterized by considering multi-products, multi-stages, and
random yield, while most previous works only study problems with partial characteristics.
Moreover, switching costs are added to the objective function, which is more suitable for
the actual problem.

2.3. Random Yield Problems

Likewise, there is a large body of work that deals with random yield in production
systems. Yano and Lee [43] provided an extensive review of the literature; see also Bol-
lapragada and Morton [44]. Shih [45] showed that yield uncertainty in a newsvendor
model accounts for nearly 5% of the total cost, which is quite substantial from a financial
perspective. Random yield is one form of uncertainty in production systems. Taking a
broad perspective, Galbraith [46] defined uncertainty as the difference between existing
information and required information. Ho [47] categorized uncertainty as environmental
uncertainty and system uncertainty. Environmental uncertainty means uncertainty beyond
the production process, such as random demand and supply. System uncertainty means
uncertainty within the production process, such as the operational yield, production lead
time, quality uncertainty, etc. Random yield in this paper is a form of system uncertainty.
Different methods have been proposed to model uncertainty itself. A popular method is to
use a statistical model to estimate uncertainty, such as Wacker [48] and Marlin [49]. As an
alternative, Escudero and Kamesam [50] used scenarios to model uncertainty, which do not
require distributional assumptions. The methodology proposed in this work can work with
either model of uncertainty. In addition, different mathematical models were proposed
to deal with production and inventory planning with random yield. Rota et al. [51] intro-
duced the mixed integer linear programming model to address capacity-constrained MRP.
Kira et al. [52] and Gupta and Maranas [53] used the stochastic program model to address
production problems with uncertainty.

Random yield not only leads to the instability of the production system, but also
brings challenges to the solution of the production and inventory planning problem. To
overcome difficulties, we formulated the problem as a stochastic mathematical model with
a nonlinear objective function. Different bounds and heuristics were proposed based on
the structure of the practical problem. The main benefit of such a model is that it can
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be easily handled with open-source or commercial solvers and does not require much
custom coding.

3. Problem Description and Mathematical Formulation

The problem description of multi-stage multi-product production and inventory plan-
ning with stochastic yields is first defined in this section. Then, the stochastic mathematical
model for the optimization problem is formulated.

3.1. Problem Description

As the last stage of steel production, there are many different finished products in
the cold rolling processes according to the customers’ demands. The topology network
structure for cold rolling is shown in Figure 2, in which each square represents a processing
unit, and each triangle represents an intermediate storage warehouse. For each processing
unit in cold rolling production, there are multiple parallel machines. The source of cold
rolling is the output products from the last hot rolling stage. At the start node, the pro-
duction process starts with rolled coils from the hot rolling mill, which are assumed to be
unlimited. When changing from one product type to another on a machine, the production
changeover occurs. The intermediate buffer inventory is used to store the semi-finished
products between the adjacent processing units. The final product inventory of the cold
rolling processes is used to satisfy the demand for different steel products. There are three
main challenging considerations for the real production and inventory planning, which are
described as the following:

• Stochastic product yields. One main characteristic of cold rolling production is un-
certain product yields, which are caused by production conditions with uncertainties
such as material imperfections, capacity limitations, and process environmental factors
such as temperature and humidity. There are both uncertain production and storage
factors that cause stochastic product yields during the cold rolling production stage.
For the cold rolling processes, the coils are stretched, leveled, welded, and cut, which
are not perfect production processes. For example, the real production speeds of the
cold rolling machines are not determined, which may result in a mismatch between
the processing units, leading to unbalanced products. The inventory stage can also
create uncertainties for the product yields. For the final inventory storage in the cold
rolling stage, long-term storage will cause the steel coil to rust, which leads to reduced
product yields. Based on the real production and management analysis, we reduce the
complicated, uncertain product yields in the final inventory level of the cold rolling
products in this paper.

• Product-switching cost. There are different specifications for the final products of the
cold rolling processes, which in turn require the unit setup for different types of steel
products. Product switching occurs when a machine switches from manufacturing
one product type to another. There are mainly two ways to make the switch. For the
first way, some transition coils and are added and processed between two product
types, which may achieve a smooth changeover without changing the rollers. For
the second way, the rollers in some machines are replaced so that the production
condition is reset. A substantial switching cost is incurred for both methods. The
switching cost is the expense for the transition coils in the first method, while it is the
cost of replacing the new rollers in the second method. To control the switching cost,
we would like to reduce the number of product changeovers. However, a product
changeover cannot be completely avoided due to multi-product demand. Therefore,
there is a trade-off between the product changeovers and the product inventory for
the production planning of the cold rolling processes.

• Continuous Process and Inventory buffers. To increase the production capacity in
the cold rolling stage, it is important to maintain the continuity of the production
processes. Considering the different production speeds for the units, the intermediate
buffer storage is used to support the downstream continuous process. The downstream
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production process is interrupted if there is an insufficient inventory quantity to feed
the following process. There is also the capacity and cost for the intermediate buffer
within the cold rolling processes. The coordinate of the inventory quantity and
inventory cost is important for production and inventory planning to satisfy the
market demand for the steel plant.

The production and inventory planning for the cold rolling processes with consid-
eration of random yields aims to determine the production and inventory quantity of
each final steel product in the machines and units for each period to satisfy a given set of
product orders for multiple steel coils with different specifications within a finite planning
horizon. The optimization objective is to minimize the total expected cost, which includes
the switching cost of the products, inventory cost, production cost, and the backorder
penalty. The real production constraints, such as the production capacity and inventory
limitations, must be to satisfied. Here, we assume that uncertain yields only influence the
final product inventory quantity.

Figure 2. The flow chart of cold rolling.

3.2. Mathematical Formulation

The notations in the proposed mathematical model are listed as:

• j: the index of product.
• J : the set of all products, ∀j ∈ J .
• t: the index of time period.
• T : the set of all time periods, ∀t ∈ T .
• u : the index of unit.
• U : the set of all units, ∀u ∈ U .
• m: the index of machine.
• Mu: the subset of machines at unit u; every unit includes many machines, ∀m ∈ Mu.
• k: the index of stage.
• k j: the number of stages that product j goes through, ∀k ∈ 1, 2, . . . , k j.
• a(j, k): the index of unit that is the kth stage of product j.
• ρmj: the switching cost of product j on machine m.
• huj: the echelon-holding cost of product j on unit u.
• φj: the production cost of product j.
• Cmj: the capacity of machine m for product j.
• rj: the order quantity of product j.
• hT+1

j : the holding cost of inventory for product j in the last period.

• bj: the backorder cost of inventory for product j in the last period.
• Iu: the inventory lower limit for the intermediate buffer located after unit u.
• Iu: the inventory upper limit for the intermediate buffer located after unit u.

The variables for the problem are defined as follows:

• qmjt: decision variable representing the production quantity of product j on machine
m at time period t.
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• Iujt: decision variable representing the inventory quantity of product j in the interme-
diate buffer located after unit u at time period t.

• Ymjt: binary variable, whether to produce product j on machine m at time period t.
• Zmjt: binary variable, whether to switch product j on machine m at time period t.
• β j: random variable to represent the uncertain ratio of the inventory of the final steel

product j.

With the above defined notions, a stochastic mathematical model for the production
and inventory planning problem with uncertainties is formulated as follows:

min
q,I,Y,Z

∑
t∈T

∑
u∈U

∑
m∈Mu

∑
j∈J

ρmjZmjt + ∑
t∈T

∑
u∈U

∑
j∈J

huj Iujt + ∑
t∈T

∑
u∈U

∑
m∈Mu

∑
j∈J

φjYmjt

+Eβ

[
∑
j∈J

hT+1
j (β j Ia(j,kj),j,T − rj)

+ + ∑
j∈J

bj(rj − β j Ia(j,kj),j,T)
+

]
(1)

s.t. qmjt ≤ CmjYmjt, ∀j ∈ J , u ∈ U , m ∈ Mu, t ∈ T , (2)

Ia(j,k),j,t = Ia(j,k),j,t−1

+ ∑
m∈Ma(j,k)

qmjt − ∑
m∈Ma(j,k+1)

qmjt, ∀j ∈ J , k = 1, 2, ..., k j, t ∈ T , (3)

Iu ≤ ∑
j∈J

Iujt ≤ Iu, ∀u ∈ U , t ∈ T , (4)

∑
j∈J

Ymjt ≤ 1, ∀u ∈ U , m ∈ Mu, t ∈ T , (5)

Zmjt ≥ (Ym,j,t −Ym,j,t−1)
+, ∀j ∈ J , u ∈ U , m ∈ Mu, t ∈ T , (6)

qmjt ≥ 0, Iujt ≥ 0, ∀m ∈ Mu, j ∈ J , u ∈ U , t ∈ T , (7)

Zmjt, Ymjt ∈ {0, 1}, ∀j ∈ J , u ∈ U , m ∈ Mu, t ∈ T . (8)

The objective Function (1) aims to minimize the total expected cost, which includes
the switching cost between the different products, inventory-holding cost for intermediate
products, production cost, and expected inventory-holding cost for the final products or
the backorder penalty. We use the final inventory quantity of product j times the random
variables β j to represent the final uncertain inventory of product j. If the actual inventory
quantity of product j is greater than the required quantity, there will be an inventory cost
for product j. Otherwise, a backorder penalty for the final product is added. Constraint (2)
is the processing capacity constraint for the machines in each processing unit. Product j can
only be produced on machine m at time period t if machine m is set up to produce product
j at time t, in which case the maximum production quantity of product j is constrained by
the capacity of machine m. Constraint (3) is the inventory balance constraint for each time
period t. The inventory quantity of product j in time period t is equal to the remaining
inventory quantity in time period t− 1 plus the production quantity from the upstream
unit, and minus the consumption quantity of the downstream unit. The final products are
stored in the warehouse and used to satisfy the demand. Constraint (4) enforces the lower
and upper bounds for the inventory quantity following the processing unit u. The lower
bound of the product inventory quantity can be set to 0 if there are no specific requirements
for the inventory. It can also be set as the safety stock level to ensure the continuity of the
production of subsequent units. The upper bound is used to prevent the inventory level
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from going up without limits. It can also be used to reflect the physical capacity of the
warehouse. In fact, it is mainly the latter. The upper bound prevents unlimited increases,
as this would have no practical justification. Constraint (5) represents that, at most, one
product type is produced on each machine in each period. Constraint (6) detects product
switches in period t by comparing the product produced in periods t− 1 and t. Note that
we implicitly assume that there is at most one product switch in each period. This is a
reasonable assumption due to the high cost of product switches. We note that it is possible
to incorporate product switches on a finer time scale by redefining the time periods. For
example, instead of defining each period as a day, we can define each period as six hours.
The inequalities (7) are nonnegativity constraints for the production quantity and inventory.
The last Equation (8) enforces binary conditions on the switching and production variables.

The proposed mathematical formulation for production and inventory planning with
uncertainty is a stochastic programming model that is nonlinear. Due to the random yield,
the objective function involves an expectation that is bilinear and discontinuous. Therefore,
there is no direct exact solution method for this proposed model. In the next section, we
deduce the two lower bounds for the expected objective function, then develop the lower
bounds-based heuristics for the problem with consideration of the stochastic yields.

4. Bounds and Heuristics

We first deduce two lower bounds for the objective function of the proposed stochastic
model in Section 3. The first lower bound is based on relaxing the full information and is
introduced in Section 4.1. The second lower bound is based on Jensen’s inequality and takes
advantage of the objective function’s convexity. This bound is introduced in Section 4.2.
Then, we develop heuristics based on the proposed lower bounds. Finally, we propose a
two-step procedure based on the newsvendor model in Section 4.3.

4.1. Full Information Relaxation-Based Bound and Heuristic I

For a given realization of the random yield β, the production and inventory planning
problem is a deterministic programming problem that can be solved using general purpose
integer programming solvers. One way to address this computational challenge is to solve
a series of deterministic program problems, where each is associated with a sampled value
of the random yield β. That is, we first sample the random yield β and then solve the
problem for the sampled value of β. Instead of imposing expectations on the objective
function in the proposed stochastic model, the average objective value for all sampled β is
taken to be an approximation of the optimal objective function, which is called the bound
based on the full information. This method is well known in stochastic programming and
was proposed by Prekapa [54] and is sometimes called full information relaxation because
it assumes complete information of the random variable β. It is straightforward to show
that full information relaxation is a lower bound of the primal stochastic objective function.
We summarize the result in Proposition 1.

Proposition 1. The full information relaxation leads to a lower bound of the objective value of the
stochastic production and inventory planning problem.

Proof. Let f (β, q, I, Y, Z) denote the objective function of the stochastic production and in-
ventory planning problem. The expectation of the objective value is given by Eβ[ f (β, q, I, Y, Z)].
Instead of minimizing this expectation, full information relaxation aims to find the optimal
objective values for each sample β in the random field, then takes the average value of
all obtained optimal objective values as an approximation of the primal optimal objec-
tive value.

Let (q∗, I∗, Y∗, Z∗) denote the optimal solution of the stochastic production and inven-
tory planning problem, and let (q∗(β), I∗(β), Y∗(β), Z∗(β)) denote the optimal solution for
a given β. Because the primal problem involves minimization, we must have

Eβ[ f (β, q∗(β), I∗(β), Y∗(β), Z∗(β))] ≤ Eβ[ f (β, q∗, I∗, Y∗, Z∗)].
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This completes the proof.

Proposition 1 is a general result for the stochastic production and inventory planning
problem. Based on Proposition 1, some approximation solution methods for the stochastic
planning problem can be designed. Note that the optimization problem corresponding
to each fixed β is still a nonlinear optimization problem. However, we can rewrite it as a
linear problem using reformulation techniques in integer programming.

It is not immediately clear how we can generate a heuristic policy for the production
and inventory planning problem, given that there is a set of values for the decision variables
corresponding to each β. Because some of the variables are required to be integer variables,
averaging the solutions will create some fractional solutions that are not feasible. In this
paper, we use the solution corresponding to the median of the sampled random yield to
generate a heuristic policy, which is Heuristic I. The proper pseudo-code of Heuristic I is
presented as the following:

Heuristic I:

Step 1. Generate the samples of production yield;
Step 2. Calculate the median of the sample set of production yield, βm;
Step 3. Replace β with βm, then the objective Function (1) is reduced into

min
q,I,Y,Z

∑
t∈T

∑
u∈U

∑
m∈Mu

∑
j∈J

ρmjZmjt + ∑
t∈T

∑
u∈U

∑
j∈J

huj Iujt + ∑
t∈T

∑
u∈U

∑
m∈Mu

∑
j∈J

φjYmjt+[
∑
j∈J

hT+1
j (βm

j Ia(j,kj),j,T − rj)
+ ∑

j∈J
bj(rj − βm

j Ia(j,kj),j,T)
+

]
(9)

Step 4. Solve the reduced model with CPLEX solver. The optimal solution of the
reduced model is the optimal control policy of Heuristic I.

4.2. Jensen’s Inequality-Based Bound and Heuristic II

If we replace the random yield β with the mean value of β, the stochastic objective
Function (5) has a certain good structure. Therefore, we introduce a new lower bound
based on Jensen’s inequality and proved by Jensens [55]. To apply Jensen’s inequality, we
first show that the function f (β, q, I, Y, Z) is convex for a given β.

Lemma 2. The objective function f (β, q, I, Y, Z) is convex for a given β.

Proof. Note that the random variable β only appears in the last two terms in the objective
function f (β, q, I, Y, Z). For each j ∈ J , the terms hT+1

j (β j Ia(j,kj),j,T − rj)
+ and bj(rj −

β j Ia(j,kj),j,T)
+ are both convex for a given β. The objective function is convex because the

sum of the convex functions are convex. This completes the proof.

Based on Lemma 2, we use the expectation of the random variable β to replace the
random variables. Then, the objective function Eβ[ f (β, q, I, Y, Z)] is transformed into
f (E[β], q, I, Y, Z). Due to the convexity of f (β, q, I, Y, Z) for a given β, we have

Eβ[ f (β, q, I, Y, Z)] ≥ f (E[β], q, I, Y, Z).

This immediately implies that replacing the primal objective function Eβ[ f (β, q, I, Y, Z)]
with f (E[β], q, I, Y, Z) produces a lower bound of the primal objective optimum.

Proposition 3. Replacing the objective function Eβ[ f (β, q, I, Y, Z)] with f (E[β], q, I, Y, Z) pro-
duces a lower bound to the stochastic production and inventory planning problem.

The bound in Proposition 3 is called the lower bound based on Jensen’s inequality. To
obtain the lower bound, we only need to solve the stochastic production and inventory
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planning problem, assuming the given mean random yield. The solution method for lower
bound II immediately implies a heuristic control policy. Heuristic II is based on lower
bound II, and the procedure is given in the following:

Heuristic II:

Step 1. Set the mean of the production yield, βmn;
Step 2. The objective Function (1) is replaced with

min
q,I,Y,Z

∑
t∈T

∑
u∈U

∑
m∈Mu

∑
j∈J

ρmjZmjt + ∑
t∈T

∑
u∈U

∑
j∈J

huj Iujt + ∑
t∈T

∑
u∈U

∑
m∈Mu

∑
j∈J

φjYmjt

+

[
∑
j∈J

hT+1
j (βmn

j Ia(j,kj),j,T − rj)
+ + ∑

j∈J
bj(rj − βmn

j Ia(j,kj),j,T)
+

]
(10)

Step 3. Generate the deterministic MIP model with the mean of production yields.
Step 4. Solve the generated MIP model with CPLEX solver, then obtain the optimal

control policy.

4.3. Newsvendor Logic-Based Heuristic III

Sections 4.1 and 4.2 introduce two lower bounds and two corresponding heuristics
for the stochastic production and inventory planning problem. This section introduces a
heuristic based on the newsvendor model. The newsvendor (or newsboy) model proposed
by Stevenson [56] is a mathematical model used in operations management and applied
economics to determine optimal inventory levels.

Observing that the major complication in the stochastic production and inventory
planning problem comes from the expectation term in the objective function, we propose a
two-stage procedure to solve the problem. In the first stage, we find the inventory level
that minimizes the expectation inventory-holding and backorder costs by ignoring the
constraints. That is, we solve the problem:

min
Ia(j,kj),j,T

∀j∈J
Eβ

[
∑
j∈J

hT+1
j (β j Ia(j,kj),j,T − rj)

+ + ∑
j∈J

bj(rj − β j Ia(j,kj),j,T)
+

]

= ∑
j∈J

min
Ia(j,kj),j,T

Eβ

[
hT+1

j (β j Ia(j,kj),j,T − rj)
+ + bj(rj − β j Ia(j,kj),j,T)

+
]
. (11)

As shown above, the optimization problem is naturally decomposable by product j.
Therefore, we can respectively solve the problem for each product. The structure of the
optimization problem is reduced to the newsvendor problem. For each j ∈ J , let

c(β j, Ij) = Eβ[hT+1
j (β j Ij − rj)

+ + bj(rj − β j Ij)
+]. (12)

Lemma 4. The function c(β j, Ij) is convex in Ij for each product j, and there exists an optimal

inventory I∗j that satisfies the first-order condition hT+1
j E[β j]− (hT+1

j + bj)
∫ rj

Ij
0 β j dF(β j) = 0.

Proof. For each product j ∈ J , the function c(β j, Ij) = Eβ[hT+1
j (βIj − rj)

+ + bj(rj − βIj)
+]

is convex in Ij. We have

c(β, I) = Eβ(h(βI − r)+ + b(r− βI)+)

=
∫ r

I

0
b(r− xI) dF(x) +

∫ 1

r
I

h(xI − r) dF(x). (13)
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In the above, F(·) is the cumulative distribution function of the random variable β, f (·)
is the probability density function of the random variable β, and β ∈ (0, 1]. The first-order
derivative is

∂c(β, I)
∂I

= −b
∫ r

I

0
x dF(x) + b(

r
I

I − r) f (
r
I
)

∂( r
I )

∂I
+ h

∫ 1

r
I

x dF(x)− h(r− r
I

I) f (
r
I
)

∂( r
I )

∂I

= −b
∫ r

I

0
x dF(x) + h

∫ 1

r
I

x dF(x)

= −b
∫ r

I

0
x dF(x) + h[

∫ 1

0
x dF(x)−

∫ r
I

0
x dF(x)]

= −b
∫ r

I

0
x dF(x) + h[E(x)−

∫ r
I

0
x dF(x)]

= hE[x]− (h + b)
∫ r

I

0
x dF(x). (14)

The second-order derivative is

∂2c(β, I)
∂I2 = −(h + b)

r
I

f (
r
I
)(− r

I2 )

= (h + b)
r2

I3 f (
r
I
) ≥ 0 (15)

It follows that c(β, I) is convex in I. Hence, the first-order condition is both necessary
and sufficient. This completes the proof.

For each product j, let Ĩa(j,kj),j,T be the optimal solution for (11) for the j-th subproblem.

In the second stage, we replace the demand quantity rj with Ĩa(j,kj),j,T for each product j.
That is, we replace the expectation term in the objective function of the stochastic production
and inventory planning problem with

∑
j∈J

hT+1
j (Ia(j,kj),j,T − Ĩa(j,kj),j,T)

+ + ∑
j∈J

bj( Ĩa(j,kj),j,T − Ia(j,kj),j,T)
+. (16)

Instead of considering the random variable β j, we order an inflated amount Ĩa(j,kj),j,T
for each product. Therefore, the resulting problem is transformed into a deterministic
optimization problem that can be solved through a general solver.

The proposed two-stage procedure can be directly used as Heuristic III for the stochas-
tic production and inventory planning problem. For Equation (11), the optimal inventory
F(I∗) = r(h+b)

hE(β)
is related to the demand order quantity, the mean value of the random

variable, and the holding cost for the final product and backorder cost. In particular, the
optimal production quantity for each product is linearly increasing in the demand order
quantity. The newsvendor logic-based heuristic for the production and inventory planning
problem is given as the following:

Heuristic III:

Stage 1.
Step 1-1. Construct the newsvendor problem for each product, as Equation (12);
Step 1-2. Solve all the newsvendor problems, then obtain the optimal inventory

quantity, Ĩa(j,kj),j,T ;
Stage 2.
Step 2-1. Replace the demand quantity rj with Ĩa(j,kj),j,T for each product j, then the

stochastic terms in Equation (1) are changed into Equation (16);
Step 2-2. The primal model is reduced into a deterministic MIP model, which can be

solved with CPLEX solver;
Step 2-3. The optimal solution of the reduced MIP model is an optimal control policy.
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5. Numerical Results

In this paper, we evaluated the proposed bounds and heuristics through computational
experiments on a number of problem instances. These problem instances were generated
randomly based on real information from a cold rolling plant in China. Two models
for calculating the lower bound and three heuristics were implemented in the Python
programming language, and a commercial CPLEX solver was used for the mixed integer
programs. The computation time for each mixed integer program is limited to 1 h for
an instance to prevent prolonged execution time. All tests were operated on a personal
computer with Intel 2.5 GHz and 8 GB RAM.

The remainder of this section is organized as follows. Section 5.1 introduces how to
generate the test instances and experimental setup. Section 5.2 reports the numerical exper-
imental results of the bounds and heuristics. Section 5.3 conducts a sensitivity analysis.

5.1. Test Instances and Experimental Setup

Based on an analysis of the actual production environment of the cold rolling plant,
we generate a set of random problem instances to evaluate the performance of the proposed
bounds and heuristics. Each problem instance can be specified by the configuration of
the production network, distribution of the random yield, and cost parameters. The
configuration of the production network is denoted by a triplet (U, M, J), where U is the
number of units, M is the number of machines in each unit, and J is the number of products
to be produced. Each product is associated with a distinguished path in the production
network. Although there are many combinations of paths in the production network, we
only choose the one that is consistent with the actual production situation for each product.
One level of the number of units (U = 3), and one level of the number of machines for each
unit (M = 3), and four levels of the number of products (U = 3, 4, 5, and 6) were considered.
Based on the actual plan implementation, the length of the planning horizon T is set as 7.

The capacity for each machine is set at 100. The mean value of the order quantity is
set at 150 for each product. To coincide with the actual production, the random yield is
assumed to follow the beta distribution. For the beta distribution of the yield, two levels of
the expected values (µ = 0.75 and 0.9) and four levels of the variance (σ2 = 0.12, 0.22, 0.32,
0.42 if µ = 0.75; and σ2 = 0.12, 0.152, 0.22, 0.252 if µ = 0.9) were considered.

The product switching cost is assumed to be larger than the backorder cost, which
is set at 3 to 5 times that of the steel price. The holding cost is considered lower than the
backorder cost. The holding cost from the intermediate product is computed by multiplying
the interest rate per period by the price of the steel products.

5.2. Performance of Bounds and Heuristics

Tables 1–4 report the results of the above bounds and heuristics for the setting of
different instances. In this experiment, the product switching cost is ρ = 5000 and the
backorder cost is b = 500. The holding cost is shown in the tables. In total, there are two
lower bounds and three heuristics. OBJ1, OBJ2, and OBJ3 correspond to the full information
relaxation, Jensen’s inequality, and the newsvendor logic, respectively. LB1 and LB2 are the
lower bounds based on the full information relaxation and Jensen’s inequality, respectively.
The performance of the proposed heuristics can be benchmarked against the best lower
bound. In particular, the performance gap Gapi of heuristic i is computed as the relative
error between the objective value and the best lower bound.

Overall, the bounds based on full information relaxation (LB1) are better (larger)
than the bounds based on Jensen’s inequality. However, the heuristics based on Jensen’s
inequality and newsvendor logic perform better than the heuristic from full information
relaxation. That may be because the feasible solution achieved by the full information
relaxation method is obtained by solving the scenario with the median of the sampled
random yield. The method can find an integral solution quickly. However, the quality of the
solution is not competitive with the ones achieved by Jensen’s inequality and newsvendor
logic.
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Table 1. Numerical results for two bounds and three heuristics with E(β) = 0.75. The holding costs
for the intermediate product and the final product are 5 and 100, respectively.

(µ, σ2) (U, M, J) LB1 LB2 OBJ1 Gap1(%) OBJ2 Gap2(%) OBJ3 Gap3(%)

(0.75, 0.12)

(3, 3, 3) 54,825 46,500 58,685 6.6 57,964 5.4 58,040 5.5
(3, 3, 4) 108,896 98,000 109,214 0.3 108,964 0.1 108,964 0.1
(3, 3, 5) 117,730 105,500 120,285 2.1 120,285 2.1 119,884 1.8
(3, 3, 6) 125,933 113,000 132,971 5.3 131,606 4.3 131,804 4.5

(0.75, 0.22)

(3, 3, 3) 65,222 46,500 75,576 13.7 72,949 10.6 73,520 11.3
(3, 3, 4) 116,407 98,000 125,462 7.2 123,949 6.1 123,949 6.1
(3, 3, 5) 126,262 105,500 144,353 12.5 140,265 10.0 140,143 9.9
(3, 3, 6) 136,060 113,000 161,127 15.6 156,582 13.1 157,337 13.5

(0.75, 0.32)

(3, 3, 3) 77,239 46,499 91,536 15.6 88,676 12.9 89,431 13.6
(3, 3, 4) 128,147 97,999 142,204 9.9 139,702 8.3 139,680 8.3
(3, 3, 5) 136,611 105,499 164,430 16.9 161,192 15.2 161,783 15.6
(3, 3, 6) 157,718 112,999 186,038 15.2 182,817 13.7 184,890 14.7

(0.75, 0.42)

(3, 3, 3) 83,700 46,500 97,498 14.2 105,280 20.5 97,498 14.2
(3, 3, 4) 132,997 98,000 147,747 10.0 156,280 14.9 147,775 10.0
(3, 3, 5) 149,718 105,500 172,997 13.5 183,373 18.4 172,997 13.5
(3, 3, 6) 173,577 113,000 197,991 12.3 210,467 17.5 197,978 12.3

Table 2. Numerical results for two bounds and three heuristics with E(β) = 0.9. The holding costs for
the intermediate product and the final product are 5 and 100, respectively.

(µ, σ2) (U, M, J) LB1 LB2 OBJ1 Gap1(%) OBJ2 Gap2(%) OBJ3 Gap3(%)

(0.9, 0.12)

(3, 3, 3) 46,549 44,500 55,568 16.2 53,472 12.9 52,530 11.4
(3, 3, 4) 88,487 88,000 99,604 11.2 96,472 8.3 95,729 7.6
(3, 3, 5) 97,673 95,333 108,642 10.1 106,796 8.5 105,540 7.5
(3, 3, 6) 104,419 102,500 119,627 12.7 116,953 10.7 115,251 9.4

(0.9, 0.152)

(3, 3, 3) 51,381 44,500 60,124 14.5 58,320 11.9 58,196 11.7
(3, 3, 4) 95,606 88,000 103,627 7.7 101,320 5.6 101,356 5.7
(3, 3, 5) 102,618 95,333 116,919 12.2 113,261 9.4 113,125 9.3
(3, 3, 6) 107,493 102,500 129,193 16.8 125,034 14.0 124,720 13.8

(0.9, 0.22)

(3, 3, 3) 58,130 44,500 63,193 8.0 62,422 6.9 62,349 6.8
(3, 3, 4) 97,043 88,000 106,341 8.7 105,422 7.9 105,327 7.9
(3, 3, 5) 10,6344 95,333 120,250 11.6 118,729 10.4 118,703 10.4
(3, 3, 6) 11,4752 102,500 133,928 14.3 131,870 13.0 131,762 12.9

(0.9, 0.252)

(3, 3, 3) 56,069 44,500 63,749 12.0 65,920 14.9 91,185 38.5
(3, 3, 4) 96,044 88,000 106,499 9.8 108,920 11.8 118,094 18.7
(3, 3, 5) 102,814 95,333 120,499 14.7 123,394 16.7 136,870 24.9
(3, 3, 6) 125,489 102,500 129,515 3.1 137,700 8.9 155,169 19.1

The evaluated cost increases with the variance of the random yield for the same mean
value. For constant variance, the total cost decreases in the mean value of the random yield.
Comparing Tables 1 and 2 (and Tables 3 and 4), the relative performance of the heuristic
based on Jensen’s inequality is better when E(β) = 0.75. Comparing Tables 1 and 3 (and
Tables 2 and 4), the heuristic based on newsvendor logic performs better as the backorder
cost and holding cost decrease. Therefore, the performance of the proposed heuristics
critically depends on the cost parameters and the random yield. Overall, changing the
mean value of the random yield has a substantial impact on the performance of the
three heuristics.
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Table 3. Numerical results for two bounds and three heuristics with E(β) = 0.75. The holding costs
for the intermediate product and the final product are 1 and 30, respectively.

(µ, σ2) (U, M, J) LB1 LB2 OBJ1 Gap1(%) OBJ2 Gap2(%) OBJ3 Gap3(%)

(0.75, 0.12)

(3, 3, 3) 47224 38,100 50,944 7.3 50,276 6.1 48,542 2.7
(3, 3, 4) 97,979 86,800 100,865 2.9 98,876 0.9 98,876 0.9
(3, 3, 5) 106,436 93,100 109,519 2.8 109,235 2.6 107,298 0.8
(3, 3, 6) 111,156 99,399 121,151 8.2 119,594 7.1 115,920 4.1

(0.75, 0.22)

(3, 3, 3) 55,050 38,100 66,739 17.5 63,513 13.3 85,637 35.7
(3, 3, 4) 106,940 86,800 116,318 8.1 112,113 4.6 155,137 31.1
(3, 3, 5) 116,278 93,100 132,124 12 126,884 8.4 167,471 30.6
(3, 3, 6) 123,950 99,399 146,677 15.5 141,655 12.5 179,905 31.1

(0.75, 0.32)

(3, 3, 3) 66,343 38,099 85,655 22.5 77,406 14.3 97,550 32
(3, 3, 4) 113,815 86,799 132,898 14.4 126,031 9.7 167,050 31.9
(3, 3, 5) 124,291 93,099 155,602 20.1 145,433 14.5 163,464 24
(3, 3, 6) 139,306 99,399 179,853 22.5 164,835 15.5 203,721 31.6

(0.75, 0.42)

(3, 3, 3) 80,108 38,100 93,296 14.1 92,072 13 91,977 12.9
(3, 3, 4) 123,400 86,800 141,747 12.9 140,672 12.3 140,554 12.2
(3, 3, 5) 148,084 93,100 166,592 11.1 164,963 10.2 160,082 7.5
(3, 3, 6) 158,029 99,399 191,393 17.4 189,254 16.5 189,111 16.4

Table 4. Numerical results for two bounds and three heuristics with E(β) = 0.9. The holding costs for
the intermediate product and the final product are 1 and 30, respectively.

(µ, σ2) (U, M, J) LB1 LB2 OBJ1 Gap1(%) OBJ2 Gap2(%) OBJ3 Gap3(%)

(0.9, 0.12)

(3, 3, 3) 39,086 37,700 49,622 21.2 47,333 17.4 43,233 9.6
(3, 3, 4) 81,265 78,799 90,026 9.7 88,333 8.0 83,819 3.0
(3, 3, 5) 86,058 85,066 99,425 13.4 97,811 12.0 92,158 6.6
(3, 3, 6) 95,116 91,299 110,220 13.7 107,256 11.3 100,698 5.5

(0.9, 0.152)

(3, 3, 3) 41,226 37,700 56,322 26.8 51,616 20.1 48,077 14.3
(3, 3, 4) 84,076 78,799 97,137 13.4 92,616 9.2 88,693 5.2
(3, 3, 5) 92,398 85,066 109,702 15.8 103,522 10.7 98,564 6.3
(3, 3, 6) 100,158 91,299 120,184 16.7 114,394 12.4 108,636 7.8

(0.9, 0.22)

(3, 3, 3) 50,351 37,700 59,238 15.0 55,239 8.8 53,650 6.1
(3, 3, 4) 89,735 78,799 100,198 10.4 96,239 6.8 94,215 4.8
(3, 3, 5) 95,832 85,066 113,781 15.8 108,352 11.6 105,985 9.6
(3, 3, 6) 104,316 91,299 126,695 17.7 120,432 13.4 117,955 11.6

(0.9, 0.252)

(3, 3, 3) 51,654 37,700 59,547 13.3 58,329 11.4 58,265 11.3
(3, 3, 4) 96,639 78,799 100,499 3.8 99,329 2.7 99,309 2.7
(3, 3, 5) 98,258 85,066 114,099 13.9 112,473 12.6 112,387 12.6
(3, 3, 6) 111,861 91,299 127,649 12.4 125,583 10.9 125,446 10.8

5.3. Sensitivity Analysis

In this section, we investigate the effect of changing model parameters on the per-
formance of the three proposed heuristics. The model parameters include the process
parameters (i.e., random yield) and cost parameters (i.e., switching, holding and backorder
costs). We first consider the process parameters and then analyze the impact of the cost
parameters. As the newsvendor heuristic performed the best in the previous numerical
study, we conduct the sensitivity analysis by using this heuristic.

To analyze the impact of the mean and variance of the random variable distribution
on the total cost, we consider the combinations of two mean values and four variances. The
machine configuration is (3, 3, 3). The switching cost is ρ = 5000. The holding costs for the
intermediate and final product are h = 1 and hT+1 = 100. The backorder cost is b = 500.

Figures 3a and 4a show beta distributions with mean values of 0.75 and 0.9 denoted as
µ and four different standard deviations denoted as σ. Figures 3b and 4b show the corre-
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sponding costs from the newsvendor heuristic. Observe that the costs change dramatically
and nonmonotonically as the variance increases. While the variance increases, the yield
of each product is varied. However, the relevant objective function is related to the yield,
but has no direct relationship with the variance of the yield distribution. Therefore, the
objective function value changes as the distribution changes corresponding the change in
variance, but it has no monotonic relationship with the change in variance.

(a) (b)

Figure 3. The results for different parameters with E(β) = 0.75.

(a) (b)

Figure 4. The results for different parameters with E(β) = 0.9.

Table 5 shows how the mean value of the random yield affects the cost when the
machine configuration is given and the variance is fixed at 0.12. A mean random yield
from 0.90 to 0.97 is typical in practice. The switching cost is ρ = 5000. The backorder
cost is b = 500. The holding costs for the intermediate and final products are h = 5
and hT+1 = 100. A higher mean value implies that the output of the unit is higher. Not
surprisingly, the cost decreases as E(β) increases. Hence, increasing the mean random yield
is conducive to cost reduction. As the mean value increases, the yield increases, thus the
inventory increases compared with the final product. Then, the production and inventory
planning can be decided with less consideration of the product requirement, consequently
reducing the related costs.
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Table 5. Numerical results for two bounds and three heuristics with different E(β) when the variance
is fixed at σ2 = 0.12.

(U, M, J) E(β) LB1 LB2 OBJ1 OBJ2 OBJ3

(3, 3, 6)

0.90 104,041 102,500 120,210 116,953 115,251
0.91 105,433 101,835 119,062 115,835 114,459
0.92 103,378 101,173 118,593 114,625 113,610
0.93 101,152 100,065 114,488 111,109 110,508
0.94 101,782 99,861 115,042 111,737 111,481
0.95 98,673 99,210 112,733 109,917 109,929
0.96 101,006 98,562 108,713 107,679 107,692
0.97 99,867 97,917 104,499 104,863 104,398

The inventory holding cost and backorder cost in the cold rolling plant are usually
quite significant. The holding cost is mainly the capital cost tied up by the inventory. If
there is no holding cost, each machine of the unit will produce as early as possible and
as much as possible. Usually, the holding cost increases nearly linearly in product prices
because the holding cost is often assumed to be a percentage of the product value. The
suggested percentage ranges from 12% to 34% according to Berling [57]. The backorder
cost mainly refers to the loss caused by the untimely delivery of orders. It is also quite
natural to assume a higher backorder cost for a higher valued product.

The total cost increases nearly linearly in the holding cost for the intermediate product
and the switching cost. In fact, the switching cost appears to have a bigger impact than the
holding cost for the intermediate product. Furthermore, having a substantial amount of
excess inventory in the last period after all orders are fulfilled is very costly. Therefore, we
mainly discuss the impact of the holding cost and the backorder cost in the last period. The
product switching is ρ = 5000. For hT+1 = 25, 50, 75, and 100, we investigate the impact
of the backorder cost b, which varies from 100 to 500. The results are shown in Figure 5a.
For a given backorder cost, the total cost increases in the holding cost in the last period,
given that the lines move up as the holding cost increases. This is further illustrated in
Figure 5b. The backorder cost has a substantial impact on the total cost because the cost
increases steeply as b increases in Figure 5a. One implication of this observation is that one
must be careful in deciding the amount of orders to accept. Accepting more orders than the
mill can produce can be very costly. We also implicate here that the inventory holding cost
affects the switching times in production, even though it is not shown in Figure 5.

(a) (b)

Figure 5. The impact of the holding cost in the last period and the backorder cost on the total expected
cost from the newsvendor heuristic.

Table 6 shows the results for the different machine configurations. The total order
quantity for each product is fixed at rj = 150. The switching cost is ρ = 5000, the backorder
cost is b = 500, and the holding costs for the intermediate and final products are h = 1
and hT+1 = 50, respectively. The number of machines varies from 6 to 9. The number
of products is from 3 to 6. In general, changing the machine configurations does not
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have a large impact on the total cost with the exception of a few instances (such as when
(U, M, J) = (6, 6, 5) and (U, M, J) = (6, 6, 6)). There appears to be a critical level of
machine capacity below which the cost can blow up. Therefore, it is important to maintain
sufficient machine capacity in the system. Even though our model does not explicitly
consider decisions of order acceptance, our observation here implies that accepting too
many orders can substantially increase the total cost if the required machine capacity is
beyond a critical threshold. This can be observed when (U, M, J) takes the values (6, 6, 3)
to (6, 6, 6). Producing a large number of cold rolling products requires more frequent
switches and higher inventory. Based on the results of the numerical experiments, we find
that the number of products must be maintained within a certain range. Introducing a
new product or machine can sometimes dramatically increase the costs. Therefore, one
should carefully evaluate the situation before introducing the changes to the production
process. Even though we do not consider the optimal design of the production paths, our
model can be used to evaluate the impact of altering the production network or introducing
new products.

Table 6. Numerical results with different machine configurations.

(µ, σ2) (U, M, J) LB1 LB2 OBJ1 OBJ2 OBJ3

(0.9, 0.12)

(6, 6, 3) 57,439 55,699 68,760 65,716 62,409
(6, 7, 3) 54,991 55,033 70,375 65,049 61,638
(6, 8, 3) 55,956 55,033 66,421 65,049 61,352
(6, 9, 3) 55,533 55,033 62,169 65,116 61,738

(6, 6, 4) 63,469 61,933 79,243 75,288 70,827
(6, 7, 4) 61,909 61,600 82,033 74,854 70,441
(6, 8, 4) 62,137 61,599 73,588 74,721 70,441
(6, 9, 4) 63,334 61,266 72,724 74,688 70,148

(6, 6, 5) 98,721 97,033 114,544 116,288 105,905
(6, 7, 5) 62,041 74,499 95,471 90,960 85,630
(6, 8, 5) 75,871 74,500 97,602 91,127 85,530
(6, 9, 5) 80,844 74,166 91,737 90,927 85,337

(6, 6, 6) 176,289 178,033 190,619 191,288 180,905
(6, 7, 6) 121,834 121,600 146,850 138,193 132,708
(6, 8, 6) 122,799 121,600 138,613 137,960 132,130
(6, 9, 6) 118,983 121,300 153,635 137,860 131,744

6. Conclusions

This paper studies a production and inventory planning problem derived from cold
rolling production. The problem is characterized by considering multi-stage production
networks, multiple products distinguished by a production path, and a random yield. To
address the problem, we formulate it as a nonlinear stochastic model with a nonlinear
objective function. To solve the problem, full information relaxation and Jensen’s inequality-
based lower bounds are proposed. Two simple heuristics are developed based on the
proposed lower bounds. In addition, the third heuristic motivated by newsvendor logic is
also proposed. Finally, the results of the numerical experiments based on real production
data show the validity of the formulated model, the effectiveness of the proposed lower
bounds, and the three heuristics. The sensitivity analysis for the solution method is also
given, and the implications based on the numerical results are presented. In future work,
we will consider the production and inventory planning problem under stochastic machine
conditions, such as breakdowns and flexible processing rates.
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