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Abstract: This paper deals with the creation of parallel algorithms implementing macro-and micro-
scopic traffic flow models on modern supercomputers. High-performance computing contributes
to the development of intelligent transportation systems based on information technologies and
aimed at the effective regulation of traffic in large cities. As a macroscopic approach, the quasi-
gas-dynamic traffic model approximated by explicit finite-difference schemes is proposed. One-
and two-dimensional variants of the system are considered, and the concept of lateral velocity and
different equations for obtaining it are discussed. The microscopic approach is represented by the
multilane cellular automata model. The previously developed model is extended to reproduce
synchronized flow in accordance with Kerner’s three-phase theory. The new version starts from the
Kerner–Klenov–Schreckenberg–Wolf model and operates with the concept of the synchronization
gap. Macroscopic models are relevant for determining the common characteristics of road traffic,
while microscopic models are useful for a detailed description of cars’ movement. Both approaches
possess inner parallelism. The parallel algorithms are based on the geometrical parallelism principle
with different boundary conditions at interfaces of the subdomains. Sufficiently high speedups were
reached when up to 100 processors were involved in calculations. The proposed algorithms can serve
as the core of ITS.

Keywords: vehicular traffic flow; macroscopic and microscopic models; explicit finite-difference
methods; cellular automata; Kerner’s three-phase theory; high-performance computing

1. Introduction
1.1. Motivation of the Research

The world experience shows that for the effective regulation of traffic in large cities it
is necessary to implement an intelligent transportation system (ITS) that is actually a set of
systems based on information, communication and management technologies embedded
in vehicles and road infrastructure. An ITS should be able to promptly coordinate the
interaction of all road users, special services and departments. Therefore, ITS combines
a variety of innovative solutions, from mathematical models and methods for describing
traffic to decision support systems for traffic management, not to mention the technical and
engineering aspects. There are many periodicals devoted to both fundamental and practical
problems of ITS. Almost all well-known publishing houses such as Elsevier, Springer, Taylor
& Francis have been producing journals, Special Issues and books on this topic during the
past two decades (see, e.g., [1–6]).

Nowadays, the precondition for the successful development of ITS is, on the one hand,
availability of information about traffic flows from numerous cameras and sensors, and
on the other hand, the existence of high-performance computing (HPC) systems allowing
us to process this information, which is a huge amount of data. Promising Big Data
technologies [7] with the use of massively parallel processing (MPP) systems, uniting
hundreds and thousands of computational nodes, contributes to the ITS development.

Mathematics 2022, 10, 643. https://doi.org/10.3390/math10040643 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10040643
https://doi.org/10.3390/math10040643
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6008-9535
https://doi.org/10.3390/math10040643
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10040643?type=check_update&version=3


Mathematics 2022, 10, 643 2 of 18

Investigations proposed in this paper are directly related to the concept of ITS and the
innovative urban environment “Smart City”, since the developed algorithms for MPP can
serve as the core of ITS.

1.2. Research Objective

The present paper is devoted to the creation of parallel versions of algorithms for both
microscopic and macroscopic traffic flow models [8].

A microscopic approach to transport modeling based on the cellular automata (CA)
theory [9] has gained great popularity over the past few years. This approach allows us to
take into account many technical parameters and features of the drivers’ behavior. Such
models can include a detailed description of cars’ movement at intersections and in places
of narrowing of roads, overtaking and changing lanes, ensuring a high degree of accuracy
of the model’s correspondence to the real situation.

A separate and important task of microscopic modeling is to build a new mathematical
model of traffic flows that is able to reproduce synchronized flow, and that is in agreement
with Kerner’s three-phase-theory.

At the same time, macroscopic models do not lose their relevance in determining the
main characteristics of road traffic, which are necessary for transport planning.

The main goal of the authors of this article is to propose parallel implementations of
their original macro- and microscopic models. The models themselves have been verified
previously [10–12]. However, parallel algorithms under development are quite general and
can also be used to implement other models.

1.3. Research Methodology

A macroscopic model draws an analogy of congestion traffic flow with the gas-
dynamic flow, that is, it uses the continuum approach. Namely, the model proposed
by the authors is based on the quasi-gas-dynamic (QGD) system of equations [13]. The
QGD system was created for solving gas-dynamic problems in a wide range of Mach
numbers and has proven itself well in the simulation of supersonic, transonic, as well
as subsonic flows. The traffic flow under certain conditions (congestion traffic when the
strategies of all drivers are the same) can be considered as a flow of a slightly compressible
fluid and vehicles’ motion can be described by equations similar to the equations of gas
dynamics. Therefore, it seemed natural to adapt the QGD system to simulate traffic flows
by introducing terms into the equations that allow us to take into account the peculiarities
of the drivers’ behavior—the so-called human factor.

The main specialty of the proposed QGD traffic model is that it is two-dimensional
and, thanks to the introduction of lateral velocity, allows describing traffic on the road,
taking into account its real geometry.

The introduced microscopic model uses the cellular automata ideology [9]. The paper
reports an original two-dimensional CA model, which is a generalization of the Nagel–
Schreckenberg model [14] for the multilane case. For this model, algorithms have been built
that describe the real behavior of drivers [15]. Additionally, the paper, for the first time,
presents a new version of the CA model starting from the Kerner–Klenov–Schreckenberg–
Wolf model [16].

Both macro- and micro-approaches possess inner parallelism and are suitable for fast
calculations on supercomputers, even for modeling large-scale road networks with several
million vehicles.

In order to obtain efficient parallel implementations, a certain methodology known
as Ian Foster’s PCAM (Partitioning, Communication, Agglomeration and Mapping) con-
cept [17] is applied. It means partitioning the problem into tasks (for example, domain or
functional decomposition), identifying the necessary communication between the tasks,
agglomeration of fine-grained tasks into fewer coarse-grained tasks and finally mapping
coarse-grained tasks to processors in the most rational way to achieve good load balancing.
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Both the QGD traffic model and the CA model use domain decomposition (the data
parallelism) as the partitioning technique. Note that in Russian-language scientific literature,
such partitioning is often called geometric parallelism. When simulating traffic, the road
network is a computational domain that is geometrically split into parts, and calculations
are performed concurrently in these sub-domains. The principles of splitting are different
for the macroscopic and CA models; they are discussed in the corresponding sections of
the paper. In any case, local communication involving only neighboring sub-domains is
realized. Agglomeration and mapping aiming at good scaling and efficiency of the code
depend on details of the problem and also on the MPP system available.

Among the possible algorithms of macroscopic model numerical implementation,
explicit finite-difference schemes for the equation approximation seem to be the most
promising. They are logically simple algorithms and can be parallelized using domain
decomposition (distribution of points of the computational grid across computer nodes, in-
cluding CPU and GPU cores) with the minimum of local communication. As a rule, explicit
schemes demonstrate good scalability and portability in a wide range of supercomputer
architectures. Therefore, conservative explicit finite-difference schemes were chosen for the
QGD traffic model implementation.

1.4. Scientific Contribution

The main scientific contributions are:

- Macroscopic two-dimensional QGD model for traffic flow simulation including lateral
velocity of lane change; two different forms for lateral velocity with recommendations
for their use;

- A special form of internal boundary conditions for their exchange at the boundaries
of subdomains;

- A multilane CA model with speed adaptation mechanisms featuring various driving
strategies;

- Parallel implementation of traffic flow models based on the domain decomposition
technique and adapted to HPC systems with distributed memory.

The paper is organized as follows. Section 2 provides an overview of the current state
of the research field. Section 3 presents the macroscopic quasi-gas-dynamic traffic model, a
parallel algorithm of its implementation and results of numerical experiments. Section 4
proposes speed adaptation algorithms for the new cellular automata traffic flow model,
as well as discusses its parallel implementation. Section 5 concludes the paper with some
discussions and conclusions.

2. State of the Art in the Research Field

The traffic flow simulation in its modern concept began in the middle of the 20th
century. At that time, the research moved towards the creation of models that would allow
reproducing the main features of traffic flows [18–21]. Investigations were carried out both
in the direction of macroscopic and microscopic modeling. Over time, models appeared
that took into account the human factor and reproduced the movement of individual
car–driver particles.

The first macroscopic model is the well-know LWR model introduced by Lighthill
and Whitham in 1955 [18]. Later, higher-order models appeared, containing an equation
for acceleration of various types. The first simple model derived in 1971 from the car-
following model was Payne macroscopic model [19]. Philips in 1979 proposed the model
in which system contains mass, momentum and energy conservation equations [22]. The
model considering sound speed and viscosity was developed by Kuehne in 1984 [23]. The
phenomenological model of Kerner–Konhaeuser [24] is also well known.

Much effort has gone into making macro models anisotropic. This means that cars
should only react to the situation in front of them. The most well-known model that
resolves this problem is the Aw and Rascle model [25].
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Modern studies of traffic flow dynamics are basically aimed at complicating the
existing models. An example is the following publications devoted to macroscopic models
of the hydrodynamic type.

The authors of the article [26] propose a new lattice-model, with the help of which
they investigate how the driver’s memory volume affects the dynamics of the traffic flow.
Linear stability analysis shows that the temporal length of the driver’s memory has a
significant influence on the stability of traffic flow. In the article [27] of the same authors,
an extended one-dimensional hydrodynamic lattice model is proposed to study the flow
dynamics when driving on a curved road. The result of the analysis shows that the radian
of a curved road plays an important role in influencing the flow stability. The authors of the
paper [28] use the hydrodynamical approach to describe the traffic flow over the crossroad,
taking into account the traffic light regimes. The article [29] examines the impact of driver
behavior on driving on a curved road using also the hydrodynamic lattice approach.

In the field of micro-simulation the progressive trend is modeling based on the cellular
automata theory. The first model in this field was developed by Cremer and Ludwig [30].
The model considered classical was proposed in 1992 by Nagel and Schreckenberg [14].
Later, models with more complex algorithms appeared, for example, allowing us to reflect
the three-phase theory of Kerner [16]. Nowadays, the models of this type remain one of the
principal directions of transport modeling [9,31–34].

In recent years, the volume of traffic has increased several times, which makes it
necessary to use computer systems of super-high performance for adequate modeling with
the ability to carry out real-time calculations. It should be noted that models of both types
can be efficiently employed to simulate traffic on large road networks due to the capacity
of modern supercomputers.

The TOP500 rating [35] presents the list of the most powerful general purpose sys-
tems that are in common use for high end applications. Computers are ranked by their
performance on the High-Performance Linpack (HPL) benchmark [36], not by their peak
performance. The world is waiting for the first “Exascale” system—the appearance of
such a system by 2021 has been predicted, but this has not happened yet. The present
58th edition of the list was published in November 2021. The system, named Fugaku,
manufactured by Fujitsu and installed at RIKEN Center for Computational Science in Kobe,
Japan, remains No. 1. It has 7,630,848 cores, which allowed it to achieve an HPL benchmark
score of 442 Petaflop/s. Additionally, this is nearly half of Exaflop/s, which is ultra-high
performance! This is a rare example of a supercomputer based on traditional CPU-only
architecture, while most of the supercomputers on the list have hybrid architectures and
include various computing accelerators, mainly GPUs.

There are various problems of using the full potential of MPP systems. Among
them, there are the problems of energy efficiency, fault tolerance, and scalability and
portability of computational algorithms. For example, hybrid architecture systems are more
energy efficient, but the programming for such systems is laborious, since the application
development must be architecture-oriented to achieve high parallelization efficiency. In this
sense, from the two approaches to modeling traffic flows discussed in the present article,
macroscopic models look more promising when they are implemented by explicit finite-
difference methods. Microscopic models of cellular automata based on logical operations
are difficult to parallelize on graphics accelerators. To implement them, MPP systems of a
more traditional architecture are chosen or only the CPU cores of hybrid systems are used.

The present work corresponds to modern scientific trends in the field of traffic sim-
ulation and parallel algorithm design. It is comparable with the achievements of other
research teams as evidenced by the publications cited.
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3. Macroscopic Quasi-Gas-Dynamic Traffic Model
3.1. Governing Equations

As a basis for the development of a parallel macroscopic algorithm, a gas-dynamic
model proposed by the authors earlier was used [10]. This model belongs to the higher-
order type of macroscopic traffic models.

In the one-dimensional case in terms of flux (Q) and density (ρ) the system of equations
looks like this:

∂ρ

∂t
+

∂Q
∂x

=
∂

∂x
τ

2

∂
(

Q2

ρ + P
)

∂x
+ Fρ, (1)

∂Q
∂t

+
∂

∂x

[
Q2

ρ
+ P

]
= f +

∂

∂x
τ

2

∂
(

Q3

ρ2 + P Q
ρ

)
∂x

+ FU . (2)

Here, τ is the small parameter interpreted as a reference time (the time interval in
which several vehicles cross a given point of the road). Fρ and FU are the source functions,
which are not equal to zero at points of the road heterogeneity, that is, in the presence of
on-rump or off-rump or in case of changes in the number of lanes on the highway.

The equations use the space-averaged quantities ρ[vehicles/km/lane] and
Q[vehicles/hour/lane] = ρ · U[km/hour], and the analogue of pressure (traffic pressure)
P = λρβ/β.

Compared to gas dynamics, the additional terms are as follows:

- Acceleration/deceleration force f = a · ρ,
- Acceleration a =

(
Ueq − U

)
/T,

- Equilibrium speed Ueq = U f ree
(
1 − ρ/ρjam

)
,

- Relaxation time T = t0
(
1 + rρ/

(
ρjam − rρ

))
, r, t0—phenomenological constants.

There is a two-dimensional version of the QGD traffic model to account for real road
geometries. A feature of the proposed model is the introduction into the number of primary
variables the lateral velocity, which describes the speed of lane change in case of multilane
traffic. Vehicles can move into a lane with a lower density or higher speed or change the
lane if it helps to reach a certain target, for example, to leave the highway.

There are different ways of representing this variable.
It would be natural to introduce formulae for the forward (U) and lateral (V) velocities

in a similar way by analogy with two velocity components in the QGD system. Then, the
two-dimensional system of equations would look like this:

∂ρ
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= ∂
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2
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(5)

The corresponding components in Equations (2) and (3) are calculated in a similar
manner. The acceleration/deceleration forces fx and fy are determined through the forward



Mathematics 2022, 10, 643 6 of 18

and lateral velocities, respectively. As the equilibrium lateral velocity Veq in function fy, one
can take the next velocity Vl :

Vl = kuρ
∂U
∂y

− kρU
∂ρ

∂y
+ kdes

U2

(xdes − x)2 (ydes − y), (6)

where each term represents one of the three desires of the driver described above. Here,
ku, kρ, kdes are some constants, and (xdes, ydes) are coordinates of the desired destination.

At the same time, algebraic Equation (6) can be used itself instead of Equation (5) to
obtain the lateral velocity, thus we simplify the numerical implementation.

An explicit finite difference method was used for the calculations. Spatial derivatives
in the partial differential equations were approximated by central differences of the second
order of approximation. The conditional stability of the schemes is ensured by the presence
of diffusion terms with small parameters in the right hand sides of (3)–(5), mixed derivatives
can be neglected.

To check both approaches, the test problem about the movement along the road
with an entrance has been solved. Calculations have shown that the solution based on
system (3)–(5) requires a much smaller time step to maintain the stability—approximately
by two orders of magnitude compared to the approach without differential Equation (5). At
the same time, the solutions themselves practically do not differ from each other. Therefore,
it is more rational and economical to use Equation (6) for obtaining the lateral velocity in
real predictive modeling.

The 2D QGD traffic model in formulation (3), (4), (6) was verified by numerous test
predictions and compared with the multilane CA model [10,11]. Quasi-one-dimensional
calculations made it possible to compare this formulation with 1D models of other authors.
Some problems discussed in [8] were used for numerical experiments. Formulation (1)–(2)
was compared with LWR model with diffusion and source terms in the right hand side of
the continuity equation. Traffic was simulated on roads with rather complex geometry [12].
In all cases, a qualitative agreement of the results was obtained. The analysis of the results
allowed us to conclude that the QGD traffic model reproduces the main patterns of traffic
flows well.

3.2. Parallel Implementation

It is obvious that the goal of parallel computing is to minimize the total execution
time, and the most efficient parallelization strategy for each problem generally requires
a unique solution. However, despite the variety of the solutions, it is possible to identify
some basics of parallel algorithm design, for example, Ian Foster’s PCAM concept is such a
regulation [17]. Sometimes it is difficult for software developers to distinguish between the
Partitioning, Communication, Agglomeration and Mapping stages, and they intuitively go
through these stages when aiming for a highly scalable algorithm and good load balancing.

If we talk about explicit finite-difference methods for the numerical solution of partial
differential equations, then their parallelization techniques are well developed: they are
simple and highly efficient. Partitioning means the computational domain decomposition.
As calculations in all inner points of the computational grid are identical and can be
performed concurrently needing local communications only with neighboring points, fine-
grained tasks here are tasks in each point of the domain. Of course, they should agglomerate
into fewer coarse-grained tasks of larger size in order to decrease the ratio of the volume of
communication to the volume of computation. At this stage, we must take into account the
details of the problem under consideration. The next stage—mapping—requires taking
into account also the features of the MPP system used.

In this regard, we would like to mention the experience of supercomputer modeling
of complex fluid flows in a porous medium using hybrid clusters [37]: the authors created
a procedure of automatic data distribution among processing units (CPU cores or GPUs)
to ensure optimal load balancing depending on a priori estimation of the run time for
each possible configuration. Computational complexity of porous medium flow problems,
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hardware performance, latency and data exchange time were evaluated empirically and
included in the formula to estimate the run time.

The numerical implementation of the QGD traffic model is based on explicit methods,
therefore the above remarks are valid. The parallelization technique focuses on distributed
memory and message passing.

The computational domain, that is, the road network, is divided into approximately
equal segments approximately equal in the number of computational grid points for
uniform loading of processors (assuming the homogeneity of a multiprocessor system).
It is natural to split the road network into segments (straight sections of roads that may
contain narrowings/widenings, side entrances/exits) connecting intersections, which
are the network nodes. These segments are sub-domains covered by the 2D Cartesian
computational grid. As the number of grid points in the x-direction (the direction of
the forward velocity) is much greater than in the y-direction (across the road) the grid is
never split along the y-direction, but long road sections can be additionally split along
the x-direction if necessary. As an example, Figure 1 reflects decomposition of a small
road network with one-way traffic into twelve segments (si denotes the i-th segment, and,
what is the same, the i-th sub-domain, i = 1, . . . , 12), and arrows indicate the direction of
the forward velocity. In the case of two-way traffic, road segments in different directions
should be different sub-domains.
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The network nodes are boundaries of computational sub-domains, and boundary
conditions should be set at the boundary and near-boundary points, observing the con-
ditions for the conservation of mass and fluxes in neighboring areas. For example, if the
intersection consists of N incoming and one outgoing road segments, the density at the
boundary of the outgoing flow is equal to the sum of the incoming flow densities:

ρout(xB, t) =
N

∑
i=1

ρin i(xB, t). (7)

To set the velocities at the boundaries, the scheme with weights is used:

Uout(xB, t) =
2

∑
i=1

wiUin i(xB, t), wi =
ρin i(xB, t)
ρout(xB, t)

. (8)
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There are no calculations, but only communications in intersections: neighboring sub-
domains exchange the values of densities and velocities included in (7) and (8). The number
of lanes in neighboring road segments can be different, but the number of grid points in
the y-direction should match to facilitate implementation of the boundary conditions.

Thus, we cover the Partitioning, Communication and Agglomeration stages of Foster’s
paradigm as a whole.

As for the Mapping stage, each sub-domain is processed by a separate processing unit,
more precisely, by a core of CPU. It does not matter whether the employed cores belong to
the same node of the MPP system or are physically distributed throughout the system.

The parallel code is written in C/C++ with the use of MPI to support communication.

3.3. Numerical Results

For experimental investigation of software scalability and efficiency of the proposed
parallel algorithm, the test problem of traffic on a highway with an on-ramp and off-ramp
in the multi-lane setting was solved numerically (see Figure 2a).
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Comparison with similar problems from [8] allows us to conclude that the sample demon-
strates the impact of bottlenecks correctly.

There are two common types of scaling: strong and weak scaling. Strong scaling is
associated with Amdahl’s law, which gives the upper limit of speedup for a problem of
fixed size. While weak scaling is associated with Gustafson’s law, which states no upper
limit for the scaled speedup. This scaled speedup is calculated based on the amount of
work done for a scaled problem size (in contrast to Amdahl’s law) [17]. Thus, the method
of increasing the problem size in proportion to the increase in the number of processors
is usually used to evaluate weak scaling. However, we are interested in strong scaling,
therefore we split one and the same sufficiently fine computational grid in our experiments.

The computational domain covered by the grid of 10.000 × 300 = 3 million points was
split into sub-domains along the x-direction according to the number of engaged processors.
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Calculations were performed on the K100 supercomputer with the peak performance of
100 Teraflop/s installed in Keldysh Institute of Applied Mathematics (KIAM). Each node
of K100 consists of two CPUs (Intel Xeon X5670) with 12 cores available to the user’s task.
Up to 100 CPU cores from different nodes have been involved in calculations. GPUs have
not been used in the computation.

To estimate the speedup the run time of 100 time levels of our explicit difference
scheme was measured for each number of CPU cores used.

On one core it was 26.67 s,
On 5 cores—9.4 s,
On 100 cores—0.71 s.
Note that this is a very small part of the entire calculation, which, in principle, can take

place indefinitely in real-time. The run time analysis shows not quite satisfactory speedup.
Some tuning work was carried out to achieve better speedup: the number of exchange

operations between sub-domains and the volume of data transferred were reduced that
resulted in a reduction of the run time on a large number of cores. One can compare
speedups of the initial code and the version with message passing optimization depicted in
Figure 3a,b, respectively.
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Figure 3. Speedup in calculations of the problem about traffic on a highway with on-and off-ramps:
(a) the initial code; and (b) the code with message passing optimization.

The speedup in Figure 3b is nearly linear, which indicates the good scalability of the
algorithm. This is typical for the parallel implementation of explicit numerical methods.
Note, that as a unit the run time on 5 CPU cores is used. Thus, the figure corresponds to
the parallelization efficiency of about 80 per cent on 100 cores that is high enough efficiency
for the considered class of problems in the given conditions.

More complicated road geometry was used to demonstrate the possibility of practical
application of the parallel algorithm implementing QGD traffic model. A section of the
Moscow road network located near Chistoprudny Boulevard was taken for the simulation,
Figure 4 shows the corresponding map fragment. Traffic on the roads under consideration
is one-way.
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Figure 4. Fragment of the Moscow map for traffic simulation.

Figure 5 presents the obtained effective density fields for two successive time moments.
Arrows indicate the direction of movement on road segments, which are processed by
different processors like it is illustrated by Figure 1. Boundary conditions (7) and (8) are
satisfied in all nodes. In this case, fluxes in all nodes are distributed uniformly.
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Chistoprudny Boulevard.

One can see that on segments adjacent to X-crosses, the density does not change
with time, but on segments adjacent to T-crosses quite logical dynamics of the density
is observed.

4. Cellular Automata Approach: From Nagel–Schreckenberg-Based to
KKSW-Based Model
4.1. Methods of Modeling Traffic within Cellular Automata (CA) Approach and Their Problems

Since, nowadays, quite a large amount of data from cameras and detectors is accumu-
lated, we now know more than ever about the properties of traffic flows. Therefore, modern
traffic flow models are required to be precise in terms of depicting the known experimental
patterns, for example, those that appear for average velocities in space-time diagrams.

As is stated by B. Kerner in his three-phase traffic theory [38], there are three phases in
a vehicular flow: free flow, synchronized flow and wide moving jam. Several things should
be noted regarding the transitions between these phases. First, they appear consequently,
i.e., free flow transits to synchronized flow (F-S transition), and synchronized flow transits
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to wide moving jam phase (S-J transition). F-J transitions do not occur without the S phase
in between, according to Kerner’s theory, which is based strictly on experimental data.
While different models have their own problems depicting these phases and transitions,
it is known that the original Nagel–Schreckenberg model [14], as well as many of its
successors developed later, does not reproduce the synchronized flow. The reason behind
it is quite straight-forward: vehicles do not adjust their speed to the ones in front of them,
they speed up until the point where they catch up with the leader, only slowing down
when it is necessary to avoid collision. On the other hand, the hysteresis effect known
to occur in transitions, when the same density of the vehicles on a road can result in
different phases of traffic (F and S, or S and J) due to stochastic processes within the flow,
requires two contradicting components to be included in the model: over-acceleration and
speed adaptation.

In recent years the original mathematical model of traffic flows based on the cel-
lular automata approach (CAM-2D model) has been developed by the authors of the
article [12,39,40]. The main focus of the model was to depict various driving tactics as
well as building algorithms for vehicle movement on different road elements, such as
signalized and non-signalized intersections, road widening, U-turns, etc. Another aspect of
the said work was to create parallel algorithms for this model, designed to allow carrying
out computations on various road networks of cities.

The CAM-2D model is based on Nagel–Schreckenberg [14] model: while it is multilane
and the set of lane changing algorithms has been added, the algorithm of moving along the
road has stayed pretty much the same. While this configuration provides over-acceleration,
both within the lane and due to lane changing, it lacks steps to depict the speed adaptation.
The goal of this research is to build a new mathematical model of traffic flows that is able
to reproduce synchronized flow and that is in an agreement with Kerner’s three-phase
theory. The model that was considered as a starting point for this work is the KKSW
(Kerner–Klenov–Schreckenberg–Wolf) model [16].

4.2. The Basics of the Original CA-Based Model (CAM-2D)

The main rationale behind the cellular automata approach in application to traffic
flow modeling is discretization. The road is divided into equal cells, each either containing
a single car or being empty. The cell size is 7.5 m long and one lane (approximately
3–4 m) wide. The distance in the system is measured in the number of cells. Time is also
discrete, time step is equal to 1 s. Vehicle speed is measured in cells per time step and
can take on values from zero to 4, which corresponds to 108 km/h. The computational
domain is represented in Figure 6. Colored circles represent cars, color corresponds to their
desired destination.
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Each time step cell state update is carried out according to the following rules:

• Vehicles change lanes if it is necessary (to reach the desired destination or to drive
around an obstacle), it is advantageous for the drivers (leads to speed increase and/or
density decrease) and it is possible (i.e., if the lane change is allowed and the target
cell is empty);

• Vehicles move along the road according to the classic rules of one-lane traffic.
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The lane change algorithm is a complicated set of rules that varies for different road
elements, different priority rules, traffic signs and road marking. It is also different for
different types of drivers, distinguishing driving strategies (for details, see [15]). Drivers in
the system can be cautious or aggressive, and the degree of these properties can also vary.
In some situations drivers can become cooperative, reacting to the others wish to change
lanes or enter the road by slowing down and letting them pass. The decision to change
lanes also depends on the traffic situation both in the current and the goal lanes.

The algorithm for movement along the road is based on the four rules of the Nagel–
Schreckenberg model:

1. Acceleration: Vn = max (Vn + 1, Vmax);
2. Braking in order to avoid collisions: Vn = min (Vn, dn − 1);
3. Stochastic braking: Vn = max (Vn − 1, 0) with probability p;
4. Moving along the road: Xn = Xn + Vn.

Here, Vn is the current speed of the n-th vehicle in the system, Vmax is the maximal
speed for these conditions, dn is the distance between the n-th car and the one in front of it.
Xn is the number of cells that the car should move forward on this time step.

4.3. Adding Speed Adaptation Steps to CAM-2D Model

The assumption behind the speed adaptation rules implemented in modern CA-based
models such as KKSW, is that there is a synchronization distance Gn (which, generally
speaking, depends on the velocity of a vehicle, Gn = Gn (Vn)) within which a car is willing
to adjust its speed to the speed of the leader. Therefore, we expand the model adding the
synchronization gap, which brings us to the general set of steps that describes the system
evolution at each time step:

1. Lane changing if necessary and possible;
2. If the car is within the synchronization gap Gn (distance between the car under

consideration and its leading car dn ≤ Gn) then the vehicle speed Vn = Vn + sgn (Vln
− Vn), where Vln is the leader’s speed;

Additionally, If Vn > Vln, Vn = max (Vn + 1, Vmax) with probability p1, which describes
stochastic over-acceleration within the synchronization gap distance. Here, Vmax is maximal
speed in the system;

3. If the distance between the car and the leader dn > Gn„ the car accelerates if its speed
is still lower than maximal: Vn = max (Vn + 1, Vmax);

4. Braking in order to avoid collisions: Vn = min (Vn, dn − 1);
5. Stochastic braking Vn = max (Vn − 1, 0) with probability p;
6. Moving along the road: Xn = Xn +Vn.

Step 1, the lane changing algorithm, is a complex set of steps that varies for different
situations and different driving strategies and is developed by the authors of the article
earlier (see, for example, [15]). Steps 2–6 are the same as in the KKSW model, and steps 3–6
are the same as in the classic Nagel–Schreckenberg model.

4.4. Additional Speed Adaptation for the Case of Traffic Jams in Neighbouring Lanes

This algorithm is based on the suggestion that drivers slow down if they see that there
is a jam in the neighboring lane. This is a recommended course of action to provide safer
driving and is usually implemented by most of the drivers. It also contributes to the overall
speed adaptation effects that we seek.

To achieve this, steps 2 and 3 of the cell state update algorithm listed above have to be
rewritten as follows:

Each step two parameters, jcr and jcl (“jam count right” and “jam count left”, number
of vehicles in neighboring lanes, right and left accordingly, that are not moving, Vi = 0).

1. If jcr > J or jcl > J, jam = true. Here, J is a parameter that should be chosen according
to the task requirements during the calibration process, jam is a Boolean variable that
indicates traffic jam.
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2. If the car is within the synchronization gap Gn (distance between the car under
consideration and its leading car dn ≤ Gn);
if Vln − Vn > 0 and jam = false, Vn = max (Vn + 1, Vmax);
if Vln − Vn > 0 and jam = true, Vn = Vn;
if Vln − Vn = 0, Vn = Vn;
if Vln − Vn < 0, Vn = max (Vn − 1, 0).

Additionally, If Vln − Vn < 0, Vn = max (Vn + 1, Vmax) with probability p1 (stochastic
over-acceleration within the synchronization gap distance).

Here, Vn is current speed, Vln is leader’s speed, Vmax is maximal speed in the system;

3. If the distance between the car and the leader dn > Gn,
if jam = false, Vn = max (Vn + 1, Vmax);
if jam = true, Vn = Vn.

Test computations were carried out using both algorithms to verify them, although
computations using real data for model calibration and comparison are yet to be executed.

4.5. Parallel Implementation

The created model possessed inner parallelism, both geometrical and a parallelism
of data, therefore the approach to developing the parallel computational algorithm for
the created model can be flexible. As the first step the geometrical approach was chosen,
similarly to the one developed for the CAM-2D model.

Since the main goal of the created program package is to be able to simulate traffic
on various road networks it was necessary to create universal elements from which any
road configuration can be obtained. They also should be interchangeable in the system,
which means that, first, they should be standard size, and second, their boundaries should
not contain any singularities, such as intersections, widenings, etc. The size of a single
element was chosen to be 31 × 31 cells, or 232.5 × 232.5 m, representing approximately
average distance between intersections in a city. In the case of longer road stretches
without intersections the distance is filled with the necessary amount of straight road
elements. If there is the need to model a more dense and complicated network, the size
can also be decreased. Technically, it is limited only by a number of lanes on a road, but
one should also be mindful that some logical operations representing driver behavior
need some space within the element to take place. For example, in case of turning on an
intersection, the driver might need to change lanes in order to do so, and might not be
able to do so immediately. If the road network is not branched, the element size can be
increased accordingly.

It is known that for computing logical operations in parallel, CPU is suited better than
GPU, so the former route was chosen. The code is written using C/C++, and the MPI
library is used for boundary condition exchange. Given the chosen parallelization method,
though, it should be noted that data exchange requires additional steps. Basically, we have
road elements that are calculated on different processors, and we need to exchange data
when a car exits one element and enters another. However, if a traffic jam is formed in
the target element, the car might not be able to enter it. In order to simulate this situation
correctly, the boundary condition exchange algorithm has been created. It consists of two
parts. The first one is shown in Figure 7 and it corresponds to vehicles’ entering a new
element, from a different element/processor or entering the computational domain for the
first time. If it is an open boundary entrance, the availability of the first cell is checked. If
the cell is available, the car enters, if not, it is added to the queue, where it will wait till
there is an unoccupied cell for it. If it’s an element in the middle of a road network, first
thing the marker “flag” is checked, flag = 1 means that there is a vehicle that wants to enter.

If flag = 1, first several cells are checked for availability. If enough cells (according to
vehicle’s speed) are empty, the vehicle is added. If possible, it can also be slowed down
to fit in a new element. In these two cases, the data from the previous element is received
and the car is added, and another marker, “rflag”, is set to 0 to indicate that the car has
entered and should be deleted from the previous element. If the car cannot enter, rflag is
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set to 1, which means that the car stays in its element and waits for the opportunity to enter.
When the opportunity presents itself, the message is sent to the other processor for this car
to move.

The second part of the algorithm is shown in Figure 8 and it corresponds to exiting
an element.

When a car nears the boundary of the element and is ready to exit, the “flag” marker
is set to 1 and is sent to the next element/processor, in case if there is one. If it is an open
boundary, the car exits the computational domain.

The example of a parallel computation on a small road network using the created
model is shown in Figure 9.
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The problem of the efficiency of the created parallel algorithm should be discussed. In
order to be able to simulate traffic on various road networks, the set of universal road ele-
ments, such as signalized intersections, U-turns, road elements with widening/narrowing,
etc., was created. From these elements, the desired network is formed before the compu-
tation, and each element is calculated using a single processor. This configuration allows
forming numerous types of networks that can be found in cities, since the building blocks
are universal, but it does not load the processors efficiently. For the efficient loading the
elements should be much bigger, but this way they lose their flexibility in terms of creating
any desired road configuration. This problem needs to be further investigated.

5. Discussion and Conclusions

Two original models created by the authors of this article and based on different
approaches to traffic flow simulation are presented in this paper, and for each of them the
parallel algorithm for numerical realization is discussed.

The new microscopic CA-based model is developed, using the CAM-2D model created
earlier by the authors. The new model includes important algorithm changes regarding
speed adaptation to fully comply with the three-phase theory, which is the requirement in
the field nowadays. The parallel version of the calculation algorithm was developed using
the domain decomposition technique. The special boundary condition exchange algorithm
has been created to provide the correct transfer of data from one processor to another in
case of congested traffic flow.

As a future direction of this work, for the CA approach, the parallelization efficiency
increase is to be noted. Since the model possesses data parallelism, it might be promising
to develop an algorithm using this quality in order to provide a sufficient load for compu-
tational nodes while still retaining the ability to form various road networks from single
elements easily. Another important thing to do is a thorough verification and calibration
process for the model using real experimental data.

The two-dimensional model of gas-dynamic type was presented. The model is based
on the QGD system of equations. The difference from other macroscopic models is the
presence of lateral velocity in the system of equations. The lateral velocity can be entered in
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various ways—in algebraic form or in differential form by analogy with forward velocity.
The article presents both forms and concludes on the appropriateness of choosing of one
way or another. The parallel version of the macroscopic simulation is based on the domain
decomposition technique too.

The good scalability of the parallel algorithm for QGD traffic model was verified by
numerical experiments evaluating strong scaling. The parallelization efficiency of about
80 percent on 100 CPU cores has been achieved which is fairly high efficiency for the class
of problems under consideration. The obtained speedup is close to linear which is typical
for algorithms based on explicit finite-difference schemes and domain decomposition. For
the macroscopic QGD traffic model, the problem of increasing the parallelization efficiency
is also relevant. In the current implementation on CPU cores, it would be efficient to
calculate with a higher processor load, i.e., when modeling a larger urban network. The
proposed macroscopic algorithm can also be implemented on GPUs. Creating a version of
the algorithm for the hybrid architecture would enhance the universality of the code and
its portability in a wide class of MPP systems.

The main achievement is that the developed approaches have internal parallelism. In
particular, the proposed parallel algorithm facilitates the implementation of a 2D macro-
scopic model on the road network due to the exchange procedure at the nodes, thereby
removing the problem of connecting road segments, which is present in the sequential
implementation. It is important not only to speed up calculations, but also to get the correct
implementation on the entire computational domain.

Parallel computations can provide a boost to the traffic flow modeling field, making
computations on large-scale city road networks using modern and complex models not
only possible, but rather fast as well. This topic of research has a great potential, as models
and algorithms developed can be used as a part of ITS and be included in the “Smart
City” concept.

The presented calculations were performed on supercomputers installed in the Centre
of Collective Usage of KIAM RAS [41].
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