
����������
�������

Citation: Fridman, G.; Vasiliev, Y.;

Puhkalo, V.; Ryzhov, V. A Mixed-

Integer Program for Drawing

Orthogonal Hyperedges in a

Hierarchical Hypergraph.

Mathematics 2022, 10, 689. https://

doi.org/10.3390/math10050689

Academic Editor: Irina Cristea

Received: 20 December 2021

Accepted: 21 February 2022

Published: 23 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Mixed-Integer Program for Drawing Orthogonal Hyperedges
in a Hierarchical Hypergraph

Gregory Fridman 1,* , Yuri Vasiliev 1 , Vlada Puhkalo 1 and Vladimir Ryzhov 2

1 Department of Applied Mathematics and Mathematical Methods in Economics, Saint Petersburg State
University of Economics, Griboedov Canal Emb., 30-32, 191023 St. Petersburg, Russia;
vas_yu_m@mail.ru (Y.V.); suzdareva@gmail.com (V.P.)

2 Department of Applied Mathematics and Mathematical Modeling, Saint Petersburg State Marine Technical
University, Lotsmanskaya Ulitsa, 3, 190121 St. Petersburg, Russia; varyzhov@smtu.ru

* Correspondence: grifri@finec.ru

Abstract: This paper presents a new formulation and solution of a mixed-integer program for the
hierarchical orthogonal hypergraph drawing problem, and the number of hyperedge crossings is
minimized. The novel feature of the model is in combining several stages of the Sugiyama framework
for graph drawing: vertex ordering, the assignment of vertices’ x-coordinates, and orthogonal
hyperedge routing. The hyperedges of a hypergraph are assumed to be multi-source and multi-target,
and vertices are depicted as rectangles with ports on their top and bottom sides. Such hypergraphs
are used in data-flow diagrams and in a scheme of cooperation. The numerical results demonstrate
the correctness and effectiveness of the proposed approach compared to mathematical heuristics. For
instance, the proposed exact approach yields a 67.3% reduction of the number of crossings compared
to that obtained by using a mathematical heuristic for a dataset of non-planar graphs.

Keywords: directed acyclic hierarchical graph; graph drawing; hypergraph; orthogonal hyperedge
routing; branch-and-bound method; mathematical heuristic; financial flow

MSC: 05C65; 68R10; 90C90

1. Introduction

A new optimization model for the layout problem of a hierarchical orthogonal hy-
pergraph is discussed in this paper. The outputs of the model are node coordinates and
hyperedge routing. The number of hyperedge crossings is minimized for better visibility in
the graph layout, and some aesthetic metrics are optimized as well [1,2].

Every orthogonal hyperedge e is drawn with a set of upper vertical segments sU(e),
a horizontal segment sH(e), and a set of lower vertical segments sL(e). It is assumed
in this paper that all hyperedges are directed downwards. Each upper vertical segment
of sU(e) has the same length and starts in one of the ports of the source node; the number
of ports and their coordinates are known for each node. The horizontal segment sH(e)
is placed on the ordinate of the lower end of the vertical segments of sU(e); sH(e) and
each vertical segment of sU(e) have one conjunction point. The vertical segments of sL(e)
start on the sH(e) segment and arrive at one of the ports of their target nodes. Figure 1
shows an example of the layering of a hierarchical hypergraph with orthogonal hyperedges
according to the described rules.

A well-known approach to hyperedge visualization is the replacement of each hyper-
edge with a set of edges with one dummy node, followed by the use of traditional layout
techniques for graphs; then, the hypergraph is restored from the graph layout obtained
in the previous step [3,4]. Therefore, this problem is closely related to hierarchical (i.e.,
directed acyclic) graph drawing, and methods based on the Sugiyama approach [5] will
be applied.

Mathematics 2022, 10, 689. https://doi.org/10.3390/math10050689 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10050689
https://doi.org/10.3390/math10050689
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9876-4276
https://orcid.org/0000-0002-1189-7138
https://orcid.org/0000-0002-6251-9735
https://orcid.org/0000-0002-7997-4320
https://doi.org/10.3390/math10050689
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10050689?type=check_update&version=1

Mathematics 2022, 10, 689 2 of 15

Figure 1. An example of the layering of a hierarchical hypergraph with orthogonal hyperedges
according to the accepted rules.

To make this algorithm applicable to the hypergraph layout problem, Sander [6] first
proposed reordering the nodes on each layer to minimize the number of edge crossings,
and then calculated the preliminary coordinates for the nodes and segments to avoid hyper-
edge crossings, finally obtaining the coordinates that rendered a balanced drawing. In [7],
an exact formulation of the mathematical problem of hyperedge routing was proposed,
and it satisfied the constraints discussed above. The final step of the hypergraph drawing
algorithm is assigning each upper vertical segment to a port of its source node and each
lower vertical segment to a port of its target node.

Computing the optimal order of vertices for all layers of a graph is a highly time-
consuming procedure. That is why it is reasonable to reorder vertices in each layer sepa-
rately to minimize the number of edge crossings related to one of adjacent layers. A heuristic
proposed in [8] was improved in further work; see [9].

Plenty of exact and heuristic algorithms have been presented for the minimization
of edge crossings by reordering nodes on layers; see, e.g., [8,10]. However, application of
these methods for a hypergraph might not provide acceptable results. It is known that
decreasing the number of edge crossings does not ensure the same for the corresponding
hypergraph [11]; see, for instance, Figures 2 and 3, which present examples of single-source
one-port hypergraphs.

(a) (b)

Figure 2. Reordering nodes on the lower layer of a graph leads to a decrease in the number of edge
crossings: two crossings for the layout (a) and one crossing for the layout (b).

(a) (b)

Figure 3. The same reordering nodes on the lower layer of the corresponding hypergraph leads to an
increase in the number of hyperedge crossings: one crossing for the layout (a) and two crossings for
the layout (b).

Mathematics 2022, 10, 689 3 of 15

An additional optimization problem arises if one takes ports for the source and tar-
get nodes into account because each vertical segment of a hyperedge must be assigned
to a unique port. This problem should be considered as a part of a hierarchical hyper-
graph drawing problem, together with the reordering of nodes and horizontal segments.
Figures 4 and 5 show three layouts of the same hypergraph: without ports (optimal layout),
with the assignment of ports as a result of a post-processing procedure, and, finally, with the
optimal assignment of ports.

Figure 4. Optimal layout of a hypergraph; no ports allowed.

(a) (b)

Figure 5. Layout of a hypergraph with ports for the source and target nodes: (a) non-optimal layout;
(b) optimal layout with ports.

The reordering heuristic by Eschbach et al. [12] only gives a local minimum of the
number of hyperedge crossings. Spönemann et al. [11] proposed an algorithm for quite
accurate (but not exact) counting of hyperedge crossings depending on the order of nodes
without computing the hyperedge routing.

A hyperedge drawing is applied in a variety of practical areas: from cooperation
scheme drawing and information and financial flow visualization to schematics of displays
of automotive communication networks and VLSI design. Interesting applications of the
hypergraph layout problem can be found in the development of effective routing protocols
for IoT applications and in the development of energy-balanced routing protocols for
terrestrial/underwater wireless sensor networks, as well as in the assessment of their safety.

The information system for the national investment projects that started in Russia
in 2015 is an example of graphical data analysis [7]. One of the goals of this information
system is to control all financial transactions and contracts related to large-scale national
projects, in which hundreds of companies are involved. The embedded software visualizes
companies as nodes of a hierarchical hypergraph and their business links and financial
transactions as directed hyperedges. This visualization scheme enables one to highlight
potential risks and to estimate the status of a project under consideration. It is clear that
this visualization is only helpful as an analytical tool if it is easy to understand. It is more
to the point that the hypergraph density is high.

The neighboring area of application is financial flow visualization for corporations
with large numbers of branch offices and commercial subsidiaries. The display of the flow
of information within or between universities can be discussed as an application as well.

There are some novel approaches to nanostructures and material science with applica-
tion of graph theory [13,14], where there is a large variety of applications connected with
hierarchical hypergraphs with orthogonal hyperedges.

2. Requirements for Hyperedge Drawing

In mathematical terms, a directed k-layering hypergraph H = (V, EH , λ) contains a
set V of nodes and a set EH of hyperedges. A hyperedge e = (S, T) has source nodes S ⊂ V
and target nodes T ⊂ V. A layering function λ is introduced in order to partition the set of

Mathematics 2022, 10, 689 4 of 15

vertices V into a k finite subsets (layers) V1, V2, . . . , Vk. The function λ assigns a positive
integer to each vertex v ∈ V (layer), 1 ≤ λ(v) ≤ k.

We assume the following set of requirements for orthogonal hyperedge routing, which
is complementary to that for a layered graph drawing [10]:

1. Each hyperedge e consists of three elements: upper vertical segments sU(e), horizontal
segments sH(e), and lower vertical segments sL(e);

2. Each hyperedge is incident to one or more source vertices and adjacent (target) vertices
of the lower layers;

3. Vertices are represented by rectangles of a fixed size with a set of ports on their
upper and lower sides. In fact, every port is a common point of a vertex and an
incident hyperedge;

4. Each port of a vertex corresponds to exactly one vertical segment, either a segment of
sU(e) or a segment of sL(e). The number of ports of a vertex is equal to the number
of incident hyperedges for this vertex;

5. For every two hyperedges e1 and e2, it holds that e1 and e2 intersect if and only if a
horizontal segment sH(e1) has crossing points with a vertical segment, a segment
of sU(e2), or a segment of sL(e2), or vice versa. Note that this requirement means
that the overlapping of segments becomes non-feasible for hypergraph drawing. Two
examples of such non-feasible overlapping are demonstrated in Figure 6;

6. The number of hyperedge crossings is to be minimized.

(a) (b)

Figure 6. Examples of the non-feasible overlapping of hyperedges: (a) non-feasible overlapping of
vertical segments; (b) non-feasible overlapping of horizontal segments.

3. Mathematical Model for Drawing a Hierarchical Hypergraph with Orthogonal
Hyperedges and Ports

If hypergraph H contains hyperedges connecting the vertices of non-adjacent layers,
then every such “long” hyperedge e has to be transformed into several hyperedges that con-
nect the vertices of adjacent layers only, with additional (dummy) vertices being introduced
for every e in the following way:

1. Find adjacent vertices u and v such that {u, v} = argmaxu∈S,v∈T(λ(u)− λ(v));
2. Insert a single dummy node on each layer l of hypergraph H, λ(u) < l < λ(v);
3. Replace the long hyperedge e with λ(v)− λ(u) hyperedges that connect the inserted

dummy vertices with the incident vertices of the original long hyperedge e so that
each new hyperedge connects the vertices of the adjacent layers. This step should
hold all of the connections between nodes on adjacent layers that are defined by
hyperedge e.

Consider the hypergraph H′ = (V′, EH′ , λ′), which is constructed from the hypergraph
H (after inserting dummy vertices into it) by splitting each vertex into subsets of port
vertices. For each vertex u ∈ V (so-called “generating vertex”), sets KU and KL of the
port vertices are introduced, KU(u) = {u1

U , u2
U , . . . , umU

U } and KL(u) = {u1
L, u2

L, . . . , umL
L },

where mU and mL denote the numbers of ports of vertex u for the upper vertical segments
and for the lower vertical segments of the incident hyperedges, respectively. Each port
vertex in the set KU(u) ∪ KL(u) is considered a vertex of hypergraph H′. A function C
is introduced as well. For each port vertex, the function C yields its generating vertex.
Note that λ′(v) = λ (u) ∀ v ∈ KU(u) ∪ KL(u). Figure 7 demonstrates an example of such a
transformation of hypergraph H into hypergraph H′.

Mathematics 2022, 10, 689 5 of 15

(a) (b)

Figure 7. Transformation of hypergraph H into hypergraph H′: (a) original hypergraph H; (b) hyper-
graph H′ obtained after inserting dummy vertices and port vertices.

The following specific constraints are to be taken into account for the drawing of
hypergraph H′: port vertices with the same value for function C (those generated by one
generating vertex) should be neighboring ones, i.e., between any two port vertices with the
same value for function C, on every layer, there is no port vertex with another value for
function C.

For the mathematical formulation of the hypergraph drawing problem, three sets
of real variables are introduced—X, LMX, and RMX—as well as four sets of integer
variables—AC, HO, UC, and LC.

Variable Xv denotes the x-coordinate of the vertex v ∈ V′. The variables LMXe and
RMXe are the x-coordinates of the leftmost and rightmost nodes of hyperedge e, respectively.

A minimum distance ρ(u, v) is known for each pair of port vertices u, v ∈ V′:
u, v ∈ KU(C(u)) (or u, v ∈ KL(C(u))), u ≺ v, or each pair of generating vertices u, v ∈ V:
u ≺ v. The order relation u ≺ v for a pair of vertices u and v means that they are in
lexicographic order on the same layer.

A maximum distance δ(u′, v′) is known between each pair of port vertices u′, v′ ∈
KU(u) (or u′, v′ ∈ KL(u)) of a generating vertex u, u′ ≺ v′.

A minimum distance θ(e1, e2) is known between vertical segments sU(e1) and sL(e2)
or sL(e1) and sU(e2) for each pair of hyperedges e1, e2 ∈ EH′ : e1 ≺ e2. The order relation
e1 ≺ e2 for a pair of hyperedges e1 and e2 means that they are in lexicographic order,
and their source vertices are on the same layer.

Each hyperedge has a so-called “area of crossings”. This can be defined as a set
of points with coordinates (x, y) such that x ∈

[
minv∈S∪Tx(v), maxv∈S∪Tx(v)

]
and y is

between the ordinates of the source and target nodes. Figure 8 demonstrates the area of
crossings of hyperedge e1 with the incident vertices (1, 5, 6). Vertices 1, 2, 4, 6, which are
incident to another hyperedge e2, are inside this region, and vertices 3 and 6 are outside
of it.

Figure 8. The area of crossings of hyperedge e1.

For each pair of hyperedges (e1, e2) with source vertices on the same layers, where
e1 = (S1, T1), e2 = (S2, T2) and e1 ≺ e2, the integer variables AC and HO and dummy
variables UC and LC are introduced as follows:

ACe1,u =

0, if u ∈ S2 ∪ T2 is outside the area

of crossings of hyperedge e1 ,
1, otherwise.

(1)

Mathematics 2022, 10, 689 6 of 15

HOe1,e2 =

0, if the horizontal segment of e2

is higher than that of e1 ,
1, otherwise.

(2)

UCe1,e2 =

∑

u∈S2

ACe1,u, if the horizontal segment of e1

is higher than that of e2 ,

∑
u∈S1

ACe2,u, otherwise.
(3)

LCe1,e2 =

∑

u∈T1

ACe2,u, if the horizontal segment of e1

is higher than that of e2 ,

∑
u∈T2

ACe1,u, otherwise.
(4)

The variable UCe1,e2 is the number of crossings between the horizontal segment of
one hyperedge of a corresponding pair of hyperedges and the upper segments of the other
hyperedge. Similarly, the variable LCe1,e2 is the number of crossings between the horizontal
segment of one hyperedge of this pair and the lower segments of the other hyperedge.
The number of crossings for a pair of hyperedges e1 and e2 depends on the number of port
vertices inside the area of crossings of these hyperedges and the relative vertical positions
of their horizontal segments.

The following optimization criteria are applied in the model:

• Reducing the number of hyperedge crossings;
• Symmetric arrangement of source nodes relative to target nodes.

These can be formulated in the form:

min ∑
e1,e2∈EH′ : e1≺e2

(
UCe1,e2 + LCe1,e2

)
, (5)

min ∑
e=(S,T)∈EH′

∑
u∈S

∣∣∣∣Xu −
1
|T| ∑

v∈T
Xv

∣∣∣∣ . (6)

Note that, in all of the formulae below, |·| denotes the set cardinality for sets and an
absolute value for numerical expressions.

The following set of constraints (7)–(10) is imposed for the generating and port vertices.
To ensure that no vertices overlap in the hypergraph layout, the distance between

every pair of generating vertices u and v on the same layer (u, v ∈ V : u ≺ v) should
be equal to or greater than ρ(u, v), i.e., |Xu − Xv| ≥ ρ(u, v). Taking into account that the
abscissa of a generating vertex u can be calculated as the mean value of its port vertices
with KU(u) abscissas, we re-write this condition in the form∣∣∣∣ 1

|KU(u)| ∑
u′∈KU(u)

Xu′ −
1

|KU(v)| ∑
v′∈KU(v)

Xv′

∣∣∣∣ ≥ ρ(u, v)

∀ u, v ∈ V : u ≺ v .

(7)

Analogous conditions are to be imposed for the distance between each pair of port
vertices u′, v′ ∈ KU(u) (or u′, v′ ∈ KL(u)) of every generating vertex u ∈ V. Note that they
set both the minimum and the maximum distance between u′ and v′ as follows:

ρ(u′, v′) ≤ |Xu′ − Xv′ | ≤ δ(u′, v′)

∀ u ∈ V, ∀ u′, v′ ∈ KU(u) or ∀ u′, v′ ∈ KL(u) : u′ ≺ v′ .
(8)

Mathematics 2022, 10, 689 7 of 15

The next set of conditions ensure that the mean value of the x-coordinates of the port
vertices in the sets KU(u) and KL(u) are equal such that all of the port vertices in KU(u)
and KL(u) are to be merged back into one generating vertex in the hypergraph drawing:∣∣∣∣ 1

|KU(u)| ∑
u′∈KU(u)

Xu′

∣∣∣∣ = ∣∣∣∣ 1
|KL(u)| ∑

v′∈KL(u)
Xv′

∣∣∣∣
∀ u ∈ V : KU(u) 6= ∅, KL(u) 6= ∅.

(9)

The obvious condition that every port vertex u incident to hyperedge e lies between the
leftmost and the rightmost vertices incident to hyperedge e defines the following connection
between variables Xu, LMXe, and RMXe for every hyperedge e:

LMXe ≤ Xu ≤ RMXe

∀ e = (S, T) ∈ EH′ , ∀ u ∈ S ∪ T .
(10)

A set of constraints (11)–(17) is formulated for each pair of hyperedges e1 = (S1, T1),
e2 = (S2, T2) with source nodes on the same layer.

If the abscissa of a port vertex u incident to the hyperedge e2 belongs to the interval
that is defined by the x-coordinates of the leftmost and the rightmost vertices incident
to hyperedge e1, then the vertex u is inside the area of crossings of hyperedge e1. In this
case, there might be a crossing of a vertical segment of hyperedge e2 connected with the
vertex u and a horizontal segment of hyperedge e1. The fact that a vertex is inside the area
of crossings for a pair of hyperedges depends on the abscissa of the vertex and the values
of the variables LMXe1 and RMXe1 in the following manner:

RMXe1 −M× ACe1,u ≤ Xu or Xu ≤ LMXe1 + M× ACe1,u

∀ e1 = (S1, T1), e2 = (S2, T2) ∈ EH′ , ∀ u ∈ S2 ∪ T2 ,
(11)

Note that in expression (11) and in all of the formulae below, M is an arbitrary large
positive number, M� 1.

The nonlinear conditions (3) and (4) are to be linearized in a standard manner
as follows:

UCe1,e2 ≥ ∑
u∈S2

ACe1,u −M× (1− HOe1,e2)

∀ e1, e2 ∈ EH′ : e2 = (S2, T2), e1 ≺ e2 .
(12)

LCe1,e2 ≥ ∑
u∈T1

ACe2,u −M× (1− HOe1,e2)

∀ e1, e2 ∈ EH′ : e1 = (S1, T1), e1 ≺ e2 .
(13)

UCe1,e2 ≥ ∑
u∈S1

ACe2,u −M× HOe1,e2

∀ e1, e2 ∈ EH′ : e1 = (S1, T1), e1 ≺ e2 .
(14)

LCe1,e2 ≥ ∑
u∈T2

ACe2,u −M× HOe1,e2

∀ e1, e2 ∈ EH′ : e2 = (S2, T2), e1 ≺ e2 .
(15)

The vertical segments of every two hyperedges have no common point in the hy-
pergraph layout. Hence, one has to ensure a minimum distance between the horizontal
positions of the port vertices connected to these segments. The following conditions ensure
the absence of non-feasible overlaps of hyperedge segments:

Mathematics 2022, 10, 689 8 of 15

∣∣Xu − Xv
∣∣ ≥ M× HOe1,e2 + θ(e1, e2)

∀ e1 = (S1, T1), e2 = (S2, T2) ∈ EH′ : e1 ≺ e2

∀ u ∈ S1 , ∀ v ∈ T2 .

(16)

∣∣Xu − Xv
∣∣ ≥ M× (1− HOe1,e2) + θ(e1, e2)

∀ e1 = (S1, T1), e2 = (S2, T2) ∈ EH′ : e1 ≺ e2,

∀ u ∈ T1 , ∀ v ∈ S2 .

(17)

The transitivity condition is to be satisfied for the positions of the horizontal segments
of any triplet of hyperedges:

0 ≤ HOe1,e2 − HOe1,e3 + HOe2,e3 ≤ 1

∀ e1, e2, e3 ∈ EH′ : e1 ≺ e2 ≺ e3 .
(18)

Finally, we determine the domains for all of the variables in the problem:

Xu ≥ 0 ∀ u ∈ V′ and LMXe, RMXe ∈ R ∀ e ∈ EH′ . (19)

HOe1,e2 , UCe1,e2 , LCe1,e2 ∈ {0, 1} ∀ e1, e2 ∈ EH′ : e1 ≺ e2 . (20)

ACe,u ∈ {0, 1} ∀ e = S, T ∈ EH′ , ∀ u ∈ V′ : ∃ v ∈ S ∪ T, λ′(u) = λ′(v) . (21)

The standard linearization procedure for nonlinear expressions (6)–(9), (11), (16),
and (17) allows one to obtain a multi-objective mixed-integer program (5)–(21).

Figure 9 illustrates an example of the optimal layout of a hypergraph that was obtained
on the basis of the model discussed above.

Figure 9. An example of the optimal layout of a hypergraph.

Two additional post-processing steps are required for an optimal hypergraph layout:
first, all dummy vertices must be rendered as points, and second, all subsets of the port
vertices corresponding to a generated vertex must be merged back into one vertex.

4. Minimizing the Height of the Hypergraph Drawing

The optimization model in (5)–(21) yields the relative order of the horizontal segments
of the hyperedges. Clearly, some horizontal segments can be placed on the same horizontal
level of the hypergraph layout without non-feasible overlapping. The smaller the number
of horizontal levels where the horizontal segments are placed, the smaller the height of the
hypergraph drawing will be.

Some modifications of the model in (5)–(21) are considered to minimize the number of
horizontal levels for the horizontal segments of hyperedges.

First, two types of additional variables are introduced: real variables Y and binary
variables SH.

Mathematics 2022, 10, 689 9 of 15

The variables SHe1,e2 are defined for each pair of hyperedges e1 = (S1, T1) and
e2 = (S2, T2) so that e1 ≺ e2 in the following way:

SHe1,e2 =

{
0, if the horizontal segments of e1 and e2 are on the same level,
1, otherwise.

(22)

The variables Ye determine the relative level for the horizontal segment of every
hyperedge e ∈ EH′ . The smaller the value of Ye is, the higher the horizontal segment of
hyperedge e will be in the hypergraph drawing.

Second, condition (18) is replaced with the following system of constraints:

|Ye1 −Ye2 | ≥ SHe1,e2 ∀ e1, e2 ∈ EH′ : e1 ≺ e2. (23)

SHe1,e2 ≥
1
M

(
∑

u∈ S2∪T2

ACe1,u + ∑
v∈ S1∪T1

ACe2,v

)
∀ e1 = (S1, T1), e2 = (S2, T2) ∈ EH′ : e1 ≺ e2.

(24)

Conditions (23) and (24) are formulated for each pair of hyperedges e1 and e2 with
source nodes on one layer, and they ensure that the values of Ye1 and Ye2 differ by a positive
integer if the corresponding horizontal segments are on different levels. Again, a constant
M� 1 is used.

Finally, the following criterion is added to the optimization model in (5)–(21),
(23), and (24):

min ∑
e∈EH′

Ye. (25)

Figure 10 shows an example of the optimal layout of the hypergraph obtained using
the described variant of the model. The horizontal segments of some hyperedges have the
same ordinate, which makes it possible to reduce the height of the figure.

Figure 10. An example of the optimal layout of the hypergraph with the same ordinates of horizon-
tal segments.

5. A Mathematical Heuristic for the Hypergraph Layout

The problem of the hypergraph layout in (5)–(21) can be solved using the following
five-step mathematical heuristic:

1. Find the order of the vertices on each layer;
2. Assign preliminary abscissas to the vertices;
3. Find the relative order of horizontal segments for orthogonal hyperedges with source

nodes on the same layer;
4. Remove the non-feasible overlapping of vertical segments;
5. Assign ports to the vertical segments.

Note that the aesthetic criteria used in the heuristic coincide with those in Section 3.
The mathematical heuristic is sketched below; see Algorithm 1.

Mathematics 2022, 10, 689 10 of 15

Algorithm 1: A mathematical heuristic for the hypergraph layout.

Data: hierarchical hypergraph H = (V, EH , λ)

Result: hypergraph drawing D
ord← ordering(hypergraphRestructuring1(H));
X ← assigningAbscissas(hypergraphRestructuring2(H), ord);
HO← horizontalSegmentsOrdering(H, X); /* (26)–(30) */
X̃ ← removeOverlapping(H, X, HO);
D ← assigningPorts(H, X̃, HO); /* (31)–(33) */

The first step (vertex ordering) includes a pre-processing procedure for the initial
hypergraph H; the corresponding function is denoted as hypergraphRestructuring1 in
Algorithm 1. A detailed description of this function that returns a graph corresponding to
hypergraph H is given in Algorithm 2.

Algorithm 2: The hypergraphRestructuring1 function.

Data: hierarchical hypergraph H = (V, EH , λ)
Result: hierarchical graph G1
i← |V|;
EG1 ← ∅;
VG1 ← V;
forall e = (S, T) ∈ EH do

VG1 ← VG1 ∪ {vi+1};
forall u ∈ S do

EG1 ← EG1 ∪ (u, vi+1);
λG1(u)← 2× λ(u)− 1;

end
forall u ∈ T do

EG1 ← EG1 ∪ (vi+1, u);
λG1(u)← 2× λ(u)− 1;

end
Choose u ∈ S;
λG1(vi+1)← λG1(u) + 1;
i← i + 1;

end
G1 ← (VG1 , EG1 , λG1);

To convert the hypergraph into a graph with the hypergraphRestructuring1 func-
tion, the so-called “balancing vertex” is introduced for each hyperedge e = (S, T); see
Figure 11a,b. Then, each vertex v ∈ S ∪ T incident to the hyperedge is connected by a
directed edge to the balancing vertex. This approach enables one to correctly take into
account all possible intersections of edges.

The order of the vertices on the layers from hypergraphRestructuring1(H) is deter-
mined using the ordering function; see Algorithm 1. The vertex-ordering problem is solved
using an integer program [10] that minimizes the number of edge crossings in a directed
acyclic graph.

To assign preliminary abscissas to the vertices (step 2 of the mathematical heuristic),
the function assigningAbscissas is used. Again, hypergraph H is pre-processed with the
hypergraphRestructuring2 function; see Algorithm 3. As a result of the transformation,
every pair of adjacent vertices on the adjacent layers is connected by a directed edge; see
Figure 11c.

Mathematics 2022, 10, 689 11 of 15

(a) (b)

(c)

Figure 11. An example of a hypergraph transformation: (a) original hypergraph H; (b) restructuring
a hypergraph into a directed graph with balancing vertices; (c) restructuring a hypergraph into a
directed graph.

Algorithm 3: The hypergraphRestructuring2 function.

Data: hierarchical hypergraph H = (V, EH , λ)
Result: hierarchical graph G2
EG2 ← ∅;
forall e = (S, T) ∈ EH do

forall u ∈ S do
forall v ∈ T do

if (u, v) /∈ EG2 then
EG2 ← EG2 ∪ (u, v);

end
end

end
end
G2 ← (V, EG2 , λ);

Then, x-coordinates are assigned to the vertices based on the solution to a linear
programming problem with objective function (6); see [9]. Note that the relative vertex
order on each layer remains.

Once step 2 is over, three introduced functions—horizontalSegmentsOrdering, remove-
Overlapping, and assigningPorts—are applied to obtain the hypergraph drawing. These
functions correspond to steps 3, 4, and 5 of the mathematical heuristic, and their detailed
description is presented below.

Knowing the x-coordinates of the vertices, the order of the horizontal segments of
the hyperedges is determined. The objective function L that is minimized in step 3 is the
number of hyperedge crossings:

min ∑
e1,e2∈EH

CTe1,e2 . (26)

For each pair of hyperedges e1 = (S1, T1) and e2 = (S2, T2), one can calculate the
number of source nodes v ∈ S2 and target nodes u ∈ T2 that are inside the area of crossings
of hyperedge e1. We denote these numbers as acs(e1, e2) and act(e1, e2), respectively. Then,
the system of constraints for the integer programming problem with objective function (26)
is as follows:

CTe1,e2 ≥ acs(e1, e2) + act(e2, e1)−M× (1− HOe,e2)

∀ e1, e2 ∈ EH′ : e1 ≺ e2.
(27)

Mathematics 2022, 10, 689 12 of 15

CTe1,e2 ≥ acs(e2, e1) + act(e1, e2)−M× HOe1,e2

∀ e1, e2 ∈ EH′ : e1 ≺ e.
(28)

0 ≤ HOe1,e2 − HOe1,e3 + HOe2,e3 ≤ 1

∀ e1, e2, e3 ∈ EH′ : e1 ≺ e2 ≺ e3.
(29)

CTe1,e2 ≥ 0, HOe1,e2 ∈ {0, 1} ∀ e1, e2 ∈ EH′ : e1 ≺ e2 . (30)

Constraints (27) and (28) are a simplified version of conditions (12)–(15) from the
optimization model described in Section 3. The simplification is based on the fact that
the x-coordinates of vertices are known. Expression (29) coincides with condition (18)
and ensures that the transitivity condition is satisfied for the positions of the horizontal
segments of any triplet of hyperedges. Condition (30) determines the domains of all of the
variables in the problem.

The function horizontalSegmentsOrdering—see Algorithm 1—is the solution to the
mixed-integer program in (26)–(30). It returns the relative order of horizontal segments of
the hyperedges.

In step 4, all non-feasible overlaps of vertical segments of hyperedges are removed by
using the integer program proposed in [7]. This solution is denoted as the removeOverlapping
function in Algorithm 1. Non-feasible overlaps must be eliminated by shifting the vertices
on layers by a certain integer number of “single shifts” for each corresponding vertex
x-coordinate while maintaining the relative order of the vertices on the layers. The objective
function of the integer programming problem minimizes the total number of shifts of
vertices, and the constraints are (7)–(21) with fixed values of the HO variables for every
pair of hyperedges.

The last step of the mathematical heuristic is the port assignment procedure when the
relative order of ports is determined by the assigningPorts function for each hypergraph
vertex—see Algorithm 4—where the arrangingSymmetrically function determines the x-
coordinates of the port vertices by placing them symmetrically to the x-coordinate of the
generating vertex without breaking the relative order of the port vertices.

Algorithm 4: The assigningPorts function.

Data: hierarchical hypergraph H = (V, EH , λ), abcissas’ vertices X̃, horizontal
segment ordering HO

Result: hypergraph drawing D
forall u ∈ V do

forall K ∈ {KU(u), KL(u)} do
forall p ∈ K do

s(p)← 0;
forall j ∈ K \ {p} : j ≺ p do

s(p)← s(p) + ∑
j

ORDj,p; /* (33) */

end
forall i ∈ K \ {p} : p ≺ i do

s(p)← s(p) + ∑
j
(1−ORDp,i); /* (33) */

end
end
Sort K in increasing order by the value of s(p);
arrangingSymmetrically(K, X̃(u));

end
D ← Draw H as far as all of the necessary characteristics of the hypergraph
elements are known.

end

Mathematics 2022, 10, 689 13 of 15

For every generating vertex u, binary variables ORDu′ ,v′ are introduced for each pair
of port vertices u′, v′ ∈ KU(u) or u′, v′ ∈ KL(u) (relation u′ ≺ v′ holds) as follows:

ORDu′ ,v′ =

{
0, if port vertex u′ is to the right of port vertex v′,
1, otherwise.

(31)

A numerical parameter pos(u, e) is defined for each pair consisting of a hyperedge
e = (S, T) ∈ EH′ and a generating vertex u ∈ S ∪ T:

pos(u, e) =

2, if Xu = max

v∈S∪T
Xv ,

0, if Xu = min
v∈S∪T

Xv ,

1, otherwise.

(32)

Consider a pair of a hyperedge e = (S, T) ∈ EH and a generating vertex u ∈ S ∪ T.
If pos(u, e) = 0, then u is the leftmost vertex in a set of vertices incident to e, and if
pos(u, e) = 2, then u is the rightmost one. The equality pos(u, e) = 1 means that vertex u is
between the leftmost and the rightmost vertices incident to e. Parameter pos(u, e) enables
one to define the value of ORDu,v, i.e., the relative order of two port vertices u and v,
as follows:

ORDu,v =

U (pos(C(u), e1)− pos(C(v), e2)), if pos(C(u), e1) 6= pos(C(v), e2),
1− HOe1,e2 , if pos(C(u), e1) = type(u),
HOe1,e2 , else.

(33)

where U denotes the unit step function, u and v are incident to the hyperedges e1 and
e2, respectively, u, v ∈ KU(C(u)) or u, v ∈ KL(C(u)), u ≺ v, and a numerical parameter
type(u) takes the value 2 if port vertex u for the upper vertical segment of sU(e1) or 1 in
the other case.

Once the relative order of all pairs of port vertices u′, v′, C(u′) = C(v′) is known, all
of the port vertices of the generating vertex u are positioned so that their mean x-coordinate
coincides with that of the center of u. The minimal and maximal distances ρ(u′, v′) and
δ(u′, v′) (see Section 3) should be taken into account. Figure 12 illustrates a hypergraph
layout that was obtained using the mathematical heuristic approach described above.

Figure 12. An example of layout of a hypergraph obtained with the mathematical heuristic.

6. Numerical Results and Discussion

The approach to a solution of the hypergraph drawing problem proposed above was
verified using synthetic initial data. The corresponding numerical results were analyzed
for the multi-objective mixed-integer program in (5)–(21) and the mathematical heuristic
(see Section 5) for a set of generated hypergraphs.

Wolfram Mathematica 12.3 [15] was used as a programming tool together with Gurobi
Optimizer 9.1 [16]. All the numerical calculations were performed on an HP desktop,
with an Intel Core i5 1.60 GHz CPU, 8 GB of RAM, and the Windows 10 operating system.
The numerical results are presented in Table 1.

Mathematics 2022, 10, 689 14 of 15

Three approaches were applied to obtain the numerical results, namely, the mathemat-
ical heuristic (see Section 5), mixed-integer program (5)–(21) with a higher priority of the
objective function (5), and the same mixed-integer program enhanced by an initial feasible
solution derived with the mathematical heuristic approach.

Table 1. Numerical results obtained using the mathematical heuristic (MH) and mixed-integer
program (MIP) for a set of generated hypergraphs.

ID (|V|,|EH|)
Time, in sec Number of Crossings

MH MIP MH+MIP MH MIP/MH+MIP

ms_n8_he4 (8, 4) 0.5 1.6 (<1) 1.34 (1) 3 1
ms_n12_he6 (12, 6) 0.52 2.78 (2) 2.52 (2) 4 1
ms_n14_he7 (14, 7) 0.53 3.02 (2) 2.91 (2) 3 2
ms_n15_he7 (15, 7) 0.59 10.12 (5) 5.82 (4) 16 3
ms_n15_he8 (15, 8) 0.5 3.05 (2) 2.4 (2) 2 0
ms_n16_he9 (16, 9) 0.57 21.07 (14) 4.61 (4) 3 1

ms_n18_he10 (18, 10) 0.63 44.87 (24) 6.9 (6) 13 4
ms_n19_he10 (19, 10) 0.58 130.2 (91) 9.51 (8) 7 3
ms_n20_he11 (20, 11) 0.63 497.9 (406) 15.86 (14) 17 7
ms_n27_he11 (27, 11) 0.86 34.34 (12) 8.79 (8) 22 8
ms_n22_he14 (22, 14) 0.64 39.56 (33) 7.02 (6) 14 4
ms_n41_he19 (41, 19) 2.29 690.8 (411) 26.33 (24) 70 16
ss_n10_he7 (10, 7) 0.53 4.48 (4) 3.89 (3) 3 1
ss_n11_he7 (11, 7) 0.52 1.71 (<1) 1.69 (1) 4 0
ss_n20_he13 (20, 13) 0.57 46.81 (44) 6.25 (6) 2 0
ss_n27_he21 (27, 21) 0.75 35.81 (5) 7.84 (6) 6 1
ss_n40_he26 (40, 26) 1.43 136.4 (85) 11.85 (10) 25 7

Each hypergraph is described by its ID. If the ID contains the prefix ms, then the
hypergraph is considered to have multi-source hyperedges; otherwise, all the hyperedges
in the hypergraph are single-source ones (prefix ss in the ID). The numbers of vertices
and hyperedges are indicated in the column (|V|,|EH|). The column “Time in sec” gives
information on the computation time for each numerical experiment. There is additional
information (in parentheses) on how long it takes for Gurobi to find a solution that cannot
be optimized with further iterations.

7. Conclusions

A new mathematical model for drawing a hierarchical hypergraph with vertex ports
and multi-source orthogonal hyperedges is discussed in this paper. The model is based on
the formulation of a mixed-integer program. One of the advantages of the model is that it
enables one to simultaneously take into account a set of optimization criteria, including
aesthetics ones (for overall hypergraph drawing), as well as the minimization of hyperedge
crossings. The numerical results demonstrate that the number of hyperedge crossings can
be minimized compared to the mathematical heuristic approach.

One of the application areas of the model is in financial flow visualization in informa-
tion systems to create an initial drawing of a hypergraph. The initial layout is corrected
when actual data are updated using the dynamic hierarchical graph-drawing algorithm [9].

Further directions of research include:

• The generalization of the proposed mathematical model for reverse-directed hyper-
edges by adding port vertices to the model on the left and right sides of the generat-
ing vertices;

• The development of a fast and efficient algorithm (heuristic, metaheuristic, column
generation, etc.) for drawing large-scale hypergraphs.

Mathematics 2022, 10, 689 15 of 15

Author Contributions: Conceptualization, G.F. and Y.V.; methodology, Y.V.; software, V.P.; validation,
V.P.; formal analysis, G.F.; investigation, G.F., Y.V. and V.P.; resources, V.R.; data curation, G.F.;
writing—original draft preparation, V.P.; writing—review and editing, G.F. and Y.V.; visualization,
V.P.; supervision, G.F.; project administration, V.R.; funding acquisition, V.R. All authors have read
and agreed to the published version of the manuscript.

Funding: The research was partially funded by the Ministry of Science and Higher Education of
the Russian Federation as part of the World-Class Research Center program: Advanced Digital
Technologies (contract No. 075-15-2020-903 dated 16.11.2020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Collection of the hypergraphs generated: https://drive.google.com/
drive/folders/1GQL3gKQsVoDMrAt-YkHCYhaBabM7wBN- (Accessed: 14 December 2021). Addi-
tional data presented in this study are available on request from the authors.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Spönemann, M. Graph Layout Support for Model-Driven Engineering; BoD–Books on Demand: Norderstedt, Germany, 2015
2. Helmke, S.; Goetze, B.; Scheffler, R.; Wrobel, G. Interactive, Orthogonal Hyperedge Routing in Schematic Diagrams Assisted by

Layout Automatisms. In Diagrammatic Representation and Inference. Diagrams 2021; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2021. [CrossRef]

3. Schulze, C.D.; Spönemann, M.; von Hanxleden, R. Drawing layered graphs with port constraints. J. Vis. Lang. Comput. Issue Diagr.
Aesthet. Layout 2014, 25, 89–106. [CrossRef]

4. Jünger, M.; Mutzel, P.; Spisla, C. More Compact Orthogonal Drawings by Allowing Additional Bends. Information 2018, 9, 153.
[CrossRef]

5. Sugiyama, K.; Tagawa, S.; Toda, M. Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man
Cybern. 1981, 11, 109–125. [CrossRef]

6. Sander, G. Layout of Directed Hypergraphs with Orthogonal Hyperedges. Graph Draw. 2003, 381–386. [CrossRef]
7. Vasiliev, Y.M.; Fridman, G.M. Cooperation scheme visualization: Hyperedge routing method for hierarchical multilayer hyper-

graph. Sovrem. Ekon. Probl. Resheniia 2017, 3, 18–33. (In Russian) [CrossRef]
8. Junger, M.; Mutzel, P. 2-layer straightline crossing minimization: Performance of exact and heuristic algorithms. J. Graph

Algorithms Appl. 1997, 1. [CrossRef]
9. Ismaeel, A.A.K. Dynamic Hierarchical Graph Drawing. Ph.D. Thesis, Karlsruher Instituts fur Technologie (KIT), Karlsruhe,

Germany, 2012.
10. Healy, P.; Nikolov, N.S. Hierarchical drawing algorithms. In Handbook on Graph Drawing and Visualization; CRC: Boca Raton, FL,

USA, 2013; pp. 409–453.
11. Spönemann, M.; Schulze, C.D.; Rüegg, U.; von Hanxleden, R. Counting Crossings for Layered Hypergraphs. In Diagrammatic

Representation and Inference. Diagrams 2014; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014;
p. 8578. [CrossRef]

12. Eschbach, T.; Guenther, W.; Becker, B. Orthogonal hypergraph drawing for improved visibility. J. Graph Algorithms Appl. 2006, 10,
141–157. [CrossRef]

13. Šuvakov, M.; Andjelković, M.; Tadić, B. Hidden geometries in networks arising from cooperative self-assembly. Sci. Rep. 2018, 8,
1–10. [CrossRef]

14. Tadić, B.; Andjelković, M.; Šuvakov, M.; Rodgers, G.J. Magnetisation Processes in Geometrically Frustrated Spin Networks with
Self-Assembled Cliques. Entropy 2020, 22, 336. [CrossRef] [PubMed]

15. Wolfram Research. Wolfram Mathematica. Available online: https://www.wolfram.com/mathematica/ (accessed on 14
December 2021).

16. Gurobi Optimization, LLC. Gurobi Optimizer. Available online: https://www.gurobi.com/products/gurobi-optimizer/
(accessed on 14 December 2021).

https://drive.google.com/drive/folders/1GQL3gKQsVoDMrAt-YkHCYhaBabM7wBN-
https://drive.google.com/drive/folders/1GQL3gKQsVoDMrAt-YkHCYhaBabM7wBN-
http://doi.org/10.1007/978-3-030-86062-2_2
http://dx.doi.org/10.1016/j.jvlc.2013.11.005
http://dx.doi.org/10.3390/info9070153
http://dx.doi.org/10.1109/TSMC.1981.4308636
http://dx.doi.org/10.1007/ 978-3-540-24595-7_35
http://dx.doi.org/10.17308/meps.2017.3/1628
http://dx.doi.org/10.7155/jgaa.00001
http://dx.doi.org/10.1007/978-3-662-44043-8_2
http://dx.doi.org/10.7155/jgaa.00122
http://dx.doi.org/10.1038/s41598-018-20398-x
http://dx.doi.org/10.3390/e22030336
http://www.ncbi.nlm.nih.gov/pubmed/33286110
https://www.wolfram.com/mathematica/
https://www.gurobi.com/products/gurobi-optimizer/

	Introduction
	Requirements for Hyperedge Drawing
	Mathematical Model for Drawing a Hierarchical Hypergraph with Orthogonal Hyperedges and Ports
	Minimizing the Height of the Hypergraph Drawing
	A Mathematical Heuristic for the Hypergraph Layout
	Numerical Results and Discussion
	Conclusions
	References

