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Abstract: Deep learning-based models have shown to be one of the main active research topics
in emotion recognition systems from Electroencephalogram (EEG) signals. However, a significant
challenge is to effectively recognize new emotions that are incorporated sequentially, as current
models must perform retraining from scratch. In this paper, we propose a Class-Incremental Learning
(CIL) method, named Incremental Learning preserving the Learned Feature Space (IL2FS), in order
to enable deep learning models to incorporate new emotions (classes) into the already known.
IL2FS performs a weight aligning to correct the bias on new classes, while it incorporates margin
ranking loss and triplet loss to preserve the inter-class separation and feature space alignment on
known classes. We evaluated IL2FS over two public datasets (DREAMER and DEAP) for emotion
recognition and compared it with other recent and popular CIL methods reported in computer
vision. Experimental results show that IL2FS outperforms other CIL methods by obtaining an average
accuracy of 59.08 ± 08.26% and 79.36 ± 04.68% on DREAMER and DEAP, recognizing data from new
emotions that are incorporated sequentially.

Keywords: class-incremental learning; deep learning; catastrophic forgetting; emotion recognition;
electroencephalogram

1. Introduction

Emotion analysis has shown to be an important part of research fields such as human–
computer interaction and health care, in order to improve the interactive experience and
understand the behavior of patients [1,2]. Existing approaches in emotion recognition
characterize the responses of emotions in two main modalities [3,4]: behavioral and phys-
iological signals. The first type of modality includes those approaches based on facial
expression [5,6], speech emotion recognition [7] and body language. Unlike this type of
modality, the physiological signals provide a reliable way to recognize emotions since
these signals are produced by the human body that may not be susceptible to subjective
approaches based on behavioral signals [8]. In this sense, Electrocardiogram (ECG) [9],
Electromyography (EMG) [10], Electroencephalogram (EEG) [4] or even a combination
of them [11,12], have been used for emotion recognition. Among these physiological-
signal-based approaches, EEG has provided a reliable and promising indicator to identify
different emotional states, as it directly reflects brain activity [12]. Furthermore, EEG is a
non-invasive device, easy to use, and has a low cost [4,13]. Thus, EEG has been widely
used in emotion recognition systems in the last years [3,8,13–18].

Reported works have been mainly focused on extracting discriminative EEG emo-
tional features and building more effective emotion recognition systems. The collected
EEG signals are usually analyzed in three categories to extract discriminative features:
time domain (e.g., statistics of signal), frequency domain (e.g., differential entropy), and
time-frequency domain (e.g., Fourier transform). In this direction, many methods have been
proposed via machine learning to leverage the features extracted from EEG signals [17–19].
Recently, several methods are gradually moving towards the deep learning-based ap-
proaches, becoming dominant in EEG-based emotion recognition [3,8,13–16,20,21]. For
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example, different deep learning methods have been proposed to consider the spatial
information, such as convolutional neural networks (CNNs) [3,14,16], capsule networks
(CapsNets) [21] and graph neural networks (GNN) [8,13]. Likewise, attention mechanisms
and recurrent networks [15] have been used to extract spatial and temporal information as
emotion features.

Although remarkable progress has been achieved, there is a growing demand for
adaptive, scalable, and responsive deep learning methods for emotion recognition tasks.
Reported works are focused on recognizing emotions with fixed models while being unable
to incorporate other emotions into their knowledge. New emotions may be recorded over
time so that devices with pre-installed emotion recognition models may fail to recognize
this new knowledge. Whenever samples from a new emotion become available, deep
neural network models require retraining the whole model from scratch. This issue may be
infeasible both in time or storage while using all training data or when the size of the main
memory is limited [22]. Instead, the knowledge learned by a trained model should only be
modified by using samples from a new emotion. In this sense, Class-incremental learning
(CIL) provides a solution when new samples emerge, updating the knowledge of the model
according to samples from new classes, avoiding re-configure the entire system [23].

CIL methods have been widely studied in computer vision [22] since several works
have shown that deep learning models suffer from catastrophic forgetting when they are
trained incrementally [24]. The catastrophic forgetting is the performance degradation of
a neural network model affecting previously learned concepts whenever new ones are
incorporated sequentially [25]. Different approaches have rapidly emerged to alleviate
catastrophic forgetting. A first approach extends the model capacity to accommodate the
latest knowledge as new data are integrated [26,27]. Although no sample is retained during
incremental stages, these works may not scale well in specific scenarios since new weights
are added each time. A second approach [28–31] uses a fixed model to generate feature
representations across different incremental stages while multiple classifiers are trained for
new classes. Although the retraining of the entire model is avoided, the performance of
these methods depends on the quality of an initial representation, producing sub-optimal
classification results in some cases [22]. Moreover, a third approach [25,32–40], named
memory replay, stores a small set of representative samples from old classes and updates
deep learning models via Fine-tuning (FT) across different incremental stages. The memory
replay-based approach has shown better performance than previous approaches [35], but
certainly the catastrophic forgetting is still under-studied. Mainly, in EEG-based signal
recognition, Lee et al. [41] explored CIL for the imagined speech recognition task, but
the authors used one of the most straightforward memory replay-based methods under
an undemanding evaluation, as only a single incremental stage was tested for CIL. On
the other hand, no work has been reported to study the dynamic changes in class for
the EEG-based emotion recognition task. Thus, this research focuses on studying CIL for
emotion recognition from EEG signals to enable deep learning models to incorporate new
emotions into already known.

In this paper, we introduce Incremental Learning preserving the Learned Feature Space
(IL2FS), a CIL method to address the catastrophic forgetting in EEG-based emotion recogni-
tion. The proposed method aims to preserve the feature space learned over past incremental
stages, performing a bias correction on new classes, as well as encouraging the inter-class
separation and feature space alignment over old classes. Firstly, we use Weighting Aligning
(WA) [36] for bias correction on the weights at the output layer since class imbalance
is present. Secondly, we use margin ranking loss to set a margin between scores of the
ground-truth from old classes and their nearest score from any class (old or new), instead
of only ensuring a separation between old and new classes, as reported in [33]. Finally,
unlike previous CIL works for embedding networks [42–44], we propose to use triplet
loss [45] to maintain the feature space alignment of old classes. IL2FS was implemented on
a Capsule Network (CapsNet) architecture, which presents one of the best performances in
terms of accuracy for emotion recognition [21]. We evaluate and validate our proposal on
incremental learning tasks over two public datasets, DREAMER [46] and DEAP [11], using
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a reduced set of samples from old classes and the maximum number of incremental stages
that may be built for each dataset.

The main contributions of this work are:

1. We present a Class-incremental Learning method, named IL2FS, for emotion recogni-
tion from EEG signals, addressing the catastrophic forgetting problem.

2. IL2FS incorporates a strategy based on bias correction of the new classes while ensur-
ing an inter-class separation and feature alignment of the old classes. This strategy
allows better preservation of the learned knowledge for a greater number of incre-
mental stages and a reduced number of reserved samples in memory.

3. We conduct experiments on two benchmarks, DEAP and DREAMER, for emotion
recognition research. The proposed method achieves a significant improvement when
compared with existing CIL methods.

The rest of this paper is organized as follows: in Section 2, we review previous works
on class-incremental learning. Section 3 describes the proposed method in detail. Section 4
presents datasets, preprocessing procedure, neural network architecture and experimental
setup. The corresponding results are reported in Section 5. Finally, the discussion and
conclusions are reported in Sections 6 and 7.

2. Related Work

Existing works in EEG-based emotion recognition have focused on dynamic data
distribution changes, but dynamic changes in class have not been studied yet. In [41], the
authors explored CIL using a memory replay-based approach for the imagined speech task.
Even so, a simple method [47] based on fine-tuning and the nearest neighbor classifier
was adopted. Likewise, an undemanding evaluation was performed since only a single
new class was tested, while a considerable percentage of data from old classes is reserved
in memory when a new class is added. On the other hand, several CIL methods are
available in computer vision to address the catastrophic forgetting problem. Among
different approaches, reported in [22], we are interested in memory replay-based methods
since they have shown superior performance in terms of accuracy. Thus, we describe
several methods based on memory replay to deal with the catastrophic forgetting problem.
We group these methods according to the problem they address.

Less forgetting. Knowledge distillation [48] was introduced as a regularizer on the
outputs of a reference network and a new network in [49], in order to preserve the pre-
dictions of classes learned at previous CIL stages. For this, knowledge distillation aims
to keep the new network weights close to the weights of the reference network. More-
over, Hou et al. [33] presented Learning a Unified Classifier Incrementally via Rebalancing
(LUCIR), which introduces a less-forget constraint through the cosine distance, consid-
ering the local geometric structures of old classes in their feature space. More recently,
Simon et al. [25] proposed a distillation loss, named Geodesic, by adopting the concept of
geodesic flow between two tasks, that is, the gradual changes between tasks projected in
intermediate subspaces.

Bias correction. In this group, CIL methods focus on updating the neural network
weights in order to calibrate the bias produced by the class imbalance of representative
samples. Wu et al. [50] proposed Bias correction (BiC) to rectify the weights of the model
output, but a validation set is still required. In [33], authors observed that magnitudes
of the weight vectors for new classes are higher than those of old classes, then, cosine
normalization is used over the output layer to reduce the impact of imbalanced data. In
this sense, Incremental Learning with Dual Memory (LI2M) [47] corrects scores of old classes
storing their statistical information in an additional memory. Classifier Weights Scaling for
Class Incremental Learning (ScaIL) [51] rectifies the weights of old classes to make them more
comparable to those of new classes. Zhao et al. [36] proposed Weight Aligning (WA) to
correct the biased weights at the output layer once the training process has ended. For this,
only weight vectors of new classes are aligned to those of old classes using normalization.
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Inter-class separation. The knowledge distillation loss has proven to be useful while
producing more discriminative results within old classes when a bias correction is per-
formed [36]. However, distillation loss may not be sufficient to ensure an inter-class
separation between old and new classes since decision boundaries are re-configured dur-
ing training over new classes. Thus, authors in [33] introduced margin ranking loss to
encourage a margin that separates old and new classes. Chaudhry et al. [37] used bilevel
optimization to update the model with new classes, keeping predictions intact on anchor
points of old classes that lie close to the class decision boundaries.

Representative samples. Some strategies have been reported to select representative
samples of old classes in order to avoid the model from overfitting to new classes. The
baseline method, named Herding [32,52], selects the closest samples as most representative
of a class, based on a histogram of the distances to the mean sample of that class. Authors
in [53] introduced a more complex solution, named Mnemonics, which uses a strategy based
on meta-learning to update the memory via gradient descent, selecting those samples
located on boundary decisions. Generative solutions may also be found in [54,55], where
artificial samples are drawn from each incremental stage, using generative adversarial
networks (GANs). However, since GANs have proven to be difficult to optimize, they
present scalability issues.

3. Proposed Method

In this section, we introduce the proposed method in detail. First, the Class-incremental
learning setting is described. Then, we introduce an overview of the proposed method and
its components. Finally, the training algorithm of the proposed method is presented.

3.1. Class Incremental Learning Setting

This research is focused on Class-Incremental Learning (CIL) based on the memory re-
play approach [22,32], where the neural network model complexity is maintained constant
through S incremental stages, while new emotions are sequentially incorporated. In each
incremental stage, samples from new emotions and a few samples from old emotions are
available to retrain an existing neural network model.

Let X be a feature space with a label space Y belonging to classes (emotions) in C. A
labeled dataset is defined as D = {(x, y)|x ∈ X , y ∈ Y}. We assume one initial stage and S
incremental stages, where C is split into S+ 1 sets C0, C1..., CS with C = C0 ∪C1 ∪ ...∪CS and
C i ∩ C j = ∅ for i 6= j. A budget is determined for the memoryM = {(x, y)|x ∈ X , y ∈ Y},
which is used to store a limited amount of representative samples from old classes. In
the initial stage, a deep neural network model is trained on a labeled dataset D0. Next,
a representative set of samples E0 is selected and stored in memoryM as a replacement
of D0, with |E0| � |D0|. In the incremental stage s, a deep network model is updated
using the labeled dataset Ds and memoryM, that is, Ds ∪M. Notice thatM now contains
representative samples of old classes E0:s−1 from incremental stage 0 to s− 1. We assume
all training samples in Ds are available to train a neural network. In CIL, the main objective
is to use a deep network model and Ds ∪M to accurately classify samples belonging to
old and new classes in each incremental stage s, avoiding catastrophic forgetting.

A deep neural network model is usually denoted as a labeling function f with trainable
weights Φ, such that ŷ = f (x; Φ). The function f may be represented as composite of two
functions, fenc ◦ fcls. Here, fenc represents the part of network that encodes an input x into
a latent feature representation z, that is, z = fenc(x; θ); θ is the set of trainable weights.
Then, latent features z are fed to a feature labeling function fcls with weights φ, in order
to produce a classification score ŷ, i.e., ŷ = fcls(z; φ). In CIL, the number of classes of the
model output increases at each incremental stage. Thus, the network model f is expected
to classify |Cs|more classes at incremental stage s than at stage s− 1.

3.2. Overview of the Proposed Method

The proposed method, named Incremental Learning preserving the Learned Feature Space
(IL2FS), faces the catastrophic forgetting problem aiming to preserve the learned feature
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space from old classes. For this, IL2FS performs a bias correction of new classes, while the
inter-class separation and feature space alignment of old classes are ensured. Firstly, a bias
correction is performed on the weights at the output layer via Weight Aligning [36], as
imbalanced data are present when trained over a reduced set of representative samples of
old classes. Then, an inter-class separation is encouraged between scores from old classes
and their nearest class (old or new) via margin ranking loss, instead of only encouraging
a separation between old and new classes, as reported in [33]. Finally, since that new
knowledge may modify the learned feature space at previous CIL stages, we propose to
use triplet loss [45] to preserve the feature space alignment of old classes.

The complete flowchart is shown in Figure 1 and the overall objective can be written
as follows

Linc(Ds,M, f(s−1); Φ) = β · Ltri + Lcls + α · Lmr, (1)

where Ltri is the triplet loss, Lcls is a classification loss, and Lmr is the margin ranking loss.
λ, α, β are the trade-off hyper-parameters.

Figure 1. Flowchart of the proposed method throughout S incremental stages.

As shown in Figure 1, the network model f0 is trained at stage 0 on D0, using the
classification loss. Next, the Herding method [32,52] is employed to select m representative
samples to be stored in memoryM. At the incremental stage s, weights Φ are initialized
using those learned at stage s− 1. Then, the network model fs is retrained on Ds ∪M,
using loss function Linc. Exponential Moving Average (EMA) [56] is also incorporated into
IL2FS in order to stabilize the training of fs over n training steps:

Φ(n)
EMA = (1− λEMA) ·Φ

(n−1)
EMA + λEMA ·Φ(n), (2)

where Φ(n)
EMA is the EMA of successive Φ weights over n and λEMA is the decay rate or

momentum. Then, at the end of the model’s training, Weighting Aligning is used to align
the norms of the weight vectors between old and new classes at the output layer. Likewise,
m representative samples are selected on Ds ∪M, considering a balanced selection. This
procedure is repeated every time new classes emerge, which must be incorporated into an
existing model.

3.3. Bias Correction

Weight Aligning (WA) [36] has been used for bias correction, given that a class imbal-
ance is produced by using a reduced set of representative samples of old classes in new
incremental stages. Thus, WA rectifies the weight vectors at the output layer of a network
model, aligning the norms of the weight vectors between old and new classes.
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The output layer is rewritten as

W = (Wold, Wnew), (3)

where
Wold = (w1, w2, ..., wCold) ∈ Rd×Cold ,
Wnew = (wCold+1, ..., wCnew) ∈ Rd×C,

(4)

while the norms of the weight vectors are expressed as follows

‖Wold‖ = (‖w1‖, ‖w2‖, ..., ‖wCold‖),
‖Wnew‖ = (‖wCold+1‖, ..., ‖wCnew‖).

(5)

Then, the weights of new classes are normalized by using

W̄new = γ ·Wnew, (6)

where

γ =
M(‖Wold‖)
M(‖Wnew‖)

. (7)

Here, M(·) computes the mean value using these weight vectors.

3.4. Inter-Class Separation

We assume that decision regions of old classes may change during model retraining,
as representative samples of old classes are used for this process. Then, an inter-class sepa-
ration is ensured by setting a margin over class scores throughout the different incremental
learning stages.

Margin ranking loss was introduced in [33] to ensure a separation between old and
new classes (see Section 2). Unlike previous work, we use a variant of the margin ranking
loss to encourage an inter-class separation between the ground-truth score of an old class
and its nearest score coming from any class, old or new.

For each sample x in memoryM, a separation is encouraged between the ground-
truth old classes and their nearest class (old or new). For each sample x in memoryM, the
score ω̄(x) of the ground-truth old class is considered positive, while the maximum score
ω̄k(x) among the remaining classes is considered hard negative. We have:

Lmr = ∑
x∼{M}

K

∑
k=1

max(b− ω̄(x) + ω̄k(x), 0), (8)

where b is the margin, ω̄(x) is the score of the ground-truth class for the sample x, and
ω̄k(x) is the nearest class score for x.

3.5. Feature Space Alignment

We incorporate triplet loss [45] to leverage the less forgetting, preserving the alignment
of the feature space of classes learned at previous incremental stages. Note that existing
strategies are mainly focused on maintaining the same output predictions of old classes
(see Section 2). On the other hand, previous works in CIL [42–44] have mainly used triplet
loss to train embedding networks and ensure an inter-class separation. However, unlike
previous works, we incorporate triplet loss to preserve the feature space alignment of
old samples, producing near feature representations from fenc(S−1) and fenc(S) for the same
processed sample. Here, fenc(S−1) is the model learned at the last incremental stage (s− 1)
and fenc(S) is the new model to train in the current stage s. Representations from different
samples, processed by fenc(S−1) and fenc(S) , are pushed away from each other by a small
margin. Note that class labels for the processed samples are not used in our proposal, as an
inter-class separation is not pursued.
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More specifically, we use triplet loss to push latent feature representations zs−1 =
fenc(S−1)(x1) and zs = fenc(S)(x1) close to each other for the same sample x1. Meanwhile,
the latent features zs−1 and zs, produced by fenc(S−1) and fenc(S) , but coming from samples
x1 and x2, are pushed away from each other by a margin.

The triplet loss is defined as follows

Ltri = ∑
x∼{M}

max(d(za, zp)− d(za, zn) + a, 0), (9)

where za is the anchor input, zp is a positive input of the same label as za, while zn is a
negative input of a different label as za; a is the margin and d is the cosine dissimilarity
measure. Anchor-positive pairs are formed by latent features generated by fenc(S−1) and
fenc(S) for the same sample, while anchor-negative pairs are formed by latent features
generated by fenc(s−1) and fenc(S) for a pair of different samples. fenc(S−1) processes all
samples within the current batch to generate their respective latent feature representations.
After, each featured sample is labeled according to its index into the batch of samples.
This procedure is repeated for all samples but using fenc(S) ; later, featured samples are
concatenated with those obtained by fenc(S−1) . Then, the multi-similarity miner [57] is used
to generate anchor-positive pairs (za, zp) and anchor-negative pairs (za, zn) over labeled
feature representations in order to preserve the feature alignment of old classes.

3.6. Training of IL2FS

Algorithm 1 presents the training procedure of IL2FS at incremental stage s. First, the
set of weights Φ is initialized using weights Φ(s−1) (line 1). Next, we compute latent features
for x using the reference model and current model (lines 7–8). Featured samples are labeled
according to their indices into the dataset (lines 9–10). Anchor-positive and anchor-negative
pairs are generated using the Multi-similarity miner (line 11) to be employed in triplet loss
Ltri. Then, scores for ground-truth old classes and their nearest classes are computed in
order to be used in margin ranking loss Lmr (lines 12–14). After, neural network model fs
is trained using the loss function Linc (line 15). Note that Linc is composed of classification
loss Lcls, triplet loss Ltri and margin ranking loss Lmr. The EMA weights Φ(n)

EMA are
computed from Φ(n) (line 16). After training fs, weight vectors of the output layer are
rectified employing the Weighting Aligning method (line 18). Finally, the memory M
is updated by selecting m representative samples on Ds

⋃M by means of the Herding
method (line 19).
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Algorithm 1 Training algorithm of IL2FS at incremental stage s.

Inputs: Ds – training labeled dataset from new classes;M – memory containing represen-
tative samples from old classes; f(s−1)(·; Φs−1) – reference model trained at incremental
stage s− 1; λmr, α, β – trade-off hyperparameters; λEMA – decay rate; η – learning rate;
n – number of epochs.

Output: fs(·; ΦEMA) – a trained neural network model;M – updated memory with repre-
sentative samples from old classes.

1: Initialize Φs with Φ(s−1).
2: xold, yold ←M
3: xnew, ynew ← Ds
4: x← xold ∪ xnew
5: y← yold ∪ ynew
6: repeat
7: zre f ← fenc(S−1)(x) . Compute features for samples using the reference model
8: zcur ← fenc(S)(x) . Compute features for samples using the current model
9: vre f ← GenerateLabels(zre f ) . Assign labels based on indices into the dataset

10: vcur ← GenerateLabels(zcur)
11: za, zp, zn ← MultiSimilartyMiner(zre f ∪ zcur, vre f ∪ vcur) . Generate

anchor-positive and anchor-negative pairs
12: ω̄(x)← f(s−1)(xold) . Compute scores for samples from old classes using the

reference model
13: ω̄a(x)← fs(x) . Compute scores for all samples using the current model
14: ω̄k(x)← NearestClass(ω̄(x), ω̄a(x)) . Obtain scores from the nearest classes to old

classes
15: Φ(i) ← Φ(i−1) − η · ∇[β · Ltri(za, zp, zn; Φ(i−1)) + Lcls( fs(x), y; Φ(i−1)) + α ·
Lmr(ω̄(x), ω̄k(x); Φ(i−1))]

16: Φ(i)
EMA = (1− λEMA) ·Φ

(i−1)
EMA + λEMA ·Φ(i)

17: until n epochs are reached
18: ΦEMA ←WeightingAligning(ΦEMA) . Bias correction
19: M← Herding(Ds

⋃M). . memory is updated using the Herding method
20: return fs(·; ΦEMA),M

4. Experimental Design

This section first describes two public datasets used in our experiments. Then, the neu-
ral network architecture, comparison methods and implementation details are introduced.
(Code is available at https://github.com/mjmnzg/IL2FS. Accessed on 11 January 2022).

4.1. Datasets

Experiments were performed on two public datasets, DREAMER [46] and DEAP [11],
since they are benchmarks for emotion recognition research [3,14,15,21]. DREAMER is a
multi-channel dataset containing records of nine emotions from EEG signals per subject.
Likewise, DEAP is a large-scale dataset containing EEG signals with different emotional
evaluations. More importantly, both datasets were selected since a high number of classes
may be obtained from EEG data, making it useful for the analysis of the catastrophic
forgetting problem in emotion recognition.

The DREAMER dataset comprises EEG data from 23 subjects (14 male and nine
female). EEG data were collected while the subjects watched 18 film clips, which contain
cut-out scenes to evoke nine emotions: calmness, surprise, amusement, fear, excitement,
disgust, happiness, anger, and sadness. The length of each film clip is between 65 to 393 s
(M = 199 s). EEG signals were recorded at a sampling rate of 128 Hz using an Emotiv
EPOC system that uses 16 electrodes, following locations according to the International
10–20 systems: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4, M1, and M2.
Sensor M1 acts as a ground reference, while M2 is a feed-forward reference; then, the
remaining 14 electrodes were recorded and used for feature extraction. EEG data from
all subjects have 18 experimental EEG trials, two per elicited emotion. Each EEG trial

https://github.com/mjmnzg/IL2FS
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begins with a neural film to help the subjects return to the neutral emotion state, while data
serve as a baseline. EEG signals of each trial were filtered with Hamming bandpass linear
phase FIR filters to extract frequencies inside the ranges of interest (4–30 Hz). Likewise,
artifacts were removed by using artifact subspace reconstruction (ASR) [58]. At the final
step, the Common Average Reference (CAR) method [59] was applied to compute the
average value over all electrodes and subtracts it from each sample of each electrode. In our
experiments, we adopt a discrete categorization instead of a dimensional categorization,
with nine classes available.

The DEAP dataset contains EEG and peripheral physiological signals from 32 subjects
while watching 40 music videos. EEG signals were collected using a cap of 32 electrodes,
placed according to the international 10–20 system [60]. For this, a sampling rate of
512 Hz was used, then downsampled to 128 Hz. We used the pre-processed data (https:
//www.eecs.qmul.ac.uk/mmv/datasets/deap/readme.html. Accessed on 1 June 2021),
where each trial contains 60 s of recorded signals under stimulation and 3 s of baseline
signals in a relaxed state. A bandpass filter from 4.0–45.0 Hz was applied over EEG signals,
and eye artifacts were removed as in [11] using independent component analysis (ICA).
EEG data were averaged to the common reference. Subjects rate their levels of arousal,
valence, linking, and dominance from 1 to 9 for each music video. In our experiments, we
adopt a multi-class categorization scheme, combining discrete ratings of valence, arousal
and dominance. Firstly, we divide each emotion dimension into two categories using a
rating of 5 as threshold: low/high valence, low/high arousal and low/high dominance.
Secondly, we label each EEG trial used as a combination of binary categorization in three
dimensions. For instance, its label is 0 when the rating is low for the three dimensions, while
the label is 1 when the rating for valence and arousal is low, but the rating for dominance is
high. Finally, the recognition task is a multi-class classification composed of a maximum of
8 classes, given that not all subjects rate for every level of arousal, valence and dominance.

4.2. Preprocessing

We applied the preprocessing procedure of baseline removal on EEG signals as in
the works reported by [3,15,21,61] since this method highlights the effects of stimulated
emotions. We begin by using a non-overlapping window to slice baseline signals into N
segments of 1 s for each trial and C electrodes. From the set of N segments, we obtain
the mean segment, which represents the base emotional state without stimulation. Next,
the mean segment is subtracted from the EEG signals under stimulation. The obtained
differences represent the electrical changes in the brain under stimulation. Following this
pre-processing, 1080 EEG samples are obtained for each subject in DREAMER, where
60 segments are obtained from each experimental trial; 18 experimental trials per subject. In
this direction, each trial in DEAP is divided into 60 segments, each one containing 128 sam-
pling points. Then, we obtain 2400 EEG samples for each subject since there are 40 trials
per subject. Finally, each EEG sample in DREAMER and DEAP is a 32 × 128 matrix and
14 × 128 matrix, composed of the number of electrodes and sampling points, respectively.

4.3. Neural Network Architecture

We adopted a Capsule Network (CapsNet) architecture [21], which showed one of
the best accuracy performances for EEG-based emotion recognition research. Figure 2
presents the CapsNet architecture and Table 1 describes the implementation details. Unlike
the original CapsNet architecture, we add a module based on an attention mechanism,
which includes a Channel-Attention block [62] into the modules from Convolutional to
PrimaryCaps. In addition, the bottleneck layer proposed in [21] was removed since it
dramatically increases the resources used in memory. To train CapsNet, the classification
loss Lcls uses the margin and reconstruction losses, as suggested in [63]. For this purpose,
CapsNet employs a separated margin loss Lk for each class k. On the other hand, recon-
struction loss Lrec uses the sum of squared differences between the outputs of a decoder
and the input EEG signal values. This decoder consists of 3 fully-connected layers that
model the EEG signals.

https://www.eecs.qmul.ac.uk/mmv/datasets/deap/readme.html
https://www.eecs.qmul.ac.uk/mmv/datasets/deap/readme.html
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Table 1. Specifications of the Capsule Network architecture. We include a Channel-Attention block
before the PrimaryCaps module. The decoder setting for reconstruction loss is shown at the bottom.

Id Modules Layers (Input ID) Hyperparameters Output Shape

I1 Input – – DREAMER: 14 × 128
DEAP: 32 × 128

C2 Convolutional Convolution-2D (I1)

DREAMER: 64 filters,
size = 6, stride = 1,
activation = ReLU

DREAMER:
64 × 123 × 9

DEAP: 64 filters,
size = 9, stride = 2,
activation = ReLU

DEAP: 64 × 60 × 12

A3

Channel-Attention

Average pooling (C2) Size = 1, stride = 1

C4 Convolution-2D (A3)
32 filters, size = 1,

stride = 1,
activation = ReLU

C5 Convolution-2D (C4) 64 filters, size = 1,
stride = 1

M6 Maxpooling (C2) size=1, stride=1

C7 Convolution-2D (M6)
32 filters, size = 1,

stride = 1,
activation = ReLU

C8 Convolution-2D (C7) 64 filters, size = 1,
stride = 1

S9 Sum (C5, C8) –

A10 Activation (S9) Sigmoid
DREAMER:
64 × 123 × 9

DEAP: 64 × 60 × 12

C11
PrimaryCaps

Convolution-2D (A10)

DREAMER: 8 × 16
filters, size = 6,

stride = 2
DEAP: 8 × 16 filters,
size = 9, stride = 2

R12 Reshape (C11) – DREAMER: 1088 × 8
DEAP: 832 × 8

E13 EmotionCaps Dynamic routing (R12) 16 units 16 × 16
N14 Norm Normalization (E13) – 16

O15 FC Fully connected (N14) Dynamic outputs DREAMER: 9
DEAP: 8

Decoder

F1 FC1 Fully connected (O15) 256 units 256
F2 FC2 Fully connected (F1) 512 units 512

F3 FC3 Fully connected (F2)
DREAMER: 14 × 128

units DREAMER: 14 × 128

DEAP: 32 × 128 units DEAP: 32 × 128

4.4. Comparison Methods

We compared IL2FS with eight popular and recent CIL methods based on memory
replay: Fine-tuning (FT) [51], Fine-tuning+Nearest Centroid Classifier (FT+NCC) [41,51],
Less without Forgetting (LwF) [49], Incremental Classifier and Representation Learning
(iCARL) [32], Mnemonics [53], ScaIL [51], Weighting Aligning (WA) [36], and
Geodesic+LUCIR [25]. We selected such CIL methods in our comparison since they arise
as promising solutions to address the catastrophic forgetting problem in emotion recog-
nition. All comparison methods were downloaded from repositories of original authors
and then adapted for our experiments, except FT and FT+NCC, which do not represent a
challenge to implement as they are basic methods. Note that all CIL methods use the same
preprocessing procedure and the CapsNet architecture described in the previous sections.
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Figure 2. Diagram of the Capsule Network architecture.

4.5. Implementation Details

We first configured the hyper-parameters for the classification loss of the CapsNet
architecture. Thus, the margins m+ and m− for the separated margin loss Lcls were set to
0.9 and 0.1, as suggested in [21,63]. Likewise, the reconstruction loss Lrec was scaled by 0.3
during training; this value was selected from {0.01, 0.1, 0.2, 0.3, and 0.5}.

Concerning the specific configuration of our proposed method, we adopted a mean
layer instead of a normalization layer (N14) in the CapsNet architecture. For Ltri, we used
a margin a = 0.1 since a feature space alignment is pursued between extracted features
from a reference network model and a new network model; a larger margin showed to
affect the classification results negatively. To ensure an inter-class separation via margin
ranking loss Lmr, we used a margin b equal to 5, which was selected from {1, 3, 5, 8, and 10}.
Finally, for trade-off hyper-parameters, we used α = 1 and β = 0.1, which were selected
from {0.01, 0.1, 1, and 2}. We use a momentum λEMA = 0.995 to place a greater significance
on the most recent values.

Table 2 describes the specific hyper-parameters of CIL methods used in our comparison.
Similar to our proposal, all hyperparameters were selected via grid search in combination
with coordinated descent [64] in order to ensure the best configuration. Specifically, we
select a small finite list of values for each hyper-parameter and each value is changed at a
time while the rest of the hyper-parameters remains fixed.

Table 2. Hyper-parameter setting. a,b are margins; λ, λo, λdis, λmr, are the trade-off hyperparameters
for each CIL method.

Methods Hyper-Parameters

FT, FT+NCC, ScaIL -
LwF, iCARL T = 2, λo = 1
Mnemonics λdis = 0.5, λmr = 1, b = 5

WA T = 2, λ = 0.4
Geodesic+LUCIR λdis = 1, λmr = 1, b = 5

Regarding the training algorithm of the CIL methods, we used Adam optimizer
employing a mini-batch size of 10; a larger size showed to reduce the classification results
using an incremental learning evaluation. For DREAMER, we set a learning rate of 0.001
up to epoch 30, when it decays to 0.0001, keeping this value until epoch 50 when the
training concludes. For DEAP, we set an initial learning rate of 0.001 up to epoch 15,
when it also decays by a factor of 10, and then holds this value until the end of epoch 20.
Other learning rates (0.1, 0.01, 0.001, 0.0001) were evaluated, but they did not improve
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the accuracy performance. An L1 regularizer was incorporated to CapsNet with a weight
decay of 0.0004 for the Adam algorithm.

Our proposal and the comparison methods were implemented with PyTorch and
trained on an Intel(R) Core (TM) i7 PC with an Nvidia GTX 1080 graphics card and Ubuntu
v20.04 LTS.

4.6. Evaluation

As reported in [22,32], we follow the standard evaluation protocol used for the CIL
setting based on the memory replay approach. The Holdout method is applied for a given
dataset to build the training and testing data for each available class. Likewise, classes are
arranged in a fixed random order. Each method is trained in a class-incremental way on
available training data, as described in Section 3.1. At the end of each incremental stage,
the resulting classifier is evaluated on testing data for already trained classes. Note that
the testing dataset is not revealed to the CIL methods during training in each incremental
stage to avoid overfitting. At the end of S incremental stages, we obtain S classification
accuracies, averaged and reported as the final result.

We adopted an instantiation of the above protocol for each subject’s data on the
DREAMER and DEAP datasets, considering the most challenging scenario possible. Firstly,
we start from a model trained on two classes, while remaining classes in DREAMER and
DEAP come in 7 and at most six incremental stages, respectively. Secondly, we set the
memory sizeM to approximately 1% of the full training set from each subject in order to
store representative samples from old classes. We used 90% of the data of each class for
training, while the rest of the data was used for testing. Thus, about ten samples can be
stored in memory for DREAMER through 7 incremental stages, while at least 28 samples
can be stored for DEAP during six stages. Note that not all subjects in DEAP rate the
same levels of arousal, valence and dominance, producing an imbalanced dataset; an
oversampling was applied using a random selection. Classes from incremental stages
are arranged in sequence with a fixed random order. We performed five repetitions with
different partitions of data and different classes, using different random seeds; a stratified
sampling was performed with respect to the classes. From accuracy results by training
in a class-incremental way, we compute the average and standard deviation over the
incremental stages as final results. We assumed that training and testing datasets are
independent and identically distributed, i.e., both datasets were drawn from the same
distribution. Thus, we did not consider any change of distribution.

5. Results

Table 3 shows the average accuracy and standard deviation for all methods over
DREAMER. We observed that IL2FS achieved the best average accuracy (59.08%) with one
of the lowest standard deviations (8.26). Notice that IL2FS outperformed the second-best
method (Mnemonics) by 8.96 percentage points (pp). Statistical differences were computed
among the evaluated methods on the average accuracy of the 23 subjects. The Friedman
test was applied, followed by Wilcoxon signed-rank as post hoc with the Finner correc-
tion. Friedman’s test showed significant differences among CIL methods (χ2(8) = 169.99,
p = 0.0). The Wilcoxon test indicated that the difference between IL2FS and CIL methods
was statistically significant (p < 0.05).

Table 4 shows the average accuracy and standard deviation for all methods on DEAP.
We can see that IL2FS achieved the best average accuracy (79.36%) with the lowest standard
deviation (4.68). The second-best method was Geodesic+LUCIR, obtaining an average
accuracy of 8.94 percentage points shorter than IL2FS. Friedman’s test indicated significant
differences among compared methods (χ2(8) = 230.03, p = 0.0). Wilcoxon signed-rank
test revealed that differences between IL2FS and CIL methods are statistically significant
(p < 0.05) for the given dataset.
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Table 3. Accuracy and standard deviation for CIL methods on the DREAMER dataset using approxi-
mately 1% of the training size. The best results are in bold.

Geodesic
Subj. FT FT+NCC LwF iCARL Mnemonics ScaIL WA +LUCIR IL2FS

1 44.08± 13.86 48.63± 13.37 44.78± 10.25 48.26± 09.95 51.94± 14.00 40.09± 11.21 47.65± 14.92 53.29± 16.29 64.58± 12.02
2 35.82± 13.87 38.31± 14.31 37.27± 15.84 39.95± 16.19 47.86± 17.64 30.56± 11.64 39.83± 19.94 42.54± 14.50 53.64± 11.78
3 32.51± 11.59 34.93± 09.87 33.32± 12.91 37.31± 13.34 42.54± 12.50 29.96± 11.96 35.33± 14.45 44.37± 14.46 54.43± 11.12
4 53.96± 11.88 56.55± 11.41 54.23± 14.23 56.84± 14.47 60.72± 15.30 40.09± 08.64 55.13± 16.93 60.16± 13.10 64.08± 09.19
5 38.76± 14.35 41.65± 13.52 35.65± 15.67 37.73± 16.52 51.42± 16.95 29.24± 10.62 39.87± 17.65 51.13± 17.09 60.74± 12.52
6 35.80± 13.39 38.47± 13.38 36.38± 15.31 40.12± 15.06 44.35± 14.42 34.98± 09.59 37.01± 16.35 42.08± 12.74 53.31± 12.94
7 32.77± 11.33 35.89± 11.14 31.71± 11.98 35.87± 13.15 42.01± 13.49 27.76± 08.13 34.81± 14.29 45.17± 14.06 56.34± 10.35
8 33.77± 11.41 36.90± 11.63 31.03± 11.29 33.39± 11.84 41.25± 12.33 27.18± 10.71 34.57± 12.06 43.31± 13.65 49.98± 10.66
9 28.69± 08.12 32.11± 09.09 28.75± 11.89 32.67± 11.03 37.97± 13.07 25.95± 09.10 30.72± 14.50 39.73± 13.10 49.07± 12.59

10 35.62± 13.81 38.06± 14.24 36.46± 15.85 38.56± 15.54 40.70± 13.61 28.70± 08.46 38.47± 13.67 40.54± 12.53 51.48± 11.21
11 35.91± 10.19 39.53± 10.20 33.02± 13.70 36.61± 12.86 41.62± 12.32 34.08± 13.04 36.83± 12.10 46.29± 13.24 56.08± 14.38
12 45.95± 09.95 50.54± 10.42 46.08± 12.05 49.81± 12.10 56.21± 14.50 37.23± 09.55 51.48± 15.69 57.70± 13.65 66.81± 09.14
13 46.41± 15.88 48.24± 16.25 45.25± 16.26 48.39± 15.22 57.09± 14.84 39.42± 09.57 52.48± 16.78 55.51± 15.10 68.07± 11.11
14 45.27± 12.84 48.52± 11.64 46.56± 18.02 49.50± 17.38 54.18± 16.59 38.57± 14.70 50.10± 21.21 51.96± 17.24 60.94± 13.67
15 64.27± 11.47 66.17± 11.13 66.48± 10.64 69.18± 09.85 72.71± 12.81 56.49± 09.08 69.19± 11.46 71.30± 11.16 81.16± 07.11
16 34.37± 14.03 37.87± 13.67 32.26± 11.43 35.40± 09.38 42.87± 12.67 29.04± 08.59 35.41± 14.72 43.04± 15.06 50.80± 12.11
17 37.99± 12.40 41.80± 11.50 38.42± 12.16 42.11± 11.88 45.49± 14.32 31.50± 11.78 40.99± 13.49 46.73± 13.16 53.91± 09.47
18 50.14± 16.92 52.06± 17.31 48.56± 15.28 51.88± 15.45 57.97± 17.41 41.17± 13.13 52.66± 17.81 56.76± 15.63 62.78± 11.35
19 57.42± 12.95 61.90± 11.30 56.79± 15.52 59.20± 15.40 65.67± 11.72 50.43± 10.23 61.13± 16.25 66.94± 10.98 71.56± 09.73
20 27.09± 13.44 28.79± 12.87 29.47± 15.63 31.08± 14.62 35.81± 13.15 23.91± 09.11 32.62± 15.21 35.83± 13.98 49.75± 14.18
21 41.34± 10.87 43.63± 10.44 39.95± 13.04 42.68± 12.74 48.10± 12.20 31.82± 07.02 42.34± 15.87 48.22± 10.99 54.25± 12.23
22 57.39± 12.71 61.14± 11.34 55.15± 14.11 57.58± 13.71 66.89± 10.40 47.36± 08.72 57.42± 16.16 64.07± 10.88 68.49± 13.69
23 43.66± 15.63 45.99± 14.33 38.93± 16.62 41.39± 16.67 47.38± 16.08 32.77± 10.21 40.98± 17.76 45.17± 16.29 56.66± 12.17

Avg. 41.69± 09.80 44.68± 09.91 41.15± 09.85 44.15± 09.85 50.12± 09.31 35.14± 08.20 44.22± 10.22 50.08± 09.31 59.08± 08.26

Table 4. Accuracy and standard deviation for CIL methods on the DEAP dataset using approximately
1% of the training size. The best results are in bold.

Geodesic
Subj. FT FT+NCC LwF iCARL Mnemonics ScaIL WA +LUCIR IL2FS

1 57.65± 13.84 64.62± 11.95 55.14± 12.12 62.57± 12.48 74.60± 17.04 53.14± 11.94 61.80± 17.93 75.06± 13.42 86.47± 06.85
2 56.83± 16.68 61.35± 15.75 56.30± 18.12 58.82± 18.08 64.09± 17.77 54.10± 05.81 59.24± 19.92 62.53± 16.90 74.33± 10.94
3 56.23± 09.27 60.40± 08.77 59.29± 12.84 63.56± 12.33 63.78± 15.90 52.40± 06.23 62.50± 12.58 67.24± 14.66 74.31± 09.64
4 58.44± 15.77 63.74± 15.60 60.47± 15.14 65.21± 16.46 62.51± 18.69 57.31± 03.44 60.78± 17.60 69.60± 14.88 75.91± 12.26
5 57.34± 13.39 63.42± 12.05 55.10± 11.90 59.98± 11.68 66.71± 17.31 51.64± 09.14 60.28± 14.03 69.12± 12.86 78.55± 08.14
6 55.84± 14.10 63.04± 12.13 56.09± 15.08 63.04± 14.71 72.35± 15.76 51.28± 08.98 60.66± 17.94 72.20± 16.01 83.16± 06.61
7 64.44± 16.04 70.54± 14.46 62.59± 17.69 69.65± 14.68 75.40± 15.97 59.38± 04.19 67.31± 19.10 79.58± 14.97 85.28± 06.72
8 60.46± 14.56 67.00± 12.39 60.82± 14.35 66.61± 13.25 70.96± 16.66 53.71± 03.99 64.64± 15.48 71.79± 12.41 82.59± 06.95
9 52.65± 15.77 59.46± 16.01 52.85± 15.62 59.02± 15.60 65.73± 17.89 48.87± 04.24 55.72± 16.74 64.45± 13.76 78.22± 10.15

10 72.54± 11.89 78.08± 10.06 70.43± 11.95 74.33± 11.30 72.70± 13.22 62.91± 04.42 74.19± 12.94 82.04± 09.11 85.71± 05.15
11 52.94± 19.03 59.58± 17.35 55.42± 18.49 63.22± 18.36 64.73± 21.20 52.12± 07.23 57.57± 20.20 66.36± 19.73 77.96± 10.11
12 68.06± 16.98 72.76± 15.16 68.35± 16.77 74.88± 15.33 71.02± 17.65 69.16± 09.76 70.10± 15.46 76.61± 14.52 79.11± 11.29
13 46.32± 12.19 52.48± 11.53 45.36± 13.13 50.33± 12.75 64.25± 16.59 38.55± 02.58 48.49± 17.13 59.71± 15.87 74.74± 12.02
14 51.04± 15.11 58.49± 13.71 49.41± 16.74 55.65± 16.96 64.15± 14.57 45.08± 03.87 51.73± 15.93 63.48± 15.68 75.37± 10.65
15 51.02± 13.96 57.96± 13.57 53.10± 15.41 59.35± 15.51 71.36± 15.69 53.49± 04.22 54.30± 16.34 63.75± 15.15 80.50± 08.37
16 61.86± 09.81 67.57± 09.20 62.10± 09.96 67.35± 09.11 61.78± 19.88 54.16± 05.12 63.79± 11.46 70.24± 13.35 82.10± 10.33
17 49.18± 10.97 55.58± 11.15 49.45± 13.83 55.88± 12.93 61.75± 16.90 42.52± 04.61 50.79± 13.57 62.45± 12.58 68.84± 10.02
18 63.45± 09.97 69.54± 09.27 61.68± 08.82 67.09± 08.02 76.78± 15.31 66.03± 07.85 67.34± 14.30 74.56± 13.68 79.82± 06.34
19 61.31± 12.87 66.52± 12.27 62.42± 13.45 67.94± 10.48 71.57± 17.28 59.35± 04.81 66.83± 13.87 71.54± 16.72 82.06± 08.84
20 68.44± 15.69 73.53± 13.52 66.13± 17.82 70.82± 15.53 67.01± 19.20 61.15± 05.18 70.73± 16.44 74.44± 15.08 82.96± 09.52
21 69.70± 14.88 74.58± 13.07 69.10± 13.62 73.16± 13.39 70.00± 21.43 67.61± 07.90 72.44± 16.90 77.39± 15.35 79.11± 10.35
22 66.38± 09.98 73.02± 10.07 64.10± 12.25 69.00± 11.38 70.31± 13.68 58.79± 06.31 69.03± 14.77 72.83± 09.96 80.14± 08.90
23 47.61± 12.34 55.60± 11.60 47.39± 09.88 56.89± 12.95 77.79± 15.13 48.54± 05.05 55.51± 17.85 69.97± 09.84 83.30± 06.33
24 66.44± 15.95 71.95± 13.35 68.02± 18.04 73.78± 16.02 72.32± 18.86 66.30± 09.06 70.66± 18.62 74.67± 15.46 84.28± 07.59
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Table 4. Cont.

Geodesic
Subj. FT FT+NCC LwF iCARL Mnemonics ScaIL WA +LUCIR IL2FS

25 49.94± 12.30 57.68± 10.63 52.73± 10.53 60.48± 09.41 63.30± 16.39 47.68± 04.95 52.64± 13.20 62.91± 12.41 76.20± 10.29
26 48.79± 08.93 54.62± 09.74 47.65± 08.71 52.85± 08.86 60.39± 15.62 48.20± 08.45 51.76± 09.78 59.99± 11.23 66.78± 10.25
27 54.70± 11.18 64.47± 09.56 49.45± 07.82 66.25± 08.30 80.64± 12.15 54.49± 10.94 60.36± 15.18 74.16± 11.72 80.90± 06.87
28 57.35± 10.50 64.41± 09.25 57.00± 11.46 64.69± 10.14 69.88± 14.89 55.19± 07.71 60.71± 16.05 71.67± 11.63 77.46± 09.02
29 73.05± 07.99 77.94± 06.10 72.27± 07.88 77.25± 08.10 78.84± 11.28 73.64± 08.85 74.40± 08.67 82.36± 09.38 85.87± 05.34
30 69.05± 13.69 74.11± 11.48 69.88± 13.77 74.64± 12.90 75.45± 15.11 67.46± 03.91 72.50± 12.96 80.69± 11.56 83.45± 08.12
31 61.55± 14.27 66.49± 13.00 62.38± 12.17 66.14± 11.69 67.71± 17.99 57.06± 04.07 64.61± 14.79 69.30± 13.98 77.63± 09.48
32 47.53± 09.34 54.37± 09.16 46.70± 10.90 55.44± 12.88 71.31± 14.29 46.57± 06.33 50.94± 15.02 60.83± 10.50 76.49± 09.43

Avg. 58.69± 07.83 64.84± 07.24 58.41± 07.76 64.56± 07.00 69.41± 05.48 55.56± 08.20 62.01± 07.60 70.42± 06.50 79.36± 04.68

Comparison with baseline. Figure 3 presents a comparison of IL2FS and existing
CIL methods concerning the baseline approach (CapsNet-wo-memory), that is, when
CapsNet did not include any data from old classes in a CIL training. In addition, we also
included the average accuracy when CapsNet is trained using all training samples from old
classes (CapsNet-Full) in each incremental stage. We observed that CapsNet-wo-memory
obtained the worst accuracy results when samples of old classes are not available in the
memory, suggesting the presence of catastrophic forgetting. However, CapsNet improved
its accuracy performance when samples of old classes were employed during Fine-tuning
(FT). Note that IL2FS and advanced CIL methods improved the average accuracy of FT
by incorporating a specific strategy to address the catastrophic forgetting problem, except
ScaIL and LwF. Finally, we observed that IL2FS is still exposed to catastrophic forgetting as
CapsNet-Full achieved 90.63% and 98.17% on DEAP and DREAMER.

(a) (b)

Figure 3. Comparison of CIL methods with baseline approaches on (a) DREAMER and (b) DEAP.
CapsNet-wo-memory represents the average accuracy obtained by CapsNet when data from old
classes are not included in the memory during the CIL training. CapsNet-Full indicates the average
accuracy using all training samples from old classes in each incremental stage. Mnem and Geo+LUC
indicate Mnemonics and Geodesic+LUCIR, respectively.

5.1. Ablation Studies

In this section, we present an analysis with respect to the number of reserved samples
from old classes. After, we study the impact of the number of new emotions incorporated
into the neural network model. Finally, we analyze the impact of each component of IL2FS.
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5.1.1. Effect of the Number of Reserved Samples

Figure 4 shows the comparison of IL2FS with CIL methods, when the memory of
old samples has a size close to 1%, 2%, and 5% of the size of the full training set for each
subject on DREAMER and DEAP. As expected, CIL methods improved their accuracy
performance when more samples were stored in the memory. However, we can see that
IL2FS still maintains the best average accuracy for different sizes of the reserved samples.
For DREAMER, 66.73% and 75.06% were obtained by IL2FS when the memory is close to 2%
and 5% of the size of the full training set. For DEAP, IL2FS achieved average accuracies of
85.35% and 90.73% using memory sizes of 2% and 5%, respectively. Note that our proposal
obtained a greater gain in average accuracy than the comparison methods when a smaller
number of samples from old classes is reserved in the memory.

(a) (b)

Figure 4. Effect of the number of reserved samples in memory: (a) DREAMER and (b) DEAP.

5.1.2. Effect of the Number of Incremental Stages

Figure 5 shows the average accuracy of IL2FS for each incremental stage in comparison
to CIL methods on DREAMER. We reported the average accuracy of CIL methods over all
subjects, employing memory sizes of 1% and 5% of the size of the full training dataset. Ac-
curacy results for CapsNet-wo-memory and CapsNet-Full were also included as baselines.
We observed that a CIL strategy helps reduce catastrophic forgetting by improving the
accuracy performance of CapsNet-wo-memory. However, note that CIL methods decrease
their accuracy performance when the number of stages is increased. It is worth mentioning
that IL2FS achieved the best average accuracies throughout different incremental stages. In
addition, IL2FS obtained a greater gain than existing methods during the last incremental
stages because fewer samples from old classes can be stored in the memory.

(a) (b)

Figure 5. Effect of the number of incremental stages on the DREAMER dataset, using memory sizes
of (a) 1% and (b) 5% of the full training dataset of each subject. We reported average accuracy in each
incremental stage over all subjects.
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5.1.3. Effect of Each Component of IL2FS

The proposed method comprises three main strategies: weight aligning for bias cor-
rection, margin ranking loss for inter-class separation and triplet loss for a feature space
alignment of old classes. Table 5 shows the average accuracy over all subjects for each eval-
uated dataset. Note that Fine-tuning achieved an average accuracy of 41.69% and 58.69%
over DREAMER and DEAP, respectively. By using weight aligning for bias correction,
the average accuracy is improved by 4.86 and 3.99 percentage points over the DREAMER
and DEAP datasets. A variant of margin ranking loss was incorporated to encourage a
separation between each ground-truth old class and its nearest class (old or new). This
modification allowed IL2FS to outperform Fine-tuning+Weight aligning by 10.22 and 15.33
percentage points over DREAMER and DEAP, respectively. In addition, triplet loss was
used to keep a similar alignment of the feature space of old classes. From experiments, we
found that by encouraging such alignment, an improvement of 2.31 and 1.35 percentage
points is observed in average accuracy on DREAMER and DEAP, respectively.

Table 5. Effect of each component of IL2FS on DREAMER and DEAP. The best results are in bold.

Method DREAMER DEAP

Fine-tuning (FT) 41.69 ± 09.80 58.69 ± 07.83
FT+Weight Aligning 46.55 ± 09.01 62.68 ± 07.29
FT+Weight Aligning+Margin ranking loss 56.77 ± 08.47 78.01 ± 04.25
FT+Weight Aligning+Margin ranking loss+Triplet loss (IL2FS) 59.08 ± 08.26 79.36 ± 04.68

6. Discussion

Experiments showed that a standard deep learning model for emotion recognition
(CapsNet) degrades its accuracy performance when trained in a class-incremental way
over only samples from new emotions. This problem, known as catastrophic forget-
ting, is presented because previously learned emotions are negatively affected when new
ones are incorporated into the classifier model. Thus, unlike previous works as reported
in [3,8,13–16,20,21], this research is focused on studying the catastrophic forgetting problem
in EEG-based emotion recognition.

By incorporating existing CIL methods to CapsNet, we showed that classification
results of the baseline approach (CapsNet-wo-memory) can be improved, suggesting
that CIL methods can help mitigate the catastrophic forgetting in EEG-based emotion
recognition. However, experimental results on two public datasets showed that existing
CIL methods do not ensure high average accuracies. Thus, a CIL method was developed
and validated to address the catastrophic forgetting problem.

Previously, Lee et al. [41] studied the CIL over the imagined speech task from EEG
signals. Authors used fine-tuning and the nearest neighbor classifier to address the catas-
trophic forgetting, however, they stored 20% of the full data of every old class in each
incremental stage. Furthermore, only one incremental stage was used for CIL evaluation,
while more stages are needed to observe the negative impact of catastrophic forgetting.
On the other hand, our experiments consider a rigorous evaluation over two datasets for
emotion recognition, including popular and recent CIL methods in our comparison. Based
on our results, we found that IL2FS outperformed existing CIL methods on two public
datasets: DREAMER and DEAP. Note that we integrated a weighting aligning as the WA
method for bias correction, but an inter-class separation and a feature space alignment
were also considered by IL2FS, outperforming WA by 14.28 pp and 17.35 pp on DREAMER
and DEAP, respectively. Like IL2FS, the Mnemonics and Geodesic+LUCIR methods ensure
an inter-class separation via margin ranking loss, but IL2FS encourages the separation
between old classes and their nearest one, including old or new, instead of only ensuring
a separation between old and new classes. Although Mnemonics and Geodesic+LUCIR
also consider strategies for bias correction and an alignment of output predictions, our
proposal outperformed Mnemonics by 8.96 pp and 9.95 pp on DREAMER and DEAP, while
Geodesic+LUCIR was outperformed by 9 pp and 8.94 pp, respectively. In addition, note
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that comparison methods, such as LwF, iCARL, WA, Mnemonics, and Geodesic+LUCIR,
use different strategies to align the output predictions of old classes to leverage the less
forgetting. Unlike these works, IL2FS incorporates triplet loss to preserve the feature space
alignment of old classes instead of the output predictions.

Regarding the evaluation which varies the number of reserved samples and the
number of incremental stages, IL2FS showed a clear advantage compared to existing
methods when the number of reserved samples in the memory is reduced. This issue is
also observed when a greater number of CIL stages are achieved since a lower number of
samples per class may be stored in memory. The above indicates that IL2FS preserves the
learned knowledge better than compared methods throughout different incremental stages
on the most challenging scenario possible for the evaluated datasets. On the other hand,
as expected, every evaluated method improved its accuracy performance whenever the
number of reserved samples in the memory is increased. However, by using a memory
size near 5%, IL2FS still obtained the best average accuracy on the DREAMER, while it is
similar with respect to the existing CIL methods for the DEAP dataset.

Concerning the effect of each component of IL2FS, weight aligning improved the
average accuracy over the Fine-tuning method, which indicates that performing a bias
correction is important to reduce the catastrophic forgetting problem in EEG-based emotion
recognition. Then, margin ranking loss was incorporated to ensure an inter-class separation
between each old class and its nearest class (old or new). Previous work in [33] showed that
a separation between old and new classes might be sufficient to help reduce the catastrophic
forgetting. However, we found that this strategy [33] on IL2FS obtained a similar average
accuracy on DREAMER (58.55 ± 7.33% vs. 58.74 ± 07.56%), but the accuracy performance
is drastically reduced on DEAP (53.36 ± 08.84% vs. 79.36 ± 04.68%). These results suggest
that it is preferable to encourage an inter-class separation between each old class and its
nearest class (old or new) instead of only ensuring a separation between old and new
classes. Finally, unlike previous CIL works [42–44] where triplet loss is mainly used to train
embedding networks and provide an inter-class separation, we used such loss function to
maintain the same aligning of the feature space learned at previous incremental stages. For
this, IL2FS aims to produce near feature representations coming from a reference model
and a new model for the same processed sample, while features from different samples are
pushed away from each other by a small margin. This strategy showed to be beneficial for
the CIL task in two emotion recognition datasets.

The presented study may contribute to designing and building more adaptive and
scalable classifiers, as our study showed a first Class-incremental Learning solution to
avoid reconfiguring the entire system when new emotions are incorporated sequentially.
For this, we consider an evaluation of the most challenging scenario that may be built over
the two public datasets for emotion recognition. However, our study did not consider other
CIL settings and evaluation protocols. Furthermore, other preprocessing procedures and
neural network architectures were also not explored.

7. Conclusions

In this paper, we presented IL2FS, a CIL method to address the catastrophic forgetting
in EEG-based emotion recognition from EEG signals. IL2FS aims to preserve the feature
space learned over previous incremental stages, performing a bias correction of new classes
and ensuring the inter-class separation and feature space alignment from classes learned
at previous incremental stages. The proposed method was incorporated into a Capsule
Network architecture for EEG-based emotion recognition. Our experiments showed that
IL2FS achieved the best average accuracy over two public emotion datasets, outperforming
popular and recent CIL methods under different memory sizes. Furthermore, Friedman
and Wilcoxon’s tests showed that IL2FS significantly outperformed existing CIL methods
over the evaluated datasets, using the standard protocol for CIL methods based on memory
replay. By using IL2FS, better preservation of the learned knowledge is possible when
presented with a greater number of incremental stages and a reduced number of reserved
samples in memory. In this direction, new emotions may be incorporated into an existing
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deep neural network classifier without retraining from scratch, employing a set of represen-
tative samples of emotions previously learned in a sequential way. However, the presented
results suggest that the proposed solution is still exposed to catastrophic forgetting for a
high number of incremental stages and limited memory size.

As future work, we are interested in studying the negative effect of batch normalization
layers since a bias may be produced over learned statistics from old classes by training over
imbalanced data.
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