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Abstract: In this paper, we propose an end-to-end single-image super-resolution neural network by
leveraging hybrid multi-scale features of images. Different from most existing convolutional neural
network (CNN) based solutions, our proposed network depends on the observation that image
features extracted by CNN contain hybrid multi-scale features: both multi-scale local texture features
and global structural features. By effectively exploiting these multi-scale and local-global features, our
network involves far fewer parameters, leading to a large decrease in memory usage and computation
during inference. Our network benefits from three key modules: (1) an efficient and lightweight
feature extraction module (EFblock); (2) a hybrid multi-scale feature enhancement module (HMblock);
and (3) a reconstruction–restoration module (DRblock). Experiments on five popular benchmarks
demonstrate that our super-resolution approach achieves better performance with fewer parameters
and less memory consumption, compared to more than 20 SOTAs. In summary, we propose a
novel multi-scale super-resolution neural network (HMSF), which is more lightweight, has fewer
parameters, and requires less execution time, but has better performance than the state-of-the-art
methods. Compared to SOTAs, this method is more practical and better suited to run on constrained
devices, such as PCs and mobile devices, without the need for a high-performance server.

Keywords: single-image super-resolution; hybrid multi-scale features; lightweight network

MSC: 68T45

1. Introduction

Single-image super-resolution (SISR) seeks to reconstruct a high-resolution image
with the high-frequency information (meaning the details) restored from its low-resolution
counterpart [1]. SISR offers many practical applications, such as video monitoring, remote
sensing, video coding and medical imaging. On the one hand, SISR reduces the cost
of obtaining high-resolution images, allowing researchers to acquire HR images, using
personal computers instead of sophisticated and expensive optical imaging equipment.
On the one hand, SISR reduces the cost of obtaining high-resolution images, allowing
researchers to acquire HR images, using personal computers instead of sophisticated
and expensive optical imaging equipment. On the other hand, SISR reduces the cost of
information transmission, i.e., high-resolution images can be obtained by decoding the
transmitted low-resolution image information using SISR. Many efforts have been made to
deal with such a challenging yet ill-posed problem, due to the unknown high-resolution
version of a low-resolution image.

Many traditional methods [2–4] have been proposed to obtain high resolution (HR)
images from their low resolution (LR) versions by establishing a mapping relationship
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between LR images and HR images. These methods are fast, lightweight and effective,
which make them preferable as basic tools in SISR tasks [5]. However, there is a shared and
inherent problem in applying them: the tedious parameter adjustment. Obtaining desired
results relies on continually tweaking parameters to accommodate various inputs. This
inconvenience has an adverse impact on both efficiency and the user experience.

In recent years, there have been considerable efforts made with convolutional neural
networks—CNN-based SISR methods—by EDSR [6], DRRN [7], LapSRN [8], MemNet [9],
CARN [10], IDN [11], MADNet [12], MRFN [13], and DRFN [14]. Such pioneering meth-
ods [15,16], despite having made use of only a few convolution layers, have validated that
CNN exhibits better performance than do many traditional SISR methods. Subsequent
efforts have focused mainly on improving the network structure by increasing its depth
and width. Doing so can result in better performance with more trainable parameters to
establish a more stable mapping relationship between LR and HR images. Extensive studies
(e.g., [17]) with very deep neural networks [13] have shown that a deeper network [18] will
have better performance than a shallower one [15,16]. However, there are many parameters
to optimize for deep neural networks; furthermore, the training process consumes mas-
sive amounts of data to avoid overfitting. A common drawback is that such efforts have
considered only the deepening of the network, while not sufficiently leveraging various
extracted features.

Reducing the number of both the parameters and calculations is important in actual
application scenarios. For example, it would be difficult to execute a model on mobile
devices if the model were to require so much memory; also, it would provide an unfriendly
user experience, due to the slow execution speed. To achieve better performance via
a lightweight model, we define the hybrid multi-scale features in SISR as local multi-
scale features and global multi-scale features, containing the thickness of texture features
and structural features from detail to structure. We use the feature map obtained by
interpolation as the basic frame of SISR. After the extraction of features by the efficient
lightweight residual feature extraction module, the local multi-scale and global multi-
scale enhancement modules and reconstruction modules are enhanced and fused, and
the Charbonnier loss function is used for training. Finally, the mapping relationship
between the LR and HR images is established, and the result is the SR image. We focus on
fewer parameters to obtain good enhancement effects. Unlike other networks that only use
convolutional layers to extract features, ours makes use of an efficient and lightweight feature
extraction module, EFblock, to extract features from LR images, then inputs the features into
the hybrid multi-scale enhancement module HMblock, which includes the local multi-scale
feature extraction module called RF as well as a global feature enhancement module. After the
hybrid multi-scale features are extracted and enhanced, through the reconstruction and fusion
module DRBlock, the features are restored to the up-sampled LR image to obtain the SR image.
In terms of mixed multi-scale features, the deeper convolutional neural network module is
sufficient to extract the structural features of the image, while the shallower convolutional
neural network module can extract the texture features of the image. The residual connection
can compensate for feature extraction loss of the global characteristics in the process. In
terms of local multi-scale features, different receptive field sizes of the convolution kernel
can extract texture features of different thicknesses. Therefore, we study the dependence
and complementation solution between the depth and the size of the convolution kernel
receiving field between the structural features and the texture features. In summary, the main
contributions of this article are as follows:

• We propose a novel efficient and lightweight feature extraction module, called EFblock.
It uses both grouped convolution and point convolution, and introduces both a
global and local residual connection to improve the integrity of the feature extraction.
Although EFblock has fewer parameters and less computation, it exhibits better
performance than existing CNN-based methods.

• We formulate the concept of hybrid multi-scale features, qualitatively dividing multi-
scale features into local multi-scale and global multi-scale features; unlike other other
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multi-scale based solutions, ours uses only shallow local multi-scale features. This
shallow local multi-scale extraction block mainly extracts texture features, while the
deep convolutional layer extracts skeleton and structural features; together, they
constitute hybrid multi-scale features.

• Existing multi-scale based methods have a large number of parameters and are not
flexible enough. They only focus on regular receptive areas and cannot fully extract
multi-scale information. To solve this problem, we propose a bottleneck stack structure
RF to extract the local multi-scale texture feature. Different from other schemes that
only use different sizes of convolution kernels [19] or stacked 3 × 3 convolution
kernels [13], we flexibly utilize a dilated convolution [20], and also obtain different
sizes of receptive fields by controlling the dilation rate, as well as adding deformable
convolution [21] to further yield irregular receptive areas. Because of the use of the
bottleneck structure, the RF module not only yields multi-scale receptive fields, but
also greatly reduces the number of parameters and the burden of calculation.

2. Related Works

In the early days, the task of SISR was defined as a mathematical mapping problem [2–4].
Some of them used regression to restore the image [4], some of them used random forest
to tackle the problem [2], and some of them [22] used decision-making theory [23,24] to
restore the LR images. Recently, deep learning was successful in many computer vision
tasks, including SISR. Based on the needs of practical applications, lightweight models are
currently the focus of attention. Here, we will summarize the SISR methods based on deep
learning, while focusing on lightweight SISR methods.

2.1. Deep CNN-Based SISR

Like other computer vision tasks, SISR has made significant progress through deep
convolutional neural networks. Dong et al. first proposed SRCNN [15] based on shallow
CNNs. That method involves up-samples of images through bicubic interpolation. With
three convolutional layers—as well as patch extraction and representation, plus nonlinear
mapping and image reconstruction—the network was established. Later, that team pro-
posed FSRCNN [16], while Shi et al. proposed ESPCN [25]. Meanwhile, Lai et al. proposed
a Laplacian pyramid super-resolution network [8], which takes low-resolution images as
input and gradually reconstructs the sub-band residuals of high-resolution images. Tai et al.
used a persistent memory network (MemNet) [9] by using a very deep network. Tian et al.
proposed a coarse-to-fine CNN method [26] that, from the perspective of low-frequency
features and high-frequency features, adds heterogeneous convolutions and refinement
blocks to extract and process high-frequency and low-frequency features separately. Wei
et al. [27] used cascading dense connections to extract features of different fineness from
different depth convolutional layers. Jin et al. adopted a framework [28] to flexibly adjust
the architecture of the network, adapting different kinds of images. DRCN [29] used a
deeply recursive convolutional network to improve performance without introducing new
parameters for additional convolutions. DRRN [7] improved DRCN by using residual net-
works. Lim et al. proposed an enhanced deep residual network (EDSR) [6]. Liu et al. [30]
proposed an improved version of U-Net based on a multi-level wavelet. Li et al. [31] proposed
exploiting self-attention and facial semantics to obtain a super-resolution face image. Most
studies of SISR achieved better performance by deepening the network or by adding the
residual connection. However, deep depths make these methods difficult to train, while more
parameters not only cause excessive memory consumption during inference, but also slow
down the execution speed. Therefore, we introduce a lightweight and efficient SISR model.

In terms of lightweight models, Hui et al. proposed IDN [11] by knowledge distillation
to distill and extract features of each layer of the network and learn the complementary
relationship among them to reduce parameters. CARN [10] used a lightweight cascaded
residual network; the local and global levels use cascading mechanisms to integrate features
from different scale layers in order to receive more information. However, that method still
involves 1.5 M parameters, and consumes too much memory. Ahn et al. [32] proposed a
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lightweight residual network that uses grouped convolution to reduce the number of pa-
rameters, as well as weight classification to enhance the effect of super-resolution. Yao et al.
proposed GLADSR [33] with dense connections. Tian et al. proposed LESRCNN [34], using
dense cross-layer connections and advanced sub-pixel convolution to reconstruct images.
Lan et al. proposed MADNet [12], which contains many kinds of networks. He et al. [13]
introduced a multi-scale residual network.

Existing lightweight SISR methods can compress the number of parameters and
calculations, but doing so results in loss of performance. In contrast, our method can
achieve better super-resolution performance despite a small number of parameters and
reduced memory consumption.

2.2. Lightweight Neural Networks

Many recent super-resolution methods have focused on the lightweight nature of
neural networks. We also focus on these features. Many lightweight network structures
have been proposed, including dense networks [10,34], which use dense connections or
residual connections to fully reuse functions. These methods are an efficient improvement
for deep neural networks, but are inadequate for lightweight networks. Therefore, we need
to pay more attention to efficient lightweight network skeletons. In subsequent works,
researchers have proposed several derivative versions, with the introduction of cross-
layer connections within the network, reusing functions to achieve better performance.
Iandola et al. proposed SqueezeNet [35], using a squeeze layer and a convolution layer
with a kernel size of 1 × 1 to convolve the feature map of the previous layer, thereby
reducing the dimensionality of the feature map. Shufflenet V1 [36] and V2 [37] flexibly
used pointwise grouped convolution and channel shuffle to achieve efficient classification
effects on ImageNet [38]. MobileNet [39] constructed an effective network by applying—in
a subsequent version—the deep separable convolution introduced by Sifre et al. MobileNet-
V2 [40] also made use of methods, such as grouped convolution and point convolution,
and introduced an attention mechanism. The design of the MobileNet-V3 [41] network
utilized the NAS (network architecture search [42]) algorithm to search for a very efficient
network structure. In contrast, the EFblock that we propose uses global and local residual
connections, deep separable convolution, grouped convolution and point convolution. Our
method comprehensively considers the needs of light weight and super-resolution, and
extracts features efficiently with a small number of parameters.

2.3. Multi-Scale Feature Extraction

Multi-scale feature extraction is widely used in computer vision tasks, such as in
semantic segmentation, image restoration and image super-resolution. The most basic
feature is that filters with different convolution kernel sizes can extract features of different
fineness. Szegedy et al. proposed a multi-scale module [19] called the Inception module. It
uses convolution filters with different convolution kernel sizes to extract features in parallel,
enabling the network to obtain different sizes of receptive fields, then extracting different
characteristics of fineness. In a subsequent version, the authors processed batch normaliza-
tion in Inception-V2 [43], which accelerates the training of the network. In Inception-V3 [44],
the authors added a new optimizer and asymmetric convolution. Recently, the application
of multi-scale convolutional layers was widely demonstrated in tasks such as deblurring
and denoising. He et al. [13] introduced a multi-scale residual network with image features
to significantly improve the performance of the image super-resolution. However, these
methods focus only on local multi-scale features, ignoring the concept of a global scale.
There is room for further improvement to realize the multi-scale network structure. As
discussed above, we propose a hybrid multi-scale that, broadly, can be defined as local
multi-scale and global multi-scale: the “local multi-scale” refers to the texture feature, and
the “global multi-scale” refers to the structure feature. We experimented with this idea; the
specific experimental details are introduced later.
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3. Methodology

We propose a hybrid multi-scale feature neural network (HMSF). In this section,
we first introduce the overall structure of HMSF and analyze the detailed information
of each component. Next, we focus on analyzing our hybrid multi-scale enhancement
module, HMblock.

3.1. Network Structure

The proposed method consists of three main parts (see Figure 1): an efficient feature
extraction module, EFblock; a global and local multi-scale enhancement module, HMblock;
and an image reconstruction module, DRBlock.

Figure 1. The overall structure of the proposed network. EFblock, HMblock and DRBlock are used
for feature extraction, image enhancement, and image reconstruction, respectively.

3.1.1. EFblock

As shown in Figure 2, many lightweight super-resolution methods use either a scale
of 3 × 3 convolutional layers or 1 × 1 convolutional layers to extract features. We believe
that the features extracted in this way are inefficient because adding a 3 × 3 convolutional
layer increases many parameters. In light of that dilemma, and inspired by other efficient
networks [35,36,41], we designed a lightweight and efficient feature extraction module,
EFblock. Its performance is stronger than the standard convolution, and its parameters
and calculations are relatively small. We first use a point convolution layer to upgrade
the original image to the size that needs to be processed, then use grouped convolution,
where, to extract features, the input size is equal to the output size. Finally, grouped point
convolution is used to promote the feature to the dimension of the output. This combi-
nation of grouped convolution and point convolution can effectively reduce parameters
and calculations.

Figure 2. Feature extraction blocks used in several recent SR methods.

As shown in Table 1, our proposed EFblock is compared with the standard convolu-
tional module. If we use the standard 3 × 3 convolution, there are about 19,000 parameters.
If we use EFblock, the number of parameters is reduced to about 16,000. In terms of
the number of calculations, we use multi-adds as the evaluation standard; the standard
convolution module is 4.4 G, and EFblock is 3.7 G, thereby reducing the number of both
parameters and calculations. With the dimensional changes, we find that EFblock has more
activation functions, making feature extraction more nonlinear and stronger in characteri-



Mathematics 2022, 10, 653 6 of 26

zation. We next consider the global residual connection and the local residual connection.
We believe that, in the process of extracting image features, global information will be lost.
Therefore, we use global residual connection to compensate for the loss of information, and
use point convolution to match the input dimension with the compensation dimension.
Between the grouped convolution, we add a local residual connection to compensate for
the lack of feature correlation between channels caused by too many groups.

Table 1. Comparing EFblock and standard convolution layers from parameter and calculation
number, and number of activation functions.

Method Layer Dimension Total Param. Total Madd Activation

Conv3 × 3 block
Conv1 3-32 19 K

2
Conv2 32-64 4.4 G

EFblock
Block1 3-32-64 16 K

6
Block2 64-64-64 3.7 G

The overall expression of EFblock is as follows. Fi is the feature output by the i-th
layer module; PGconv represents the grouped point convolution; Pconv represents the
point convolution; and Gconv represents the grouped convolution. GR and LR represent
global and local residual connections, respectively.

Fi = PGConv[Gconv[PConv[Fi−1]] + LR] + GR (1)

If the two residuals cannot be directly connected to the required dimension, point
convolution is needed to increase or decrease the dimension:

LR = PConv[Fi−1](Cout = CinGconv) (2)

GR = PConv[Fi−1](Cout = CoutGconv) (3)

3.1.2. HMblock

HMblock is the core part of the method. In this module, we define global and local
multi-scale features: local texture features and global structural features. As shown in
Figure 3, HMblock is divided into shallow multi-scale texture feature extraction blocks
as well as deep structure feature extraction blocks. When the number of convolutional
layers is shallow, the feature information extracted by the network is rich, and will include
the internal texture and external contour of the object in the picture. As the number of
convolutional layers becomes deeper and deeper, the network will ignore some detailed
textures, saving only the important skeletons in the picture. Of course, the texture feature
also contains some structural information, but the information is too rich, and the texture
and structure are messy and difficult to distinguish.

Figure 3. An overview of HMblock. HMblock includes the local multi-scale feature extraction module
RF and the global residual connection used to extract the global multi-scale features, which together
constitute the hybrid multi-scale features.
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The role of HMblock is to merge together texture features that already contain vari-
ous information with the original structural features, so that the reconstructed SR image
possesses an accurate structure and rich texture features. When extracting texture features,
we consider multi-scale texture features. Usually, we use convolutional layers with dif-
ferent convolution kernel sizes. The inception [19] module uses 3 × 3, 5 × 5, and 7 × 7
convolutional layers to achieve multi-scale features. Instead of using convolutional layers
with different convolution kernel sizes, we construct a bottleneck structure, and use dilated
convolution to obtain different sizes of the receptive fields. If we use standard discrete
convolutional layers, with⊗ as the operator of convolution, and defining a discrete function
OεZ2 and a discrete convolution kernel PεZ2, the expression can be given as

(O⊗ P)(i) = ∑
s+t=i

O(s)P(t) (4)

When using a standard convolutional layer, the size of the receptive field depends on
the size of the convolution kernel. Some methods such as MRFN [13], which uses repeated
stacking of 3 × 3 convolutional layers to obtain a large receptive field, will lead to a large
increase in the number of parameters and calculations. To minimize that problem, we use
dilated convolution and a control dilation factor r to control the size of the receptive field.
The operation of dilated convolution can be stated as

(O⊗r P)(i) = ∑
s+rt=i

O(s)P(t) (5)

The dilated convolution [20] operator of dilation r can be referred to as ⊗r. Figure 4
shows that, by using dilation factors of 1 and 2 and 3, we can obtain the receptive fields of
3 × 3, 5 × 5 and 7 × 7.

Figure 4. Three scales of the multi-scale RF module, expressed in the form of different receptive
field sizes.

The features of scenes and objects in natural images are often irregular. In the RF
module, even though multi-scale receptive fields have been obtained, the ability to learn
irregular features remains inadequate.

For the model to further learn irregular features, we use deformable convolution [21]
with offset:

(O⊗d P)(i) = ∑
s+t+∆xn=i

O(s)P(t) (6)

∆xn is a learnable offset, and should be processed by bilinear interpolation to match
the features. We flexibly use residual connection to avoid the checkerboard effect, and
compensate for the information lost due to the enlargement of the receptive field. Before
and after the RF module, we have added a global residual connection; furthermore, in the
middle layer of RF5 and RF7, we have added two local residual connections. Table 2 shows
that the number of parameters of the multi-scale method is greatly reduced, compared to
Inception style [19] and MRFN style [13].
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Table 2. Comparing different local multi-scale implementation methods.

Method RF Parameter Madd Receptive Field

HMblock-inc [19] Different conv kernel sizes 0.865 M 138 G 3, 5, 7

HMblock-mrf [13] Only stack 3 × 3 conv 0.747 M 111 G 3, 5, 7

HMblock Bottleneck + Dilated + Deformable 0.523 M 59 G [3, 5, 7] × Deformable

In the super-resolution task, the structural similarity between the SR image and the
HR image is very important, since problems such as distortion and deformation often
crop up during processing. After obtaining multi-scale texture features, we consider
structural features. Many existing methods [13] quit increasing the depth of this module
after extracting the multi-scale texture features. However, doing so is not enough; although
texture features contain structural features, the amount of information remains too large—
with a gap between texture details and structural details. Without an obvious boundary,
the contour of the reconstructed image remains blurred and too smooth. Our idea is to use
a deeper convolutional layer to extract the structural features contained in the multi-scale
texture features, and merge them again to strengthen the structure outline and fix the
texture details to an accurate position.

As shown in Figure 3, we input the features into three multi-scale blocks RF, and
connect them with the residual to compensate for the loss of global information:

F[i,T] = ∑
r=3,5,7

(RFr

[
F[i−1]

]
+ Resr) (7)

After obtaining the local multi-scale texture features, we further extract the corre-
sponding structural features through three deeper convolutional layers. We use the local
residual connection to register the texture features to the corresponding positions of the
structural features. We do not directly add the texture and structural features; instead, we
first add a global residual connection link to the texture feature, then use concat to stack
the texture feature and the global residual feature, finally adding the structural feature:

Fi = F[i,S] + Concat
[

F[i,T], Fi−1

]
(8)

Finally, we use a point convolutional layer to fuse the texture features and structural
features. Table 2 shows the characteristics of our HMblock compared to other super-
resolution core modules. We have used a variety of methods to reduce the number of
parameters and made improvements in terms of hybrid multi-scale features. Table 3 shows
the differences between HMSF and other methods used for multi-scale feature extraction.

Table 3. Comparison of different image enhancement blocks: “LMS” means “local multi-scale”,
“GMS” means “global multi-scale”, and “HMS” means “hybrid multi-scale”.

Block LMS GMS HMS

CARN × × ×
MRF (MRFN)

√
× ×

LESRCNN × × ×
HMblock (Ours)

√ √ √

3.1.3. DRblock

The last module is DRBlock. This module includes a 1 × 1 convolution for dimension-
ality reduction integration, as well as a PixelShuffle [25] layer for upsampling. DRBlock
inputs an H ×W low-resolution input image, and through a sub-pixel operation turns it
into a high-resolution image of rH × rW. However, the realization process is not achieved



Mathematics 2022, 10, 653 9 of 26

by directly generating the high-resolution image through interpolation; instead, the process
yields r2, the dimensional feature map, through convolution. Then the high-resolution
image is obtained through periodic shuffling, where r is the upsampling factor, which is
the magnification of the image. The 1 × 1 convolution we used before yields the feature
map to be sampled with matching dimensions. After upsampling, we add together the
feature map that meets the resolution with the low-resolution enlarged image obtained by
bicubic linear interpolation to obtain the super-resolution image.

3.2. Loss Function

We considered using two loss functions to evaluate the difference between the true-
value HR and the model-predicted-and-reconstructed SR image. The first loss function is
L2, which is the mean-squared error (MSE), expressed as follows:

LMSE( Î, I) =
1

hwc ∑
(

Îi,j,k − Ii,j,k

)2 (9)

However, the L2 loss function is difficult to use under the influence of noise; its
correlation with human visual perception is insufficient, and the potential multi-modal
distribution from low-resolution LR to high-resolution HR is not to be found. Oftentimes,
the reconstructed image is too smooth. Unlike L2, the L1 loss function is widely used in
many super-resolution tasks; many experiments have shown that it improves the effect
of super-resolution. Therefore, we have considered using the Charbonnier loss function,
which is an improved form of the L1 loss function [8]. To prevent over-fitting, it adds a
regular term ε with 1× 10−3 at the end:

LCharbonnier( Î, I) =
1

hwc ∑
i,j,k

√(
Îi,j,k − Ii,j,k

)2
+ ε2 (10)

We have used the L2 and Charbonnier loss functions to train our model. Experimental
results show that the Charbonnier loss function can achieve better training results.

4. Experiments
4.1. Datasets
4.1.1. Training Datasets

In line with state-of-the-art methods [6,10,12,34,45–47], we utilized the DIV2K dataset [48]
to train our image super-resolution network. DIV2K is a high-quality image dataset,
containing 800 training images, 100 testing images and 100 validation images.

4.1.2. Testing Datasets

In keeping with most existing methods, we also evaluated the effectiveness of the
developed network on the following benchmark datasets: Set5 [49], Set14 [50], BSD100 [51],
Urban100 [52] and Manga109 [53]. Among these datasets, BSD100, Set5, and Set14 consist
of images with natural scenes; Urban100 contains urban scenes; and Manga109 consists
of Japanese manga pictures with rich colors. As usual, we used bicubic interpolation to
downsample the image to obtain the LR/HR image pair. By convention, we converted the
picture from RGB format to YCbCr format, evaluated only the Y channel, and used bicubic
interpolation to upsample the color components.

4.2. Implementation Details

To obtain the image pairs required for training, we first used a bicubic interpolation to
downsample the original HR image by scales of M (M = 2, 3, 4) to obtain the LR image.
We then cropped the LR to the size of L × L to obtain a set of sub-images of the L × L
image. To match it, we cropped the HR image to the size of ML × ML to obtain the HR
sub-image set. For example, under the 2× task, we set the sub-image size of LR to 24 × 24,
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the sub-image size of HR to 48 × 48, and the step size of the cropped sliding window to
24 pixels. Meanwhile, we applied the same three data augmentation operations [10,12]
on the data for training the network; the three operations included (1) turning the picture
horizontally, with mirroring up and down; (2) rotating the picture 90 degrees, 180 degrees
and 270 degrees; and (3) scaling the image to 0.6, 0.7, 0.8 and 0.9 times the original size.
During training, we used the Charbonnier loss [8]; set the learning rate to be 4× 10−4 ; and
used the Adam optimizer [54] to optimize the training with β1 = 0.9 and β2 = 0.999. To make
the network converge faster, we simply initialized the parameters by using Kaiming [55]
initialization. Our method was implemented by using Pytorch with NVIDIA RTX 2080ti
GPUs, at a cost of about 24 h to train HMSF 2×, using 4 GPUs.

4.3. Analysis
4.3.1. Study of EFblock

EFblock is an efficient feature extraction block. Compared with the convolution block
that consists of two standard 3 × 3 convolutional layers, its parameter number is reduced,
but the performance is improved. We designed an ablation experiment by replacing the
EFblock with a two-layer 3 × 3 convolutional block similar to that in other methods,
similarly aiming to obtain 64-channel features.

Figure 5 shows all 64-dimensional features as well as the heat map of the features,
the average features, and the SR image result extracted by Convblock and EFblock when
Barbara.bmp in Set14, 2×, is processed. From the total features, it can be seen that the color
extracted by the Convblock is dark, and many features are almost black. This shows that
these feature maps are not effective; in contrast, the EFblock feature maps include almost all
effective knowledge. The heat map makes clear that the features extracted by EFblock are
richer, especially the details; furthermore, the color contrast, such as for the several items on
the desk, is sharper. The final HMSF-EFblock also yields higher PSNR and SSIM values for
Barbara.bmp. Table 4 shows the use of Convblock and EFblock to train the HMSF model. We
used 2× three general datasets for testing. The number of parameters of HMSF-EFblock is
3000 less than that of HMSF using Convblock, with fewer multi-adds, too. HMSF-EFblock
excels in all three datasets, especially in Manga109 and Set14. The ablation experiment
shows that, compared with Convblock, the efficient and lightweight feature-extraction
module EFblock has the advantages of a small number of parameters and calculations,
while performing quite well.

Figure 5. Visual qualitative comparison on average feature maps on HMSF-CONV and HMSF.
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Table 4. The ablation experiment results of EFblock, local multi-scale learning and global multi-scale
learning were evaluated on three common datasets of 2× with PSNR/SSIM. Red text means the
best performance.

Methods Parameters EFB NST NMT Set14 B100 Manga109

HMSF-CONV 732 K ×
√ √

33.77/0.9192 32.27/0.9008 38.87/0.9776

HMSF-NMT 610 K
√

×
√

33.72/0.9186 32.25/0.9007 38.87/0.9776

HMSF-NST 462 K
√ √

× 33.55/0.9170 32.17/0.8996 38.41/0.9768

HMSF 729 K
√ √ √

33.81/0.9194 32.28/0.9009 38.94/0.9778

4.3.2. Study of Local Multi-Scale Learning

Local multi-scale is mainly used for texture features. Convolutional layers with
different receptive fields can extract texture features with different thicknesses and precision.
Figure 6 shows the feature maps and heat maps extracted from the RF series of multi-scale
modules with different receptive field sizes. It can be seen that, as the receptive field
increases, the extracted texture features become more and more concise, from fine details to
image contours. The fusion image shows the fusion result of texture features with different
levels of fineness: both fine features and rough contours.

NMT and HMblock in Figure 7 represent the differences between local single-scale
and multi-scale texture-extraction structures. We kept the local and global residual connec-
tions, and adjusted only the number of local multi-scale modules, RF. The HMSF-NMT in
Table 4 represents a model that uses a local single-scale structure during texture extraction.
Although the parameters and calculations of the local single-scale structural model are
slightly reduced, the performance is greatly reduced, and each test dataset declines. Among
them, the decline in Urban100 is the most obvious. Experiments show that local multi-scale
texture features are very important for reconstructing local details of the image.

Figure 6. Visual qualitative comparison of average feature maps and average heat maps, via Local
Multi-scale Learning.



Mathematics 2022, 10, 653 12 of 26

Figure 7. NST: without global multi-scale structural. NMT: without local multi-scale texture features.
HMblock: complete hybrid multi-scale features.

4.3.3. Study of Irregular Convolution

We propose an RF module that uses two types of irregular convolution, dilated
convolution and deformable convolution, to obtain different sizes of the receptive field. We
view these two irregular convolutions as a whole module; the dilated convolution aims to
reach the receptive field, while the deformable convolution aims to extract the irregular
feature. To compare our approach with the use of regular convolution, we designed an
ablation experiment with five sub experiments: (a) presents the HMSF that, using regular
convolutions, has different sizes of kernels (i.e., 3 × 3, 5 × 5, 7 × 7) to obtain different
receptive fields; (b) means using stack regular convolution 3 × 3 to achieve the same size of
receptive fields; and (c,d) means replacing two types of irregular convolution with regular
convolution 3 × 3 in HMblock. Note that DI means dilated convolution, and DE means
deformable convolution. Table 5 shows a performance comparison between five types of
HMSF. It is obvious that, with the factor 2 ×, the comparison between (d) and (e) prove the
advance of the use of dilated convolution (DI) by achieving performance improvement on
three datasets; on the other hand, it can be seen that using deformable convolution (DE)
can achieve better performance through comparing (c) and (e). Moreover, compared to
(e) and the traditional RC-based multi-scale method (a), the use of two types of irregular
convolutions not only can greatly reduce the number of parameters, but also improve
performance and achieve a better PSNR/SSIM on all three datasets.

Table 5. The ablation experiment of the use of RC/DI/DE (regular/dilated/deformable convolution).
Red text means the best performance.

HMSF Parameters Scale
Set14 B100 Manga 109

PSNR SSIM PSNR SSIM PSNR SSIM

(a) RC_based 762 K 2 33.60 0.9174 32.19 0.8999 38.75 0.9772

(b) RC_RC_based 695 K 2 33.71 0.9159 32.25 0.9005 38.77 0.9775

(c) DI_RC_based 675 K 2 33.71 0.9179 32.25 0.9006 38.79 0.9775

(d) RC_DE_based 729 K 2 33.70 0.9158 32.24 0.9005 38.74 0.9775

(e) DI_DE_based 729 K 2 33.81 0.9194 32.28 0.9009 38.94 0.9777
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4.3.4. Study of Global Multi-Scale Learning

Besides local multi-scale texture features, the method also proposes relative global
multi-scale structure features. These two scale features constitute global multi-scale features.
The two feature maps at the bottom of Figure 3 represent the average feature maps of
global multi-scale texture features as well as structural features. The texture features
are dark and retain the fine texture features of the baby, hat and other items, while the
structural feature only retains the definite outline and the main features of the face and
facial organs. The output of the final fusion feature map is texture, accurately registering
and reconstructing features and structural features, while yielding effective features with
rich thickness, texture and an accurate structure. We conducted ablation experiments on
global multi-scale structural features. The NST in Figure 7 indicates that only the local
multi-scale texture feature extraction structure was used; the structure feature was not
extracted. The trained model is named HMSF-NST. Table 4 shows the greatly reduced
performance of HMSF-NST with the global multi-scale structure feature removed; in each
dataset, there was significant performance degradation.

4.3.5. Study of Loss Function

Table 6 shows the performance of our model trained with three loss functions, using a
factor of 2×, and evaluating it using Set14 and Urban100. Among them, the model trained
by Charbonnier loss has better performance than the L2 loss.

Table 6. The performance of models trained with different loss functions.

Loss Function Scale Set5 B100
PSNR (dB)/SSIM PSNR (dB)/SSIM

L2 2× 38.04/0.9606 32.24/0.9006

Charbonnier (L1) 2× 38.10/0.9609 32.28/0.9009

4.4. Comparisons with State-of-the-Arts

As shown in Table 7, we compare our proposed HMSF with several state-of-the-art
lightweight SR methods, including SRCNN [15], FSRCNN [16], VDSR [17], DRCN [29],
LapSRN [8], DRRN [7], IDN [11], CARN [10] and MRFN [13], from 2014 to 2020, with a
total of 18 methods. We compare our proposed HMSF on five common datasets, using two
common quality evaluation indicators: PSNR and SSIM. To further evaluate the model
parameters, memory usage, and multi-adds (Madds), we compare several methods to
obtain 1280 × 720 pictures as the benchmark to calculate the above indicators.

As shown in Figures 8 and 9, compared with some recent methods, ours requires
fewer parameters, but performs excellently. Further experiments show that our method
bests the existing methods in terms of model size and memory consumption, and exceeds
the state-of-the-art method in terms of performance. Table 8 shows the difference between
our method and others.

Table 7. Quantitative comparisons (PSNR (DB)/SSIM for 2×, 3× and 4×) of SOTA SR models.
Red/blue text means the best/second-best performance.

Model Scale Param Set5 Set14 B100 Urban100 Manga109

SRCNN [15] 2 57 K 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946 35.60/0.9663
FSRCNN [16] 2 12 K 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9710
VDSR [17] 2 665 K 37.53/0.9587 3303/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9750
DRCN [29] 2 1774 K 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.55/0.9732
LapSRN [8] 2 813 K 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100 37.27/0.9740
DRRN [7] 2 297 K 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.88/0.9749
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Table 7. Cont.

Model Scale Param Set5 Set14 B100 Urban100 Manga109

MemNet [9] 2 677 K 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740
EDSRbase [6] 2 1370 K 37.99/0.9604 33.57/0.9175 32.16/0.8994 31.98/0.9272 38.54/0.9769
SRMDNF [56] 2 1513 K 37.79/0.9600 33.32/0.9150 32.05/0.8980 31.33/0.9200 38.07/0.9761
IDN [11] 2 796 K 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.01/0.9749
CARN [10] 2 1592 K 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 /
DRFN [14] 2 - 37.11/0.9595 33.29/0.9142 32.02/0.8979 31.08/0.9179 /
MADNet [12] 2 878 K 37.85/0.9600 33.39/0.9161 32.05/0.8981 17.59/0.9234 /
LESRCNN [34] 2 626 K 37.65/0.9586 33.32/0.9148 31.95/0.8964 31.45/0.9206 /
CFSRCNN [26] 2 1200 K 37.79/0.9591 33.51/0.9165 32.11/0.8988 32.07/0.9273 /
MRFN [13] 2 - 37.98/0.9611 33.41/0.9159 32.14/0.8997 31.45/0.9221 /
GLADSR [33] 2 812 K 37.99/0.9608 33.63/0.9179 32.16/0.8996 32.16/0.9283 /

HMSF 2 729 K 38.10/0.9609 33.81/0.9194 32.28/0.9009 32.52/0.9322 38.94/0.9777

SRCNN [15] 3 57 K 32.66/0.9089 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117
FSRCNN [16] 3 12 K 33.16/0.9140 29.43/0.8242 28.53/0.79l0 26.43/0.8080 31.10/0.9210
VDSR [17] 3 665 K 33.67/0.9210 29.54/0.8277 28.55/0.7945 26.48/0.8175 32.01/0.9340
DRCN [29] 3 1774 K 33.85/0.9215 29.89/0.8317 28.81/0.7954 27.16/0.8311 32.24/0.9343
LapSRN [8] 3 813 K 33.82/0.9227 29.87/0.8320 28.82/0.7980 27.07/0.8280 32.21/0.9350
DRRN [7] 3 297 K 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.71/0.9379
MemNet [9] 3 677 K 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.71/0.9381
EDSRbase [6] 3 1555 K 34.37/0.9270 30.28/0.8417 29.09/0.8052 28.15/0.8527 33.45/0.9439
SRMDNF [56] 3 1530 K 34.12/0.9254 30.04/0.8370 28.97/0.8030 27.57/0.8400 33.00/0.9403
IDN [11] 3 796 K 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381
CARN [10] 3 1592 K 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 /
DRFN [14] 3 - 34.01/0.9234 30.06/0.8366 28.93/0.8010 27.43/0.8359 /
MADNet [12] 3 930 K 34.14/0.9251 30.20/0.8395 28.98/0.8023 27.78/0.8439 /
LESRCNN [34] 3 811 K 33.93/0.9231 30.12/0.8380 28.91/0.8005 27.70/0.8415 /
CFSRCNN [26] 3 1200 K 34.34/0.9256 30.27/0.8410 29.03/0.8035 28.04/0.8496 /
MRFN [13] 3 - 34.21/0.9267 30.03/0.8363 28.99/0.8029 27.53/0.8389 /
GLADSR [33] 3 821 K 34.41/0.9272 30.37/0.8418 29.08/0.8050 28.24/0.8537 /

HMSF 3 730 K 34.49/0.9280 30.42/0.8438 29.15/0.8065 28.33/0.8566 33.71/0.9453

SRCNN [15] 4 57 K 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555
FSRCNN [16] 4 12 K 30.73/0.8601 27.71/0.7488 26.98/0.7029 24.62/0.7272 27.90/0.8610
VDSR [17] 4 665 K 31.35/0.8830 28.02/0.7680 27.29/0.7267 25.18/0.7540 28.83/0.8870
DRCN [29] 4 1774 K 31.56/0.8810 28.15/0.7627 27.24/0.7150 25.15/0.7530 28.93/0.8854
LapSRN [8] 4 813 K 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560 29.09/0.8900
DRRN [7] 4 297 K 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.45/0.8946
MemNet [9] 4 677 K 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942
EDSRbase [6] 4 1518 K 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849 30.35/0.9067
SRMDNF [56] 4 1555 K 31.96/0.8930 28.35/0.7770 27.49/0.7340 25.68/0.7730 30.09/0.9024
IDN [11] 4 796 K 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942
CARN [10] 4 1592 K 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 /
DRFN [14] 4 - 31.55/0.8861 28.30/0.7737 27.39/0.7293 26.45/0.7629 /
MADNet [12] 4 1002 K 32.01/0.8925 28.45/0.7781 28.47/0.7327 25.77/0.7751 /
LESRCNN [34] 4 774 K 31.88/0.8903 28.44/0.7772 27.45/0.7313 25.77/0.7732 /
CFSRCNN [26] 4 1200 K 32.06/0.8920 28.57/0.7800 27.53/0.7333 26.03/0.7824 /
MRFN [13] 4 - 31.90/0.8916 28.31/0.7746 27.43/0.7309 25.46/0.7654 /
GLADSR [33] 4 826 K 32.14/0.8940 28.62/0.7813 27.59/0.7361 26.12/0.7851 /

HMSF 4 731 K 32.15/0.8947 28.61/0.7821 27.61/0.7372 26.15/0.7887 30.52/0.9082
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Figure 8. PSNR of recent CNN models for scale of 2× on Set5 [49]. The redpoint result is from our
HMSF. Our model achieves the best performance, although the number of network parameters is
relatively small.

Figure 9. PSNR of recent CNN models for scale of 4× on Set5 [49]. The redpoint result is from our
HMSF. Our model achieves the best performance, although the number of network parameters is
relatively small.

Table 8. Comparison of parameters and feature extraction layers of several methods with 2×.

Methods SRCNN [15] VDSR [17] LapSRN [8] CARN [10] IDN [11] MRFN [13] HMSF

Parameters 57 K 665 K 813 K 1592 K 796 K - 729 K

Feature Extraction Conv Layers Conv Layers Conv Layers Conv Layers Conv Layers Conv Layers EFblock

Global Multi-Scale × × × ×
√

×
√

Local Multi-Scale × ×
√

× ×
√ √

Hybrid Multi-Scale × × × × × ×
√
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Since our proposed method is based on the idea of hybrid multi-scale features, our
method has only two items—Set5 × 2 and Set14 × 4—ranking second among all PSNR and
SSIM comparison items, while other items show the best performance. Our method can
make the SR image more similar to the original structure and texture of the ground truth
image, as well as producing similar results in terms of brightness, contrast, and structure.
In the 2× stage, some models come close to ours: EDSR-baseline, MRFN and GLDSR.
When compared with the EDSR-baseline, however, we lead in PSNR and SSIM on all
datasets, although the parameter number of the EDSR-baseline is about twice that of ours.
In comparison with MRFN, Set5’s SSIM is only slightly behind, by 0.003. However, we are
far ahead in other aspects, especially in the Set14 and Urban100 datasets. In the Urban100
dataset, our method exceeds the GLADSR on PSNR by 0.36. The Urban100 dataset contains
many urban scenes; the texture of houses and streets in the pictures is complex, but the
structure is very regular. Because our method focuses on hybrid features-extraction and
fusion of texture features and structural features, ours can be better applied to complex
scenes. Experimental data also show that our method has advantages. Figure 10 shows
a visual comparison. In Urban100’s img067.png image, there are many windows. These
windows are structured, which means that their texture features are not rich, although the
structure is very prominent. Among the six visualization methods, only ours understands
the structural features and produces the least blur. The other methods have many gray
areas between panes. As can be seen in another picture, ppt3.bmp from Set14, our method
can better restore the letters on the picture, particularly with less blur.

Figure 10. Visual qualitative comparison on 2× scale datasets.

In the 3× stage, our method performs best on PSNR and SSIM. In contrast, other
methods, such as MADNet and SRMDNF, perform less well as the image size increases,
necessitating a considerable increase in the number of parameters. For example, the
parameter number of MADNet exceeds one million at 4×: too much, perhaps, to execute
well on devices with limited memory. With our method, on the other hand, the number
of parameters always remains at about 730,000—not increasing excessively as the super-
resolution ratio changes. For comparison purposes, we selected some images from B100
that contain natural scenes. As shown in Figure 11 in the image ‘14037.png’, our HMSF
restores terrestrial details best; moreover, in the image ‘108005.png’, our method excels by
restoring the stripe of the tiger more accurately.
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In the 4× stage, our method performs at just a slight disadvantage on Set14. However,
methods with performance similar to ours, such as GLADSR, have more parameters,
exceeding the number in our method by 95,000. MADNet’s number is also much larger
than ours. Figure 12 shows a visual comparison. We chose Urban100’s ‘Img092.png’. In
this picture, there are both structured features and rich textures. We notice that, among all
six compared methods, almost all of the others reconstruct the numerical texture into an
oblique texture. Doing so creates a serious problem, even changing the key structure of the
picture. Our method benefits from the fusion of hybrid multi-scale features to better restore
the original texture and structure of the graph. The superiority of our method can be seen
in yet another picture: ‘148026.png’ in B100. The bridge stripes in this picture, although very
rich in texture details, are very subtle and difficult to restore. Only our method can restore
more detail this well.

Figure 11. Visual qualitative comparisons on 3× scale datasets.

We also compared the models from the perspective of memory usage. With ours, the
small number of parameters is a major advantage, directly affecting the memory consump-
tion of the model inference. To keep the comparison fair, we ensured that all methods
were experimented with using the same Pytorch platform. As shown in Table 9, we used
four datasets for evaluation at a scale of 4×, and recorded memory consumption during
inference. We selected several open-source representative methods: (1) DRRN, with the
number of parameters much smaller than ours; (2) CARN, with the number of parameters
much larger than ours; and (3) EDSR-baseline and LESRCNN, with a number of parameters
similar to ours. It can be seen that DRRN, despite its small number of parameters, required
very large memory consumption, reaching 8211 MB on the Urban100 dataset—too much for
most personal computers. Several other methods performed satisfactorily, but consumed
more than 2 GB of memory on the Urban100 dataset, more than can be supported by
personal computers and mobile devices. Our method consumed the least memory for
each dataset, but achieved satisfactory performance, especially on the Urban100 dataset;
our memory consumption was about 800 MB lower than CARN’s, while our PSNR was
0.08 higher, and our SSIM was 0.005 higher. As shown in Figure 13, compared with four
SOTAs, the proposed model achieves the best performance with less memory consumption
in Urban100 4×.



Mathematics 2022, 10, 653 18 of 26

Figure 12. Visual qualitative comparisons on 4× scale datasets.

Table 9. Using memory consumption as the evaluation criterion—in a comparison of five open-source
methods with 4× scale—our method has the best performance and smallest memory consumption.
Red text means the best performance.

Methods Scale Parameters

Set5 Set14 B100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
Memory Memory Memory Memory

DRRN 4 301 K 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638
1071 M 1845 M 859 M 8211 M

CARN 4 1592 K 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837
803 M 983 M 695 M 2697 M

EDSR-baseline 4 1518 K 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849
727 M 921 M 659 M 2497 M

LESRCNN 4 774 K 31.88/0.8903 28.44/0.7772 27.45/0.7313 25.77/0.7732
1149 M 1805 M 903 M 7307 M

HMSF 4 731 K 32.15/0.8947 28.61/0.7821 27.61/0.7372 26.15/0.7887
652 M 729 M 611 M 1854 M

We further add the comparisons between multi-scale-based SOTAs [12,13,57,58].
Among them, Wang et al. proposed a traditional theory-based multi-scale method that uses
multi-scale dictionary training to construct the mapping of SR and LR. On the other hand,
MADNet, MRFN, and the method proposed by Du et al. consider regular convolutions
with different kernel sizes to obtain multi-scale receptive fields. Table 10 shows that the
CNN-based methods achieve better performance than the traditional theory-based method.
What is more, our HMSF is based on dilated convolutions and deformable convolutions,
which leads to a more powerful ability to learn multi-scale features and achieves better
performance in both Set5 and Set14 than other methods based on regular convolutions.
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Figure 13. Diagram analysis of model memory consumption and performance. The proposed model
achieves the best performance with less memory consumption.

Table 10. Quantitative comparisons (PSNR (DB)/SSIM for 3×) of SOTA multi-scale-based SR models.
Red text means the best performance.

Method Multi-Scale Implementation Scale Set5 Set14

Wang et al. [57] Multi-Scale Dictionary 3 33.40/0.9200 29.51/0.8300

Du et al. [58] Regular Convolution 3 33.44/0.9185 29.59/0.9290

MADNet [12] Regular Convolution 3 34.14/0.9250 30.20/0.8390

MRFN [13] Regular Convolution 3 34.21/0.9260 30.03/0.8360

HMSF (ours) Dilated + Deformable Convolution 3 34.49/0.9280 30.42/0.8438

In addition, we compared several open-source methods with similar parameters.
Table 11 shows a comparison of our multi-adds with the performance of several methods
with similar parameters. Generally speaking, the number of parameters affects memory
usage during execution, to a certain extent. Multi-adds can reflect execution speed. We
can see that CARN, the second method listed in the table, had slightly fewer multi-adds,
but its number of parameters was greatly increased, with performance much lower than
ours. Although MemNet had fewer parameters, its number of multi-adds was excessive:
tens of times more than those of other methods. For LESRCNN, the number of parameters
and multi-adds was slightly larger than ours, but its performance was poor. In general,
our method requires moderate parameters and calculations, but provides satisfactory
performance. For example, our number of parameters was 861,000 fewer than that of
CARN. While our number of multi-adds was increased by only 32 G, the performance
of our method exceeded that of CARN on all three datasets, especially on Urban100, for
which the PSNR was increased by 0.08.

Moreover, we added a comparison about the run times with several state-of-the-art
methods [6,9,59,60]; in keeping with some recent research [61], we used the same GPU
(Nvidia GTX 1080 Ti) to run models including HMSF and HMSF-L, and processed 100
images from Urban100 for 4×. Table 12 and Figure 14 show that, compared with four
state-of-the-art methods, our HMSF ran the fastest; HMSF-L had the second-best speed.
HMSF-L achieved better image quality with higher PSNR/SSIM, meaning that HMSF-L
achieved both efficiency and accuracy.
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Table 11. Multi-adds compared between six similar methods at 4× scale. Madds evaluated the
number of multiplications and additions of the model, and evaluated the combination of parameters
and Madds. Red text means the best performance.

Methods Scale Parameters Madds
Set14 B100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM

LapSRN 4 813 K 149 G 28.19/0.7720 27.32/0.7270 25.21/0.7560

MemNet 4 677 K 2662 G 28.26/0,7723 27.40/0.7281 25.50/0.7630

CARN 4 1592 K 90 G 28.60/0.7806 27.58/0.7349 26.07/0.7837

MADNet 4 1002 K 54 G 28.45/0.7781 27.47/0.7327 25.77/0.7751

LESRCNN 4 774 K 241 G 28.44/0.7772 27.45/0.7313 25.77/0.7732

HMSF 4 731 K 122 G 28.61/0.7821 27.61/0.7372 26.15/0.7887

Table 12. Comparison of average running time on Urban100 for 4×. Red/blue text means the
best/second-best performance.

Model Parameters Running Times (s) PSNR SSIM

MemNet 0.6 M 0.481 25.50 0.7630

EDSR 43 M 1.218 26.64 0.8029

RDN 22 M 1.268 26.61 0.8028

Meta-RDN 22 M 1.35 26.65 -

HMSF (Ours) 0.7 M 0.069 26.15 0.7887

HMSF-L (Ours) 4.48M 0.31 26.71 0.8056

Figure 14. Diagram analysis of model running times and performance. The proposed model achieves
the best performance with lower running times.

4.5. Further Comparisons with Larger State-of-the-Art Methods

Although our HMSF provides the benefits of being lightweight and effective, we
designed a series of comparisons to further demonstrate its potential. Given that our
model initially aimed to build a lightweight and tight neural network architecture, we
preferred to keep our original network structure, and simply changed the number of
channels in some layers to add parameters in order to enlarge the model size. We enlarged
our HMSF to middle size and named it HMSF-L. To enlarge it, we increased the number
of blocks to three, and applied more channels. We selected five state-of-the-art methods,
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including SRDenseNet [62], EDSR [6], FRSR [63], SRGAN [64], and NatSR [63]; most have
a similar number of parameters. As shown in Table 13, our HMSF-L has a middle size,
includes 4.48 million parameters, and achieved strong performance. HMSF-L achieved the
best scores on seven comparative items with a 4× factor; compared to the second-best
method, EDSR, our model trailed behind only Set5 with a PSNR of 0.02, but with far
fewer parameters—those of EDSR were almost 9.6 times more than ours with HMSF-L.
Furthermore, to compare ours with other state-of-the-art methods designed with a large
size, we enlarged our HMSF to a larger size, named HMSF-XL, by simply increasing the
number of HMblocks to five and further increasing the channels in some layers. As a
result, our model’s number of parameters was increased to 15.4 million. Since any model
with more than 15 million parameters can be categorized as a standard large model, we
selected five state-of-the-art methods, most with more than 15 million parameters. The five
include EDSR [6], SRGAT [65], RDN [59], RCAN [66] and SAN [67]; at least four of them
require more parameters than our HMSF-XL. For comparison, we evaluated the methods
on four common datasets. To fairly and comprehensively compare them, we considered
average PSNR/SSIM as well as the number of parameters. As shown in Table 14 with the
three methods RCAN, SAN and our HMSF-XL, each displayed certain advantages. RCAN
performed better than HMSF-XL on 4 out of 11 items. At best—on Urban100—RCAN
outperformed our method with a PSNR of 0.14 db. On the other hand, HMSF-XL achieved
better performance on 6 of the 11 items. Moreover, compared to SAN, our HMSF-XL
performed better on 7 of the 11; furthermore, SAN failed to placed first or second in
performance on 4 of the 11, even with 0.3 million more parameters than ours. In summary,
our HMSF-XL was enlarged simply by increasing the number of channels in some network
layers, without modifying the main architecture of the network. Obviously, there were
several methods that performed better than our HMSF-XL on some items, but on most
items, our method excelled. In short, HMSF-XL provides better overall performance with a
small number of parameters.

Table 13. We enlarge the HMSF to a middle size, and compare it with other state-of-the-art models
that have a similar number of parameters. Red/blue text means the best/second-best performance.

SRDenseNet EDSR FRSR SRGAN NatSR HMSF-L
Dataset Scale

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set5 4 32.02 0.8934 32.46 0.8968 32.20 0.8939 29.41 0.8345 30.98 0.8606 32.44 0.8987

Set14 4 28.50 0.7782 28.80 0.7876 28.54 0.7808 26.02 0.6934 25.67 0.6757 28.82 0.7876

B100 4 27.53 0.7337 27.71 0.7420 27.60 0.7366 25.18 0.6401 24.93 0.6259 27.75 0.7428

Urban100 4 26.05 0.7819 26.64 0.8033 26.21 0.7904 / / 23.54 0.6926 26.71 0.8056

Parameters 4 2.0 M 43 M 4.8 M 1.5 M 4.8 M 4.48 M

Table 14. We enlarge the HMSF to a large size, and compare it with other state-of-the-art models that
have a similar number of parameters. Red/blue text means the best/second-best performance.

EDSR SRGAT RDN RCAN SAN HMSF-XL
Dataset Scale

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set5 2 38.11 0.9601 38.20 0.9610 38.24 0.9614 38.27 0.9614 38.31 0.9620 38.28 0.9616

Set14 2 33.92 0.9195 33.93 0.9201 34.01 0.9212 34.12 0.9216 34.07 0.9213 34.13 0.9219

B100 2 32.32 0.9013 32.34 0.9014 32.34 0.9017 32.41 0.9027 32.42 0.9028 32.40 0.9026

Urban100 2 32.93 0.9351 32.90 0.9359 32.89 0.9353 33.34 0.9384 33.10 0.9370 33.20 0.9384

Avarage 2 34.32 0.9290 34.34 0.9296 34.37 0.9299 34.54 0.9310 34.48 0.9308 34.50 0.9311

Parameters 43 M / 22.3 M 16 M 15.7 M 15.4 M

4.6. Further Test on Real-World Images

As a powerful image processing tool, super-resolution is widely used. In the real
world, however, there are few LR-HR image pairs that can be evaluated for image quality.
To simulate a real-world scenario, we followed the methods described in [8,56], using some
real-world images to test ours. Because there are no HR images that suit these real-world
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images, we provided just the visualized results to be evaluated. Figure 15 shows a real-
world historical image, processed with factor 2×; in the visualized comparison, it can be
detected that our HMSF restored font details better. Figure 16 shows a visualized test
result on the real LR image, Cat.png, which was more difficult to process because of its blur.
Compared to the results of LapSRN [8], Waifu2x [68] and CARN [10], the image processed
by HMSF appears with a sharper edge as well as a purer black color.

Figure 15. Visual test on real-world historical image of 2×.

Figure 16. Visual test on real LR image ‘Cat.png’, 2×.

4.7. Analysis of Limitations

As previously mentioned, our HMSF achieves better performance in terms of PSNR/
SSIM and visualization quality. However, many deep-learning-based models [10,11,17,34]
(including our HMSF) share a problem, as shown in Figure 17: none of the methods can
correctly restore the direction of a stripe from the input of a bicubic low-resolution image. In
a bicubic image, stripes are displayed as staggered black and white pixels; each white/black
pixel connects the next black/white pixel in two contrary directions. Such a phenomenon
will mislead trained models to yield undesirable results.

Figure 17. Failure case. A failure example of 2 × SR; our HMSF cannot correctly restore the direction
of the stripe of the textile, with its complex detail and misleading information.
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5. Discussion

In light of the paper, our proposed HMSF is lightweight, accurate, and fast, and has
fewer parameters but performs better than SOTAs. We found that existing lightweight
methods ignore the texture and structural characteristics of features and do not effectively
extract them, which leads to an unsatisfying image restore quality. To tackle the afore-
mentioned problem, we proposed an efficient feature extraction module and a hybrid
multi-scale mechanism that aims to efficiently extract multi-level image structure and
texture features. Unlike previous multi-scale mechanisms, our proposed method combines
local and global multi-scale features, including both local multi-scale receptive fields and
global multi-scale over network depth. Further, in the super-resolution task, the processed
images often have blurry and irregular artifacts, which cannot be recovered well by pre-
vious methods. To solve this problem, we consider the use of dilated convolution and
deformed convolution to further improve the ability to extract local multi-scale texture
features. Since the size of the receptive field of deformed convolution is irregular, it is
well adapted to complex irregularities artifacts. However, there are also some unsolved
problems sustained, as Section 4.7 shows that existing SOTAs cannot correctly restore the
direction of stripes in Figure 17, which is a research gap for how to properly fix images with
misleading information. We believe that some prior knowledge must be added to guide the
model to identify misleading information (i.e., wrong texture orientation) when processing
such images. In future research, we will try to incorporate priors that verify misleading
information (such as probabilistic predictions of the correct orientation of the texture) in
our HMSF to better recover these images with misleading or redundant information.

6. Conclusions

In this paper, we propose a lightweight and fast super-resolution method, based on
hybrid multi-scale features. We developed a feature-extraction module, EFblock, with
a novel structure, flexible use of point convolution, and grouped convolution. It also
adds local and global residual connections, but with fewer parameters—fewer than in the
usual convolutional layer. We also propose a novel, hybrid, multi-scale features-extraction
block, HMblock, with an efficient bottleneck structure, dilated convolution and deformable
convolution, all to achieve local and global multi-scale learning. This can accurately
match an image structure, and completely restore texture details. Compared with other
state-of-the-art methods, ours performed competitively on five datasets, performing with
high efficiency while still being lightweight. In particular, our method necessitates fewer
parameters and consumes less memory during execution, yet performs better; in particular,
our method offers promising benefits for memory-constrained devices. In further work,
we hope to develop a lightweight and efficient video-data super-resolution method. Due
to the similarities and differences of tasks, we hope to incorporate associated video frame
information into our work so that video super-resolution also can be executed on memory-
constrained devices.
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