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Abstract: Discriminative correlation filters (DCFs) have been widely used in visual object tracking,
but often suffer from two problems: the boundary effect and temporal filtering degradation. To deal
with these issues, many DCF-based variants have been proposed and have improved the accuracy
of visual object tracking. However, these trackers only adopt first-order data-fitting information
and have difficulty maintaining robust tracking in unconstrained scenarios, especially in the case
of complex appearance variations. In this paper, by introducing a second-order data-fitting term to
the DCF, we propose a second-order spatial–temporal correlation filter (SSCF) learning model. To be
specific, the SSCF tracker both incorporates the first-order and second-order data-fitting terms into
the DCF framework and makes the learned correlation filter more discriminative. Meanwhile, the
spatial–temporal regularization was integrated to develop a robust model in tracking with complex
appearance variations. Extensive experiments were conducted on the benchmarking databases
CVPR2013, OTB100, DTB70, UAV123, and UAVDT-M. The results demonstrated that our SSCF can
achieve competitive performance compared to the state-of-the-art trackers. When penalty parameter
λ was set to 10−5, our SSCF gained DP scores of 0.882, 0.868, 0.706, 0.676, and 0.928 on the CVPR2013,
OTB100, DTB70, UAV123, and UAVDT-M databases, respectively.

Keywords: correlation filters; second-order fitting; visual tracking

MSC: 68T45

1. Introduction

Visual object tracking is a fundamental problem in the field of computer vision, which
has a wide range of applications in human–computer interaction, video surveillance,
unmanned driving, and so on. The task of visual object tracking always suffers from the
challenges of appearance variations, such as illumination variation, fast motion, out-of-
plane rotation, and in-plane rotation. To deal with these challenges, various innovative
trackers have been proposed and achieved significant progress in tracking performance
and robustness. Among these tracking methods, discriminative-filter-based trackers [1–5]
have received significant attention due to their competitive performance.

The standard discriminative-correlation-filter (DCF)-based tracker treats the filter
learning as a ridge regression problem, and the objective function can be transferred
to the frequency domain by the fast Fourier transform (FFT) for the solution. Bolme
et al. [6] first learned the correlation filter to perform the target tracking task and proposed
a minimum output sum of squared error (MOSSE) model. The MOSSE trains the filter
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by calculating the minimum actual and expected mean-squared errors of sequence im-
ages. Inspired by the MOSSE, Henriques et al. [7] considered that cyclic displacement
could be used to replace random sampling to achieve dense sampling and proposed a
theoretical framework to explore the effect of dense sampling. The proposed framework
formulates a kernelized correlation filter to improve the tracking performance. Zhang
et al. [8] adopted the Bayesian principle to build a spatial–temporal context model for
tracking. However, these CF-based trackers only utilize single-channel features, which is
not robust in the tracking scenarios with complex appearance variations. To tackle this
issue, some CF-based methods [9–19] extract multiple features to learn the filters. The
commonly used handcrafted features include the histogram of oriented gradients (HOG),
color names (CNs), the local binary pattern (LBP), and scale-invariant feature transform
(SIFT). These features describe the shape and color information of the targets. Trackers
using multiple features are more robust to the fast movement and deformation variation of
targets. For instance, Galoogahi et al. [17] employed multi-channel HOG descriptors in the
frequency domain to extract HOG features for filter learning and proposed a multi-channel
CF tracker (MCCF). Huang et al. [14] used hybrid color features to learn filters in which the
compressed CN features and the HOG features based on the opponent color space were
extracted, and principal component analysis was used to reduce the computational cost.
Li et al. [12] integrated the raw pixel, HOG, and color label features into the DCF frame-
work and presented an adaptive multiple feature tracker. Kumar et al. [19] exploited
the LBP, color histogram, and pyramid of the histogram of gradients to model the ob-
ject’s appearance and developed an adaptive multi-cue particle filter method for real-time
visual tracking.

Even though these DCF-based trackers using multi-channel features succeed to some
extent, some aspects such as the redundancy of multi-channel features, the boundary effect,
and data fitting have not been fully explored. To tackle these issues, many structural
regularized DCF methods [20–26] have been presented. Zhu et al. [2] proposed an adaptive
attribute-aware strategy to distinguish the importance of different channel features. Jain
et al. [20] presented a channel graph regularized CF model by introducing a channel
weighing strategy in which a channel regularizer was integrated into the CF framework
to learn the channel weights. Xu et al. [22] proposed a channel selection scheme for
multi-channel feature representations and adopted a low-rank approximation to learn
filters in a low-dimensional manifold. In addition, many trackers propose a variety of
strategies to solve the boundary effect. The SRDCF [23] incorporates a spatial regularizer
into the DCF to deal with the problem caused by the periodic assumption. Li et al. [24]
supplemented the temporal regularization term into the SRDCF tracker [23] and proposed
a spatial–temporal regularization CF framework. To be specific, the STRCF integrates both
temporal regularization and spatial regularization into the standard DCF model and can
perform model updating and DCF learning simultaneously. As a result, the STRCF could
be regarded as an approximation of the SRDCF with multiple samples and achieves better
tracking performance than the SRDCF. The BACF [25] utilizes a cropping matrix to extract
patches densely from the background and expands the search area at a low computational
cost. Xu et al. [26] combined temporal consistency constraints and spatial feature selection
to propose an adaptive DCF model in which the multi-channel filters can be learned in a
low-dimensional manifold space. However, the aforementioned trackers only employ the
first-order data-fitting information of the feature maps. In other words, such methods do
not consider high-order data-fitting information for tracking.

On the basis of the above-mentioned analysis, we propose a novel CF-based tracker,
the second-order spatial–temporal correlation filter (SSCF) learning model. We formulated
our tracking algorithm by incorporating a second-order data-fitting term into the DCF
framework, which helps to take full advantage of target features against surrounding
background clutter. The main contributions of the SSCF are summarized as follows:

• We propose a new discriminative correlation filter model for visual tracking with
complex appearance variations, unlike prior DCF-based trackers in which the first-
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order data-fitting information is only used. We incorporated the second-order data
fitting and spatial–temporal regularization into the DCF framework and developed a
more robust tracker;

• An effective alternating-direction method-of-multipliers (ADMM)-based algorithm
was used to solve the proposed tracking model;

• Extensive experiments on the benchmarking databases demonstrated that our SSCF
can achieve competitive performance compared to the state-of-the-art trackers.

The remainder of this paper is organized as follows. Section 2 introduces the related
work. Section 3 describes the detailed mathematical formulation of the proposed model
and introduces the optimization algorithm. Section 4 reports the experimental results and
the corresponding analysis. Finally, Section 5 draws the conclusions.

2. Related Work

In this section, we review mainly three categories of tracking methods, including
trackers based on target detection, trackers based on clustering, and channel-reliability
learning trackers.

Since target detection techniques [27–29] have attracted wide attention in the computer
vision field, many trackers based on target detection have been proposed. Guan et al. [30]
proposed a joint detection and tracking framework for object tracking in which the detection
threshold was adaptively modified according to the information fed back to the detector
by the tracker. Zhang et al. [31] employed a faster recurrent convolutional neural network
to extract the candidate detection areas and proposed a multi-target tracking algorithm.
In [32], Liu et al. combined motion detection with correlation filtering and presented a
new model for object tracking. The presented model determines the object position via
the weighted outputs of motion detection and the tracker. Considering that the existing
kernelized correlation filter tracking methods fail to identify occlusion, Min et al. [33]
adopted a detector to assist the occlusion judgment and improve the tracking performance.

Clustering-based algorithms [34,35] have been commonly used in pattern recognition
and computer vision, such as image segmentation [36] and patten classification [37]. In-
spired by this, many researchers use clustering algorithms to improve the performance of
object tracking. For instance, Keuper et al. [38] combined motion segmentation with object
tracking and presented a correlation co-clustering model to improve the performance.
In [39], Li et al. developed an intuitionistic fuzzy clustering model for object tracking.
Specifically, the local information of the targets is incorporated into the intuitionistic fuzzy
clustering to improve the robustness. Considering that DBSCAN clustering does not require
the number of clusters, He et al. [40] employed a DBSCAN clustering-based track-to-track
fusion strategy for multi-target tracking.

Recently, the idea of different weights distinguishing the importance of different com-
ponents has been widely used in pattern classification [41,42] and face recognition [43].
Similarly, some DCF-based channel-reliability learning trackers have been proposed to deal
with the problem of model degradation. Du et al. [44] argued that different channels have
different contributions in the tracking process and proposed a joint channel-reliability and
correlation-filter learning model. The proposed tracker assigns each channel a weight to
distinguish the different importance. To exploit the interaction between different channels,
Jain et al. [20] assigned similar weights to similar channels to emphasize important channels
and developed a channel attention model. Li et al. [45] argued that the existing trackers
do not consider the complementary information of different channels and proposed a
channel-feature integration method. All channels of each feature share an importance
map to avoid overfitting. In [46], the authors introduced channel and spatial reliability to
the DCF framework and employed the reliability scores to weight the per-channel filter
responses. The experiments showed that the channel weights were able to improve the
tracking performance. These methods principally focus on overcoming model degrada-
tion by incorporating channel reliability and enhance the discriminative performance to
some extent.
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3. The Proposed Model
3.1. Objective Function Construction

As mentioned above, the existing DCF-based methods only utilize first-order data-
fitting information and ignore high-order data-fitting information for tracking, which
cannot take full advantage of target features against surrounding background clutter
and suffer from the stability–plasticity dilemma. To deal with these issues, we built
a second-order spatial–temporal correlation-filter learning framework. Specifically, we
incorporated a second-order data-fitting term and spatial–temporal regularization into
the DCF framework and formulated a robust model. The objective function is able to be
formulated as below.

We first denote the dataset S = {Xt}T
t=1, and each frame Xt ∈ RM×N×K contains K

feature maps with a size of M × N. Y ∈ RM×N is the Gaussian-shaped label. Our aim
was to learn a multi-channel convolution filter F ∈ RM×N×K by minimizing the following
objective function:

min
F

1
2

∥∥∥∥∥ K

∑
k=1

Xk
t ∗ Fk − Y

∥∥∥∥∥
2

F

+
1
2

K

∑
k=1
‖W · Fk‖2

F

+
λ

2
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∑
k=1

Xk
t ∗ Fk ∗ Xk

t − Y

∥∥∥∥∥
2

F

+
µ

2
‖F− Ft−1‖2

F (1)

where ∗ represents the convolution operator and · denotes the Hadamard product. W is
the spatial regularization matrix, and Ft−1 is the correlation filter used in the t− 1-th frame.
λ and µ are penalty parameters. The first term is the first-order data-fitting term, which is a
generic formulation for learning the filter in DCF-based trackers. The second term is the
spatial regularizer to solve the boundary effect. The third term is the second-order data-
fitting term, which can be helpful to make full use of discriminative target features. The
last term is the temporal regularizer to force the current frame filter close to the previous
one, which helps to prevent the effect caused by the corrupted samples.

3.2. Optimization Algorithm

It can be noted that the objective function in Equation (1) is convex, and the mini-
mization problem can be solved by the ADMM algorithm. To be specific, we introduced
an auxiliary variable G ∈ RM×N×K by restricting F = G and constructed the augmented
Lagrangian form of Equation (1) as:

L(F,G,S) = 1
2
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2
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2
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F

+
γ

2

K

∑
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‖Fk −Gk‖2

F +
K
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Tr((Fk −Gk)TSk) (2)

where S = [S1, S2, · · · , SK] ∈ RM×N×K is the Lagrange multiplier and γ is the stepsize.
Assuming H = 1

γS, Equation (2) can be written as:
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L(F,G,H) =
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The optimization problem can be divided into several subproblems as follows.

F(l+1) = arg min
F
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G(l+1) = arg min
G

K
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k=1
‖W ·Gk‖2

F + γ
K

∑
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∥∥∥Fk −Gk + Hk
∥∥∥2

F
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H(l+1) = H(l) + F(l+1) −G(l+1) (6)

Then, we can alternatively solve each subproblem as follows:
Solving F: According to Parseval’s theorem, the subproblem in Equation (4) can be

formulated in the Fourier domain as:

arg min
F̂

∥∥∥∥∥ K

∑
k=1

X̂k
t · F̂k − Ŷ
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2

F

+ λ
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X̂k
t · F̂k · X̂k
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Here, F̂ represents the discrete Fourier transform (DFT) of F. From Equation (7), it can
be noted that the i-th row and the j-th element of Ŷ only depend on the i-th row and the
j-th element of F̂ and X̂t across all K channels. Assume vij(F) is a K-dimensional vector
that contains the i-th row and the j-th elements of F along all K channels. Optimizing the
problem in Equation (7) is equivalent to solving the following MN subproblems:

arg min
vij(F̂)

‖ vij(X̂t)
Tvij(F̂)− ŷij ‖2

2 +µ ‖ vij(F̂)− vij(F̂t−1) ‖2
2

+ λ ‖ (vij(X̂t) · vij(X̂t))
Tvij(F̂)− ŷij ‖2

2

+ γ ‖ vij(F̂)− vij(Ĝ) + vij(Ĥ) ‖2
2 (8)

where i = 1, · · · , M and j = 1, · · · , N.
Taking the derivative of Equation (8) with respect to vij(F̂) as zero, we have:

vij(F̂) =(Q + (γ + µ)I)−1z (9)

Here, Q = vij(X̂t)vij(X̂t)T + λ(vij(X̂t) · vij(X̂t))(vij(X̂t) · vij(X̂t))T and z = vij(X̂t)ŷij +

µvij(F̂t−1) + λ(vij(X̂t) · vij(X̂t)) + γvij(Ĝ)− γvij(Ĥ).
Solving G: From Equation (5), each element of G is able to be updated independently,

and we adopted the same strategy as solving F. Assume vij(G) is a K-dimensional vector
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that contains the i-th row and the j-th elements of G along all K channels. Optimizing the
problem in Equation (5) is equivalent to solving the following MN subproblems:

arg min
vij(G)

w2
ij ‖ vij(G) ‖2

2 +γ ‖ vij(F)− vij(G) + vij(H) ‖2
2 (10)

Taking the derivative of Equation (10) with respect to vij(G) as zero, we have:

vij(G) = (PTP + γI)−1(γvij(F) + γvij(H)) (11)

where P is a diagonal matrix and each diagonal element is wij.
Updating H: Let vij(H) be a K-dimensional vector that contains the i-th row and the

j-th elements of G along all K channels. In the l + 1-th iteration of the ADMM, the Lagrange
multiplier vector vij(H) can be updated as follows:

vij(H)(l+1) = vij(H)(l) + vij(F)(l+1) − vij(G)(l+1) (12)

The details of the optimization procedure can be seen in Algorithm 1.

Algorithm 1 SSCF algorithm

Input: Feature maps Xt, Gaussian-shaped label Y, previous correlation filters Ft−1,
spatial regularization matrix W, initial values G(0) and H(0).
Output: Estimated correlation filters F.
1: repeat Step 2–Step 5

2: Update vij(F̂)(l+1) via Equation (9);

3: Update vij(G)(l+1) via Equation (11);

4: Update vij(H)(l+1) via Equation (12);

5: l = l + 1;

6: Until vij(F̂), vij(G), vij(H) have converged;

7: Obtain correlation filters F by applying the inverse DFT.

3.3. Computational Complexity

In this subsection, we discuss the computational complexity of the presented SSCF.
As shown in Section 3.2, we divided the optimization problem into several subproblems.
According to the Parseval theorem and the ADMM algorithm, the complexity of solv-
ing F is O(KMN) in each iteration. Taking the DFT and inverse DFT into account, the
computational complexity of solving F is O(KMNlog(MN)). Moreover, the complexity
of subproblems H and G is O(KMN). Suppose the number of iteration is T: the whole
computational complexity of the proposed SSCF is O(TKMN(log(MN) + 1)). In view of
this, the speed of our tracker is not fast.

4. Experiment Results and Analysis

This section provides the experiments to validate the superiority of the presented SSCF
in target tracking. To evaluate the performance of the proposed model, we compared it
with the state-of-the-art trackers, including spatially regularized discriminative correlation
filters (SRDCFs) [23], kernelized correlation filters (KCFs) [47], spatial–temporal regular-
ized correlation filters (STRCFs) [24], background-aware correlation filters (BACFs) [25],
learning adaptive discriminative correlation filters (LADCFs) [26], discriminative scale
space tracking (DSST) [48], the scale-adaptive with multiple features tracker (SAMF) [12],
ECOHC [49], ARCF-HC [50], the MSCF [51], and AutoTrack [52]. These experiments were
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conducted on the CVPR2013 [53], OTB50 [54], OTB100 [54], DTB70 [55], UAV123 [56], and
UAVDT-M databases [57].

In the experiments, our tracker was implemented using MATLAB R2017a on a com-
puter with an i7-8700K processor (3.7GHz) with 48GB RAM. λ was set to 10−5, and other
parameters were set to the same values as the STRCF. The histogram of oriented gradients
(HOG) features were used to conduct the comparative experiments. In addition, we fol-
lowed the one-pass evaluation (OPE) protocol [53] to evaluate the performance of different
trackers. The success and precision plots are reported based on the bounding box overlap
and center location error. The AUC is the area under the curve of the success plot, and the
distance precision (DP) is the percentage of the location errors within 20 px.

4.1. Results on the CVPR2013 Database

The CVPR2013 database contains 50 fully annotated video sequences with 11 different
attributes, such as background clutter, low resolution, occlusion, and out of view. The
overall performance, which is summarized by the success and precision plots, is listed in
Figure 1. It can be observed that the proposed SSCF achieved the top-ranking results.
The area under the curve (AUC) and distance precision (DP) scores were 0.681 and 0.882,
respectively. Specifically, the AUC and DP scores of SSCF were higher by 1.2% and 0.9%
than the STRCF. This indicates that incorporating the second-order data-fitting term is
effective at improving the tracking performance.
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Figure 1. Success plots (a) and precision plots (b) of the proposed SSCF and other trackers on the
CVPR2013 database.

To evaluate the robustness of the proposed SSCF on different attributes, we constructed
subsets with different dominant attributes for the experiments. The 11 challenging factors
were background clutter (BC), low resolution (LR), illumination variation (IV), motion blur
(MB), out of view (OV), fast motion (FM), deformation (DEF), occlusion (OCC), out-of-
plane rotation (OPR), scale variation (SV), and in-plane rotation (IPR). Table 1 shows the
AUC and DP scores of the proposed SSCF and the other trackers on the 11 attributes on
the CVPR2013 database. Despite not all scores of the proposed SSCF being the highest,
our method achieved the best robustness. Especially for the AUC scores on the different
attributes, our SSCF outperformed the other trackers, except LADCF.

4.2. Results on the OTB100 Database

OTB100 is a database containing 100 challenging video sequences, and these sequences
consist of more than 28,000 fully annotated frames. The results of the success and precision
plots for all trackers are shown in Figure 2. From the figure, the proposed SSCF outper-
formed all the competing trackers in its overall performance. Our tracker achieved 0.664
and 0.868 in terms of the AUC and DP scores, respectively.
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We also provide the attribute-based evaluation to validate the robustness of our SSCF.
The AUC and DP scores of all trackers on the 11 different attributes are reported in Table 2.
From the DP scores listed in the table, the proposed SSCF outperformed all competing
trackers on eight attributes. In terms of the AUC scores, our tracker performed better
than the other trackers on seven attributes. On other attributes, the SSCF was among
the top-three trackers. These results demonstrate that our SSCF is more robust than the
other trackers.

Table 1. The area under the curve (AUC) and distance precision (DP) scores of the proposed SSCF
and the other trackers on different attributes on the CVPR2013 database. The top-three methods on
each attribute are denoted by different colors: red, blue, and green. That is, red represents the best
performance, blue represents the second best, and green represents the third best (AUC/DP).

Attributes DSST [48] KCF [47] SAMF[12] SRDCF [23] BACF [25] STRCF [24] LADCF [26] SSCF

FM 0.413/0.485 0.435/0.559 0.460/0.568 0.541/0.691 0.583/0.766 0.572/0.697 0.591/0.728 0.604/0.754
BC 0.517/0.694 0.535/0.753 0.520/0.676 0.587/0.803 0.631/0.833 0.625/0.850 0.592/0.783 0.641/0.840

DEF 0.492/0.633 0.512/0.702 0.604/0.775 0.609/0.811 0.644/0.832 0.639/0.854 0.657/0.852 0.680/0.885
IPR 0.555/0.753 0.484/0.702 0.512/0.692 0.550/0.739 0.622/0.824 0.621/0.802 0.612/0.785 0.633/0.826
IV 0.551/0.711 0.477/0.699 0.498/0.655 0.557/0.727 0.600/0.788 0.599/0.779 0.599/0.752 0.630/0.799
LR 0.378/0.682 0.272/0.629 0.376/0.709 0.471/0.767 0.406/0.659 0.540/0.777 0.580/0.776 0.510/0.744
MB 0.433/0.504 0.462/0.589 0.428/0.507 0.560/0.719 0.609/0.790 0.566/0.681 0.579/0.702 0.626/0.778

OCC 0.523/0.690 0.499/0.724 0.598/0.816 0.610/0.815 0.612/0.797 0.646/0.854 0.673/0.869 0.673/0.872
OPR 0.529/0.723 0.485/0.710 0.549/0.749 0.586/0.796 0.620/0.822 0.651/0.863 0.657/0.850 0.667/0.875
OV 0.462/0.511 0.550/0.650 0.555/0.636 0.555/0.680 0.553/0.706 0.632/0.728 0.633/0.720 0.652/0.748
SV 0.546/0.738 0.427/0.679 0.507/0.723 0.587/0.778 0.584/0.765 0.647/0.836 0.649/0.821 0.639/0.823
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Figure 2. Success plots (a) and precision plots (b) of the proposed SSCF and the other trackers on the
OTB100 database.

Table 2. The area under the curve (AUC) and distance precision (DP) scores of the proposed SSCF
and the other trackers on different attributes on the OTB100 database. The top-three methods on
each attribute are denoted by different colors: red, blue, and green. That is, red represents the best
performance, blue represents the second best, and green represents the third best (AUC/DP).

Attributes DSST [48] KCF [47] SAMF [12] SRDCF [23] BACF [25] STRCF [24] LADCF [26] SSCF

FM 0.439/0.540 0.457/0.617 0.502/0.649 0.586/0.749 0.600/0.791 0.617/0.780 0.625/0.790 0.635/0.803
BC 0.521/0.703 0.509/0.731 0.532/0.705 0.584/0.777 0.643/0.861 0.648/0.872 0.637/0.830 0.679/0.884

DEF 0.414/0.532 0.427/0.600 0.500/0.671 0.533/0.715 0.599/0.802 0.596/0.825 0.595/0.812 0.613/0.835
IPR 0.496/0.681 0.468/0.698 0.515/0.717 0.535/0.729 0.583/0.787 0.593/0.794 0.601/0.810 0.602/0.817
IV 0.551/0.709 0.468/0.699 0.524/0.697 0.600/0.770 0.632/0.821 0.640/0.819 0.649/0.808 0.666/0.833
LR 0.370/0.649 0.290/0.671 0.425/0.766 0.514/0.765 0.516/0.797 0.579/0.843 0.614/0.850 0.576/0.834
MB 0.458/0.551 0.456/0.594 0.519/0.648 0.580/0.739 0.590/0.762 0.637/0.797 0.646/0.807 0.672/0.845

OCC 0.447/0.587 0.442/0.626 0.536/0.722 0.551/0.719 0.576/0.743 0.606/0.797 0.644/0.830 0.638/0.827
OPR 0.466/0.637 0.447/0.665 0.530/0.728 0.542/0.729 0.584/0.785 0.619/0.836 0.632/0.838 0.632/0.850
OV 0.383/0.481 0.418/0.540 0.495/0.662 0.464/0.601 0.521/0.721 0.585/0.766 0.613/0.815 0.600/0.777
SV 0.468/0.638 0.400/0.642 0.498/0.713 0.562/0.746 0.571/0.769 0.632/0.842 0.636/0.836 0.634/0.843
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4.3. Results on the OTB50 Database

Figure 3 lists the success plots comparing the presented method on OTB50 with the
existing trackers. The overall performance is summarized in Figure 3a. It can be seen
that the proposed SSCF had the best success rates. The success plots of all trackers on
the 11 different attributes are shown in Figure 3b–l. The proposed SSCF outperformed
the existing trackers on eight attributes, i.e., fast motion, background clutter, motion blur,
illumination variation, in-plane rotation, occlusion, out-of-plane rotation, and out of view.
Our SSCF incorporates the second-order data fitting and spatial–temporal regularization
into the DCF framework to develop a robust tracking pattern. The tracking results of the
SSCF on the other three attributes were among the top two. This also demonstrates the
effectiveness and robustness of our tracker.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3. Success plots of the proposed SSCF and the other trackers on the OTB50 database. (a) Overall
performance; (b–l) success plots on the 11 different attributes.



Mathematics 2022, 10, 684 10 of 15

4.4. Results on the DTB70 Database

Figures 4 and 5 show the success plots and precision plots comparing the presented
method on the DTB70 database with the existing trackers. The overall performance is
summarized in Figures 4a and 5a. It is observed that our SSCF achieved the best results
in the overall performance. The success plots and precision plots of all trackers on the
11 different attributes are shown in Figures 4b–l and 5b–l. Our SSCF outperformed the
existing trackers on nine attributes except motion blur and low resolution.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4. Success plots of the proposed SSCF and the other trackers on the DTB70 database. (a) Overall
performance; (b–l) success plots on the 11 different attributes.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Precision plots of the proposed SSCF and the other trackers on the DTB70 database.
(a) Overall performance; (b–l) precision plots on the 11 different attributes.

4.5. Results on the UAV123 Database

The UAV123 dataset contains 123 video sequences, which is the most commonly used
and most comprehensive dataset for UAV tracking. The overall performance, which is
summarized by success and precision plots, is listed in Figure 6. It can be observed that
the proposed SSCF achieved the top-ranking results. The area under the curve (AUC) and
distance precision (DP) scores were 0.479 and 0.676, respectively.

In order to visually show the performance of the proposed SSCF in the tracking
process, we selected three different types of video sequences, namely person, boat, and car
sequences, to conduct the experiments. As shown in Figure 7, each column corresponds
to three frames of the images, and the images were randomly selected from the video
sequences. The comparative methods were five trackers, including our SSCF, AutoTrack,
the MSCF, the STRCF, and the LADCF, marked in green, red, blue, yellow, and orange,
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respectively. It can be seen that our SSCF always tracked the correct target and had the best
performance. The STRCF and LADCF were not robust in tracking the small targets.

(a) (b)

Figure 6. Success plots (a) and precision plots (b) of the proposed SSCF and the other trackers on the
UAV123 database.

Figure 7. The qualitative analysis of different trackers on three video sequences.

4.6. Results on the UAVDT-M Database

In this section, we compare our SSCF with the existing methods on the UAVDT-M
database. We also report the running speed of these methods. The running speed was
measured in frames per second (FPS). Table 3 shows the comparison results. It can be
observed that our SSCF achieved better performance than the existing trackers. The area
under the curve (AUC) and distance precision (DP) scores were 0.667 and 0.928, respectively.
However, It should be pointed out that the performance improvement of our tracker came
at the expense of speed reduction.

Table 3. The area under the curve (AUC), distance precision (DP) scores, and FPS of the proposed
SSCF and other trackers on the UAVDT-M database.

Methods SSCF AutoTrack [52] MSCF [51] STRCF [24] ARCF-HC [50] LADCF [26] ECOHC [49] DSST [48]

DP 0.928 0.917 0.913 0.904 0.902 0.895 0.891 0.878
AUC 0.667 0.655 0.642 0.625 0.636 0.614 0.602 0.530
FPS 3.8 65.4 37.6 9.3 15.3 18.2 15.9 100.7

5. Conclusions

In this paper, we proposed a new model called the second-order spatial–temporal
correlation filter (SSCF) for visual object tracking. The SSCF is a DCF framework of
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combining the second-order data-fitting term and spatial–temporal regularization. To solve
the proposed model, we divided the optimization problem into several subproblems and
adopted the ADMM algorithm to solve each subproblem. By taking full advantage of the
second-order data-fitting information, the SSCF becomes more discriminative and robust
in addressing complex tracking situations. Extensive experiments on the benchmarking
databases demonstrated that our SSCF can achieve competitive performance compared to
the state-of-the-art trackers.

It can be noted that the presented SSCF achieved better tracking results than the
existing trackers on most of the attributes, but it was not robust on a few attributes, such as
low resolution and occlusion. Recently, occlusion-processing methods have been presented
in face recognition such as occlusion dictionary learning [58,59] and the occlusion-invariant
model [60]. Can these occlusion processing methods be used for object tracking with occlu-
sion? If the answer is yes, how can we design a new model to enhance the performance? It
also should be pointed out that the performance improvement of our tracker came at the
expense of speed reduction. How to improve the running speed of our SSCF is an important
problem. In addition, although the proposed SSCF achieved better results than the existing
methods, the accuracy was not high when tracking small targets. Self-paced learning has
been widely used in computer vision and machine learning [61]. Combining self-paced
learning and filter learning could potentially yield better performance in tracking small
targets. In future work, we will focus on these topics.
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