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Abstract: Cardiac disease diagnosis and identification is problematic mostly by inaccurate segmen-
tation of the cardiac left ventricle (LV). Besides, LV segmentation is challenging since it involves
complex and variable cardiac structures in terms of components and the intricacy of time-based
crescendos. In addition, full segmentation and quantification of the LV myocardium border is even
more challenging because of different shapes and sizes of the myocardium border zone. The foremost
purpose of this research is to design a precise automatic segmentation technique employing deep
learning models for the myocardium border using cardiac magnetic resonance imaging (MRI). The
ASPP module (Atrous Spatial Pyramid Pooling) was integrated with a proposed 2D-residual neural
network for segmentation of the myocardium border using a cardiac MRI dataset. Further, the
ensemble technique based on a majority voting ensemble method was used to blend the results of
recent deep learning models on different set of hyperparameters. The proposed model produced
an 85.43% dice score on validation samples and 98.23% on training samples and provided excellent
performance compared to recent deep learning models. The myocardium border was successfully
segmented across diverse subject slices with different shapes, sizes and contrast using the proposed
deep learning ensemble models. The proposed model can be employed for automatic detection and
segmentation of the myocardium border for precise quantification of reflow, myocardial infarction,
myocarditis, and h cardiomyopathy (HCM) for clinical applications.

Keywords: myocardium segmentation; cardiac MRI; deep learning segmentation models; ASPP;
residual neural network

1. Introduction

Cardiac diseases have profound effects on health and mortality. Prediction of the
cardiac index from cardiac MR (magnetic resonance) images is essential to diagnose and
identify cardiac disease. In particular, an accurate quantification and identification of
cardiac disease from left ventricle (LV) cardiac imaging is an imperative and demanding
task [1]. During clinical practice, LV segmentation algorithms [2] generate myocardium
borders either automatically or by measuring myocardium contouring borders manually.
This process needs reliable and accurate quantification of the myocardium. Besides, manual
contouring of the myocardium border is a time constraint, subjective to high observer
inconsistency, and typically insufficient for ED (end-diastolic) and ES (end-systolic) frames.
These factors make the process inadequate for dynamic functional analysis. Due to shape
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variability and the lack of edge information, LV segmentation requires research that involves
advanced techniques.

Various segmentation methods for cardia MR images [2,3] require strong user inter-
actions and a priori information to achieve better and reliable results for effective clinical
applications. Recently, direct methods without segmentation, based on machine learn-
ing (ML) techniques, have gained popularity and have exhibited reliable performance.
However, a few limitations have been reported: (1) features obtained manually could
not capture sufficient information from task-relevant cardiac structures; (2) some manual
feature selection techniques and ML algorithms may not be optimally integrated; (3) only
measuring the volume of cardiac features is insufficient for regional, inclusive universal
and vibrant function valuation.

Recently, convolutional neural networks (CNN) have been used widely for cardiac
image analysis. For example, CNNs have achieved success in medical oriented imaging
analysis [4]. In addition, CNNs in combination with other deep learning models have been
positively employed for cardiac image analysis, with deep learning models incorporated
with deformable models to develop and evaluate a fully automatic LV segmentation tool
from short-axis cardiac MRI datasets [5]. Further, CNNs have been used to automatically
detect the LV chamber in MRI datasets and stacked autoencoders to determine the LV
shape. The inferred shape is combined into deformable models to enhance the accuracy of
the segmentation. In [6], the authors proposed a unique method based on deep learning
and a level set for the automated segmentation of the left ventricle of the heart from
cardiac cine magnetic resonance (MR) data. This combined method used small training
sets and delivered accurate segmentation results. In another study [7], Tran presented a
method to solve the problem of automated left and right ventricle segmentation using
deep fully convolutional neural network architecture. He trained his proposed model
end-to-end in a single learning stage from whole-image inputs and ground truths to
analyze every pixel. Long et al. [8] applied AlexNet, VGG net, and GoogLeNet into
CNNs and transferred their learned representations using fine-tuning to the segmentation
task. They presented a model that integrates semantic information from a deep, coarse
layer with image information from a shallow, fine layer to generate precise and elaborate
segmentations. Wolterink et al. [9] proposed a fully automatic method for segmentation
and disease classification using cardiac cine MR images. They used CNN segmentations
of the left ventricle (LV), right ventricle (RV), myocardium in end-diastole (ED) and end-
systole (ES) images. The extracted features from segmentations were used in Random
Forest algorithms to classify different heart diseases. In [10], the authors presented a
method based on multi-planar deep CNN with an adaptive fusion scheme in which they
automatically used complementary information from different planes of the 3-D scans
for improved delineations. They used CT and MRI images to train and test their model
for cardiac substructures. In [11], the authors proposed a fully automatic MRI cardiac
segmentation method based on CNN. This model used features of both levels, such as high-
level features and low-level features. These features were learned with a grid-like CNN
architecture. Further, they tested their model on the ACDC MICCAI’17 challenge dataset.
This method can segment all three regions of a 3-D MRI cardiac image. Various 2-D and
3-D Unet-based deep learning models have been proposed in automatic cardiac diagnosis
challenge (ACDC) for cardiac segmentation, including dilated CNN, encoder-decoder
architecture. Moreover, Tan et al. [12] introduced a multiscale deep learning model for LV
oriented segmentation in the polar typed spaced domain. Brahim et al. [13] presented 3-D
CNN for segmenting volumetric oriented images. These models acquired sufficient success
to handle LV segmentation based on MR cardiac images.

In this research, a deep learning model with a residual block and integrated ASPP
module is proposed to extract multiscale features from the decoder side and to use these
features in the encoder side of the proposed model for myocardium border segmentation
based on MRI cardiac images. The main objectives and salient features of this paper are
listed below:
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• The research work proposes integration of the 2-D residual neural network with
the ASPP module. The designed network has different numbers of layers at the
encoder and the decoder components. In addition, the ASPP module is added at
the lowermost of the encoder and the decoder. The integrated framework captures
multiscale information, and the ASPP module can be detect small objects with different
shapes, sizes and orientations from MR heart images.

• The proposed model is designed to be robust because its training involves various
hyperparameters. In addition, different models are brought together using a majority
voting scheme to further enhance segmentation accuracy.

• A contrast enhancement method is proposed for preprocessing the input cardiac MRI
dataset. Various performance metrics are used to relate the performance of recent
models and the proposed model in deep learning contexts.

The rest of the paper is organized as follows. Section 2 describes related work. Section 3
describes materials and methods for the dataset, preprocessing, proposed model, and
evaluation criteria. The experimental results are discussed in Section 4. Section 5 concludes
the work and provides direction for future work.

2. Related Work

LV quantification methods for cardiac MR images are grouped into three classifica-
tions: (1) physical quantification; (2) segmentation oriented quantification, and (3) straight
regression-oriented quantification. Conventionally, experimental practice involves physi-
cally contouring the boundaries of myocardium and is considered reliable [14]. However,
the manual contouring approach consumes more time than automatic methods and the
results vary because of observer bias. In addition, the method typically limits the ED (end-
diastolic) and ES (end-systolic) frames, which makes it inadequate for vibrant functional
investigation during the complete cardia cycle. Segmentation-based quantification has
been used to segment the cardiac myocardium towards multifaceted environments, and
with visibly delineated corners of the epicardium and endocardium. Moreover, various
methods [2,15], such as image driven methods, and training-based and deformable models,
have been designed for cardiac LV classification. To obtain precise performance, these
methods need user interaction and a priori information. Some methods are based on
anatomical assumptions, such as circular geometry of the LV [16], intensity histogram
distribution [17], or statistical shape modeling [18]. User interactions involves pointing
out the center of the LV cavity and manually identifying the ventricle corner of the first
frame [19]. This can create inaccuracies and may prevent LV separation methods being
used for effective scientific applications. In [20], depth-wise dense network is proposed to
detect infected area in lungs X-rays that improved feature representations by performing
multilevel feature embedding.

Direct regression approaches have used recent ML approaches to estimate cardiac
volumes. These methods can further be categorized into two groups: two phase classes
only [21–23], and end-to-end deep learning models [24–26]. The two-phase method uses
unsupervised ML such as the Bhattacharyya coefficient in image disseminations [27], ap-
pearance features [28], multiple low level image features [22], features from a multiscale
convolution deep belief network (MCDBN) [23], and manually obtained features. Further-
more, these features are employed in regression models for cardiac volume estimation. In
another study [29], a hybrid model based on 3D residual network (RN) with a squeeze-
and-excitation (SE) block is proposed for volumetric segmentation of kidney, liver, and
their associated tumors that improved performance in volumetric biomedical segmentation.
End-to-end deep learning models have been effectively utilized in medical image investiga-
tion [30] and have the capability of extracting effective features in a complete fashion [31].
Deep learning models such as the deep belief network (DBN), auto stacked encoder and
CNN, incorporated with traditional models [5,6,32] are used in cardiac image segmentation.
The fully convolutional network (FCN) and recurrent FCN have been proposed in cardiac
segmentation [6,7,33]. The author of [24] proposed 3-D deep learning models to segment
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and estimate volume. The end-to-end deep learning models could not obtain temporal
information between each slice of cardiac MR images and were incapable of handling mul-
tiscale information or features from input cardiac images. Therefore, these end-to-end (E2E)
deep learning models must incorporate multiscale features from input images to produced
reliable performance. The designed method is capable of segmenting myocardium borders
and extracting multiscale features using an ASPP module for all segments in the complete
cardiac cycle.

Zheng et al. [34] proposed a model to address the overfitting problem in deep CNN
based on two-stage training methods such as: 1—pretraining and 2—implicit regularization
training. In the first method, image representation is extracted through training a model
for anomaly detection. In the second method, the model is retrained based on anomaly
detection results to standardize the feature boundary and converge it in a suitable position.

In another study, Zheng et al. [35] proposed a full stage data augmentation framework
to enhance the accuracy of deep convolutional neural networks. This model acts as an
implicit ensemble model without additional training costs. Coexisting data augmentation
during the training and testing process can provide network optimization and improve its
generalization capability.

Liu et al. [36] proposed a method to extract hierarchical neighborhood preserving fea-
tures based on a stacked neighborhood preserving autoencoder (S-NPAE). A loss function
feature was applied to reconstruct and preserve the neighborhood structure of the input
data at the same time. NPAE extracted the features from its input data by minimizing
the loss function. The deep S-NPAE network was developed hierarchically by stacking
multiple NPAEs. The extracted features were provided to S-NPAE for prediction in soft
sensor modeling.

Rucco et al. [37] proposed a model for radiomics features based on topological features
for a personalized diagnostic system of Glioblastoma multiforme (GBM) analysis from fluid
attenuated inversion recovery (FLAIR). They developed a method based on topological
and textural features, and automatic interpretable machine learning for automatic GBM
classification on FLAIR.

In [38], a semantic segmentation network was introduced to develop an indoor navi-
gation system for a mobile robot based on a convolutional neural network (CNN).

To detect and remove outliers in high dimensional data, a multistage technique was
proposed in [39]. This technique reduced the high dimensional features into two dimen-
sional features based on t-distributed stochastic neighbour embedding (t-SNE). Further, a
convolutional neural network model (ConvNet) was used for the image classification problem.

In [40], Hu et al. developed a TopoResNet that integrates topological information
into the residual neural network architecture. They applied TopoResNet to a skin lesion
classification problem. They determined that TopoResNet improves the accuracy and the
stability of the training process.

Ensemble learning unites several specific models to obtain adequate generalization
performance. Nowadays, deep learning models are demonstrating better performance
than traditional classification models. Deep ensemble learning models combine the advan-
tages of deep learning and ensemble learning to improve the generalization performance
of the model. In this regard, several researchers have used ensemble learning in their
studies [41–44].

3. Material and Methods
3.1. Dataset

A dataset from 56 subjects with SAX MR sequences based on a clinical environ-
ment was used for model training and validation. Each subject consisted of 20 frames
and the pixel layout of the MR images was assorted between 0.6836 mm/pixel and
2.0833 mm/pixel, in addition to a mode with 1.5625 mm/pixel. The study obtained the
dataset from three medical resources associated with health care hubs, namely, London and
St. Joseph Healthcare Centers based on scanners of two merchants (GE & Siemens) [45,46].
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The dataset is publicly available [45] with subjects having ages from 16 years to 97 years
and averaging 58.9 years. The ground truth for each frame for all subjects was provided for
endocardium and epicardium borders. The individual subject data comprised 20 frames all
over the cardiac cycle.

3.2. Preprocessing of the Dataset

A dynamic histogram equalization technique was used for contrast enhancement of
input cardiac MRI images. The raw and contrast images are shown in Figure 1 for different
numbers of patients. The input slices with enhanced slices and ground truth mask are
shown in Figure 1.
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3.3. Proposed Model

The proposed model is a residual network comprising an encode-decode network.
The ASPP module is integrated at the bottom of the proposed model. Figure 2 depicts the
block diagram of the proposed model for myocardium segmentation using MR cardiac
images. The input feature maps from the encoder side are passed to the ASPP module,
and output feature maps after the ASPP module are provided to the decoder part of the
proposed model. Details of each module are explained in the following sections.
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module used in the proposed residual network.

3.3.1. ASPP Module

The ASPP network is a combination of various parallel atrous convolutions with
different rates, global average pooling and a 1 × 1 convolutional layer. The proposed
network can capture contextual information at multiple scales using atrous convolution
with different filter kernels. In addition, it can extract multiscale features from the input
feature maps for myocardium border segmentation. Atrous convolution is a promising
tool for capturing multiscale feature information by controlling different resolutions by
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adjusting different receptive fields [47]. Atrous convolution was applied on the input x for
each pixel i on the output y and filter w as shown in Equation (1):

y[i] = ∑
k

x[i + r.k]w[k] (1)

Here, the atrous rate r controls the stride for sampling the input image. The subjected
convolution inserts r − 1 zeros between two successive filter values and convolves the
input x with those filters. The receptive field of filter can be modified by adjusting the
filter rate r. We integrated an ASPP module was used in DeepLabv3 [48] in the proposed
residual network to improve the segmentation results.

ASPP consisted of four atrous convolutions layers using different atrous rate r and
one global average pooling layer. Three parallel atrous convolution layers were used with
3 × 3 size rates of 3, 5 and 7, and one 1 × 1 convolution layer. The resulting features from
the four convolutions and one overall pooling average layer were up sampled bilinearly to
the feed size and then concatenated and provided to another 1 × 1 type convolution. The
ASPP was employed to the feature map produced by the bottom of the encoder segment
and the outcome feature map from ASPP were provided to the decoder part of the network.

3.3.2. Proposed Hybrid Encoder-Decoder ASPP-RN Model

The pooling layers in convolutional neural network gathered contextual information
and reduced the spatial information from input image. The main problem in semantic sub-
division is that the feature maps have low resolution. AN encoder-decoder based networks
such as U-net, V-net can be employed to solve the low-resolution problem based on the
up-sampling layer, gathering the information from lower layers and reinstating the resolu-
tion of the estimate to that of the input image at the decoder side. The encoder-decoder
based networks concatenate maps from the decoder side with a lower-level feature map to
provide the spatial information in semantic segmentation using the up-sampling layer.

The proposed model is structured into a series of encoding and decoding operations
constituting a residual network. The convolution task is performed by an encoder that
carries a 2 × 2 residual block incorporating the maximum pooling operation that down-
samples the data. The channels relating to feature maps are doubled once the encoder
performs its residual activity in the network The ASPP network combines both the top and
bottom of the encoder-decoder operations in the model. The ASPP network is provided with
the features of input images that map the inputs to the up-sample component of the network.
The residual part of the network typically consists of layers named the convolution layer,
batch-normalization layer, and the ReLu layer containing an activation function. The
process passes the inputs to the third later after convolving it by the convolutional layer.
The products of the first two layers are combined and provided to the ReLu instigation
function. The residual block is shown in Figure 3. A different set of channels is employed
by the residual segment at various layer channels that perform encoding and decoding in
the network.

The segments of the decoding part perform up-sampling employing a 2 × 2 decon-
volution operation followed by a concatenation of features (inputs of encoding) fed into
the residual block. The entire process divides the input data into halves with the consecu-
tive operation of up-sampling and down-sampling. After a series of such operations, the
process achieves a convolution 1 × 1 layer that is accompanied by a sigmoid activation
method. The desired output in a binary format is thus predicted through the system.
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3.3.3. Ensemble of Proposed Models

The ensemble technique based on majority voting was applied based on various ma-
chine and deep learning models for classification problem [49,50]. The majority voting
technique was applied for creating an ensemble of the output of the proposed models based
on predicted masks for myocardium segmentation. Figure 4 shows a block diagram of the
ensemble method. Based on experimental results, seven best models with different hyper-
parameters space were chosen for this experiment. Majority voting based on maximum
function scheme used for ensemble of the output of various models is shown in Figure 4.
In majority voting, the predicted pixel value outputs of the best deep learning models are
assigned votes and the most predicted values are assigned as the vote of the outputted
model as an ensemble. The ensemble model output is expressed in Equation (2).

C(x) = max ∑ Ci(x) = y (2)
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where y is the output pixel values of the ensemble model and Ci(x) is the prediction of each
individual model. As a result, seven base segmentation models are selected to generate the
output of ensemble model. The prediction of these best models is voted to obtain the final
myocardium segmentation.

Mathematics 2022, 10, 627 9 of 23 
 

 

where y is the output pixel values of the ensemble model and Ci(x) is the prediction of 
each individual model. As a result, seven base segmentation models are selected to gen-
erate the output of ensemble model. The prediction of these best models is voted to obtain 
the final myocardium segmentation. 

 
Figure 4. The ensemble module used for myocardium segmentation based on best proposed and 
existing models. The majority voting scheme is used to obtain the output of proposed and existing 
models. 

3.3.4. Network Parameters or Configuration 
The proposed model was implemented using PyTorch with Adam optimizer. Differ-

ent hyperparameters were used for training of the model. The learning degree, weight 
falloff, and batch size with number of epochs were also used in training the model. 

3.4. Evaluation Criteria 
The performance of the proposed model was evaluated based on evaluation metrics 

such as sensitivity, specificity, Jaccard coefficients, Dice coefficient, Volume Overlap Error 
(VOE), Relative Volume Difference (RVD), Surface Distance Metrics, and Hausdorff dis-
tance. These evaluation metrics are described below. 

Sensitivity is used to measure the positive portion of the voxels between actual and 
predicted segmentation masks. Sensitivity is determined by Equation (3): 

Sensitivity = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3)

Specificity is employed to measure the negative voxels between actual and predicted 
masks. Specificity is expressed in Equation (4): 

Specificity = 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (4)

The Jaccard Coefficients index (JAC) [14] describes the overlap of two sets separated 
with union of sets as shown in Equation (5): 

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 (5)

where A is the actual volume, and B is the predicted volume. 

Figure 4. The ensemble module used for myocardium segmentation based on best proposed and exist-
ing models. The majority voting scheme is used to obtain the output of proposed and existing models.

3.3.4. Network Parameters or Configuration

The proposed model was implemented using PyTorch with Adam optimizer. Different
hyperparameters were used for training of the model. The learning degree, weight falloff,
and batch size with number of epochs were also used in training the model.

3.4. Evaluation Criteria

The performance of the proposed model was evaluated based on evaluation metrics
such as sensitivity, specificity, Jaccard coefficients, Dice coefficient, Volume Overlap Error
(VOE), Relative Volume Difference (RVD), Surface Distance Metrics, and Hausdorff distance.
These evaluation metrics are described below.

Sensitivity is used to measure the positive portion of the voxels between actual and
predicted segmentation masks. Sensitivity is determined by Equation (3):

Sensitivity = TPR =
TP

TP + FN
(3)

Specificity is employed to measure the negative voxels between actual and predicted
masks. Specificity is expressed in Equation (4):

Specificity = TNR =
TN

TN + FP
(4)

The Jaccard Coefficients index (JAC) [14] describes the overlap of two sets separated
with union of sets as shown in Equation (5):

J(A, B) =
|A ∩ B|
|A ∪ B| (5)

where A is the actual volume, and B is the predicted volume.
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The Dice coefficient (DC) is employed for validating the segmentation of the medical
volume-oriented data. This is an overlapping index that calculates the magnitude of
overlapping between actual result and achieved results in the context of task-related binary
segmentation [40]. For the actual and achieved mask, the DC is expressed by following
Equation (6):

Dice(A, B) =
2|A ∩ B|
|A ∪ B| (6)

The volume overlap error [40] is almost the reciprocal of the Jaccard index. It is defined
by Equation (7):

VOE(A, B) = 1− |A ∩ B|
|A ∪ B| (7)

The relative volume difference (RVD) is calculated by Equation (8) [40]:

RVD(A, B) =
|B| − |A|
|A| (8)

Surface distance metrics determine the measurements between actual and predicted
segmentation [40] as defined in Equations (9) and (10):

d(v, S(A)) = minSAεS(A)||v− SA|| (9)

ASD(A, B) =
1

|S(A)|+ |S(B)|

 ∑
SAεS(A)

d(SA, S(B)) + ∑
SBεS(B)

d(SB, S(A))

 (10)

The Hausdorff Distance is employed for differentiating between the binary objects
into two masks of segmentation. It is termed as the maximum surface distance (MSD) that
exists in objects [51]. The MSD is expressed in Equation (11):

MSD(A, B) = max
{

maxSAεS(A)d(SA, S(B)), maxSBεS(B)d(SB, S(A))
}

(11)

4. Simulation

The study employs eight metrics for the measurement of the accuracy of the proposed
segmentation method by comparing results with those of recent models. Measurements
are made of metrics such as relative volume difference (RVD), volumetric overlap error
(VOE), maximum surface distance (MSD), average symmetric surface distance (ASD),
Dice coefficients, Jaccard coefficients, specificity and sensitivity. It was noticed that better
segmentation was achieved for smaller values of the first four measurements. Better
segmentation was achieved for higher value of Dice and other three metrics (Jaccard,
sensitivity, specificity).

4.1. Performance Analysis Based on Performance Metrics

Various recent models used for segmentation based on biomedical images were reim-
plemented and trained on various set of parameters (learning rate, optimizer, size of batch
with number of epochs). The performance metrics for all existing and proposed segmen-
tation models is shown in Table 1. The models were trained using four different sets of
hyperparameters (details of each hyperparameter set are depicted in Table 2) and the best
models chosen based on test samples.
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Table 1. The Performance metrics based on prevailing and proposed models on test dataset.

Models DC JC Hd95 HD Specificity Sensitivity VOE ASSD RVD

SegNetM3 81.00 69.10 8.5227 13.6867 98.63 84.87 0.3089 2.5484 0.1201
FractalNetM4 81.95 71.71 9.0721 16.3544 98.72 89.72 0.2828 2.4974 0.3443
ProposedM4 85.43 75.93 6.1702 10.0142 99.14 85.51 0.2406 1.7823 0.0141
FractalNetM3 83.63 73.88 13.1938 20.2024 99.04 83.18 0.2611 2.9740 0.0169
ProposedM3 84.96 74.78 11.3915 24.4692 98.97 87.48 0.2521 2.3937 0.0795
FactalNetM1 81.91 71.38 9.2453 30.4901 98.60 85.92 0.2861 2.80443 0.1231
ProposedM1 82.51 71.80 11.4752 26.905 98.76 87.22 0.2819 2.7359 0.1746

Ensemble Model 84.99 75.17 5.6782 12.6781 97.99 90.78 0.2790 1.8932 0.0674
The last line in bold shows the best results.

Table 2. Hyperparameters Employed in Proposed and Recent Deep Learning Models.

Hyperparameters Proposed Model SegNet [52] ResNet [53] Unet-Base [54] Attention with
Unet [55] FractalNet [56]

Learning rate 3 × 10−4, 1 × 10−4,
2 × 10−4, 1 × 10−4 - - - - -

Optimizers Adam - - - - -

Batch size 8, 12, 16, 20 - - - - -

Number of
epochs 100, 200, 300, 500 - - - - -

Best training Dice coefficients and Jaccard coefficients based on proposed and existing
models are shown in Figure 5.
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Figure 5. Dice and Jaccard coefficients based on best proposed and existing algorithms using
training dataset.

Figure 6 shows the Dice and Jaccard coefficients for all models. The best four sets of
hyperparameters were used for training the proposed and existing models.

The sets of hyperparameters used for recent existing deep learning models and pro-
posed model are depicted in Table 2. The symbol ‘-’ represent the same value noted in the
proposed model.
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Figure 6. Dice and Jaccard coefficients based different sets of hyperparameters. (a) Proposed models,
(b) ResNet model, (c) Unet model, (d) SegNet model, (e) attention U-Net model, (f) FractalNet model.

Percentage of equal pixels was employed to evaluate the binary segmentation between
actual and predicted samples. The high value of percentage agreement between pixels
of predicted and ground truth data shows that the proposed models produced optimal
performance. A histogram of pixel agreement between predicted and ground truth test
samples using the proposed model is shown in Figure 7. Most of the samples shows more
than 96 percent agreement between predicted and ground truth values for all proposed
models. Figure 7h shows that the ensemble model produced 99 percent histogram agree-
ment for most of the samples. This pixel agreement analysis shows that the proposed
model produced reliable and accurate segmentation results using cardiac MRI-validated
dataset. Pixel agreement analysis revealed that our proposed model could be used for
myocardium border segmentation.
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Figure 7. Histogram plots of pixel agreement between predicted and ground truth data for all
frames of the test cardiac MRI dataset based on best proposed and existing models. (a) SegNet,
(b) ProposedM1, (c) ProposedM3, (d) ProposedM4, (e) FractalM1, (f) FractalM3, (g) FractalM4,
(h) Ensemble.
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Bland Altman analysis was conducted using ground truth and predicted segmentation
values for all frames of the test data. Figure 8 shows the Bland Altman analysis for the
chosen best models (proposed and existing). The analysis showed a 95% agreement between
predicted and ground truth samples for all test data. Only a few samples produced error
values, as shown in Figure 8a. Figure 8h shows densely grouped values for most of the
samples indicating agreement between samples. FractalM1 and FractalM4 showed a high
error rate for a certain number of samples and some samples were diverted from densely
grouped samples. The Bland Altman analysis shows that the ensemble model provides a
reliable solution and strong agreement between actual and predicted samples, except for a
few samples. Statistical analysis was performed based on actual and predicted mask frames
for one patient. The Pearson correlation coefficient was calculated for actual and predicted
masks based on best proposed and existing models. The correlation values are shown in
Figure 9. The ensemble produced highest correlation values between actual and predicted
masks. Pixel agreement for 20 frames based on one patient’s data is shown in Figure 10.
The best proposed and existing models were used to calculate pixel agreement percentage.
The ensemble model produced the highest pixel agreement percentage between the actual
and predicted masks.

4.2. Visualization Segmentation Results

The proposed model and existing deep learning models were used to evaluate segmen-
tation of the myocardium border using heart MRI dataset. An 80% dataset was used for
training and 20% for testing. The actual and segmented contours are shown in Figure 10.

Table 3 shows comparison of the proposed ensemble model with datasets. Alain
et al. [57] proposed a dataset based on left ventricle myocardium segmentation. The
proposed model also evaluated a multi-sequence cardiac MRI dataset [58]. The dataset
used in this paper with other publicly available datasets are shown in Table 3.
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Figure 10. Pixel agreement between actual and predicted masks for 20 frames of test patient data
using the best proposed and existing models. PM1 denoted as proposedM1, PM3 denoted as pr-
posedM3 and PM4 denoted as proposedM4. Similarly, FM1, FM3 and FM4 denoted as FractalNetM1,
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Table 3. Comparison of proposed model with other publicly available datasets.

Datasets DC JC Hd95 HD

Xue et al. [45] 84.99 75.17 5.6782 12.6781
Alain et al. [57] 79.67 72.09 8.33 10.33
Liu et al. [58] 78.33 70.01 8.34 14.22

Training and validation loss curves for the proposed model are shown in Figure 11.
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The training and validation loss curves are shown in Figure 11. The loss curves did
not provide smooth learning when we used the Liu dataset [58] and resulted in overfitting;
the reason being the small number of samples available for training. The dataset provided
by Xue [45] produced better training and validation loss compared to the Liu dataset [58].

Table 4 shows the number of trainable parameters and number of flops used during
optimization and training of proposed model with different number of hyperparameters.
There was no big difference between trainable parameters across each model. The com-
putational complexity was the same across each model when we used different number
of parameters.

Table 4. Trainable parameters and number of flops for optimization of proposed model with different
hyperparameters.

Models Trainable Parameters Number of Flops

Model1 27,889,221 334,516,681
Model2 27,414,339 333,277,610
Model3 27,228,939 337,723,411
Model4 27,907,333 337,612,235
Model5 27,221,797 332,236,130
Model6 27,698,773 332,112,244
Model7 27,896,532 338,333,759

4.3. Discussion

The performance of the proposed framework was evaluated using various perfor-
mance metrics for semantic segmentation. Performance metrics such as Dice coefficients,
Jaccard coefficients, volume over error, Housdrouf distance, maximum average surface
distance, accuracy, sensitivity, specificity were used to assess the accuracy between actual
and predicted values based on each frame of the input dataset. Other performance metrics
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such as correlation coefficients, agreement between binary and Bland Altman plots be-
tween actual and predicted masks were assessed to determine the accuracy of the proposed
model. Slice-by-slice popular segmentation deep learning models such as Unet, SegNet,
FractelNet, ResNet, Attention U-net were reimplemented and results compared with our
proposed Residual neural network including an atrous spatial pyramid pooling module
deep learning model. Further, we trained state-of-the-art and proposed models using
various hyperparameters and ensemble, or by fusing the four best chosen models using
an ensemble majority voting method. The ensemble model produced the best results with
the proposed models. The proposed model performed well for myocardium segmentation
and handled the big challenges occurring in myocardium segmentation due to different
sizes and shapes of the myocardium border. The texture between the myocardium borders
and its surroundings is another challenge, and our proposed model handled this challenge
well. Images of a few slices are shown in Figures 12–15. Due to insufficient contrast be-
tween surroundings and the border of myocardium, some parts of the border could not
be seen using fractalNet, as shown in Figure 15. The proposed model4 segmented the
full myocardium border, as shown in Figure 13. The ensemble model produced excellent
results and segmented the full border with different shapes and sizes of the myocardium
border. The atrous spatial pyramid pooling module is used successfully for segmentation
of computer vision and biomedical image semantic segmentation problems. The ASPP
module integrated with the proposed encoder-decoder residual network has the ability
to extract detailed features and achieved good performance compared with recent deep
learning models.

Some boundary pixels of myocardium borders still require reconstruction using deep
learning models. In the proposed ensemble solution we took maximum pixel values from
the same location using different proposed models. Standard convolution usually uses a
convolution kernel with a smaller receptive field, making it impossible to obtain contextual
information. ASPP consisted of four atrous convolution layers using different atrous rates
(r) and one global average pooling layer. The pooling layers in the convolutional neural
network gather contextual information and reduce the spatial information from the input
image. The main problem in semantic subdivision is that the feature maps have low
resolution. Encoder-decoder-based networks such as U-net, and V-net can be employed to
solve the low-resolution problem based on an up-sampling layer, gathering the information
from lower layers and reinstating the resolution of the estimate to that of the input image
at the decoder side.
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Figure 14. The first row represents as ground truth images and second row represents predicted
masks based on the best ensemble model.

The proposed model is structured into a series of encoding and decoding operations
constituting a residual network. The majority voting technique was applied for ensem-
ble of the output of the proposed models based on predicted masks for myocardium
segmentation.

U-Net presented limited capacity in effectively learning the feature information of
the images in complicated tasks such as myocardium border segmentation with the same
texture surrounding the area and with different shapes. This limitation led to a need for
optimizing the network architecture structure to enlarge the parameter space to allow the
network to learn more representative features.
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The proposed residual block with ASPP module has various advantages compared
to traditional CNN-based models. The main advantages are (1) that the gradient can
flow continuously, allowing the parameters to be updated in very deep networks, (2) the
operations applied by a single layer are only a small modification to identity operation, and
(3) ResNets modules are robust to layer permutations suggesting that neighboring layers
perform similar operations. The main purpose of such residual blocks is the safeguarding
of feature maps within convolutional layer blocks that are used before each encoder and
decoder block required to bridge the semantic gap between the encoder and decoder by
maintaining small increments in the computational overhead and providing an accurate
segmentation map. The structural information for feature maps could be restored using
ASPP with the addition of the residual blocks aimed to preserve the fine-grained structures
that play an important role in medical image segmentation.

5. Conclusions

Quantification of the myocardium is an essential task for identification of myocardial
infraction and other heart diseases. The main challenge is to segment the myocardium
border that has different shapes and sizes of the myocardium border zone and the same
texture as the surrounding tissues. Various deep learning models have been proposed to
tackle the myocardium border segmentation task.

In this paper, a model based on a residual encoder-decoder integrated with an ASPP
module was presented for myocardium segmentation using a cardiac MRI dataset. Struc-
tural information for feature maps could be restored using the proposed ASPP with the
addition of residual blocks and different hyperparameters used in training of various
models. We chose the best models based on the experimental results. Further the ensem-
ble method based on a majority voting technique was applied to fuse the segmentation
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output of the best proposed and existing deep learning models. The ASPP module was
used to extract relatively local features and multi-scale features to provide rich context
information for the proposed network. Further, the ASPP and residual blocks from the
encoder and decoder side of the proposed model were used to reduce the semantic gap
between the high-level feature and the low-level feature maps to improve feature fusion
capability and improve the performance of the myocardium border segmentation task. The
results show that the proposed deep learning model could be used for cardiac myocardium
segmentation. Accurate segmentation and detection of myocardium borders could be
helpful in diagnosing myocardial infraction, no reflow and hypertrophic cardiomyopathy
(HCM) disease.

In future work, different hyperparameters in deep learning models and postprocessing
image processing steps could be used to reconstruct and segment the myocardium border
accurately. The postprocessing steps will be helpful for further accurate detection of
myocardium borders. The hybrid deep learning model approach could be developed for
the myocardium border.
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